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A fundamental question in nonlinear science and evolutionary biology is how epidemic spreading may affect
coexistence. We address this question in the framework of mobile species under cyclic competitions by
investigating the roles of both intra- and interspecies spreading. A surprising finding is that intraspecies
infection can strongly promote coexistence while interspecies spreading cannot. These results are quantified
and a theoretical paradigm based on nonlinear partial differential equations is derived to explain the numerical
results.
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Understanding the dynamical and physical mechanisms
that facilitate or hamper biodiversity is a fundamental issue
in interdisciplinary science. Species coexistence is key to
maintaining biodiversity. Recently, a powerful theoretical
and computational paradigm in nonlinear science has
emerged, namely, evolutionary games, allowing for the first
time the species-coexistence problem on spatially extended
scales to be addressed quantitatively �1–6�. The development
of the evolutionary-game approach was largely motivated by
experiments on the role of nonhierarchical, cyclic competi-
tions in coexistence. Exemplary biophysical systems where
such competitions have been observed in several ecosystems
�1,7–9�. For such systems, the coevolutionary dynamics can
be well captured by the rock-paper-scissor game �5�.

Quite recently, a basic feature of ecosystems, namely,
population mobility, has been incorporated into spatial
cyclic-competition games �10,11�. In the work of Reichen-
bach et al. �11�, a critical mobility was identified, below
which species can coexist, as manifested by patterns of en-
tangled traveling spiral waves. Subsequently, issues such as
noise and correlation �12,13�, instability of spatial patterns
�14�, conservation law �15�, and basin of biodiversity �16�
were studied. In all these works, a main result is that, when
the mobility exceeds a critical value, extinction arises in gen-
eral, leading to the loss of coexistence. An intriguing impli-
cation of this result is that, about the critical value, the spe-
cies differing slightly in mobility can have drastically
different outcomes, leading to either existence or extinction.
An important fact is, however, that species coexistence is
such a ubiquitous phenomenon in nature. It is not unreason-
able to conceive that species of relatively large mobility can
coexist in certain environments. There must then be addi-
tional mechanisms that promote coexistence even when the
species are highly mobile. The purpose of this paper is to
establish that epidemic spreading can greatly enhance coex-
istence.

Epidemic spreading and outbreak are common in nature
and society. The dynamics of spreading has been studied
extensively on various networks �17�. However, the effects
of virus spreading have not been addressed in the framework
of evolutionary games. There are two spreading types: intra-
and interspecies. Intraspecies virus spreading is extremely
common, while the occurrence of interspecies spreading has

become increasingly frequent, such as SARS, bird flu, and
swine flu. Here we incorporate epidemic spreading into spa-
tial game of mobile populations under cyclic competitions.
Our main finding is that intraspecies spreading can strongly
promote coexistence even when the species have high mo-
bility. In particular, depending on parameters characterizing
spreading, in a proper state space intraspecies spreading can
generate a significant basin of coexistence. We will show that
this striking finding can be explained by the underlying
theory of nonlinear dynamics. We will derive a theoretical
framework to treat both types of spreading based on a set of
nonlinear partial differential equations �PDEs�. Our findings
elucidate the fundamental role played by virus spreading in
species coexistence, which may have significant implications
in ecosystems.

Cyclic-competitions. Cyclic-competitions of three mobile
species, as proposed in Ref. �11�, are modeled as follows:

ab→
u

a � , bc→
u

b � , ca→
u

c � , �1�

a � →
�

aa, b � →
�

bb, c � →
�

cc , �2�

a � →
�

� a, b � →
�

� b, c � →
�

� c , �3�

where a, b, and c denote individuals from three species, re-
spectively, � represents empty sites and � represents any
species or empty sites. Relations �1�–�3� define prey, repro-
duction, and migration that occur at the rates u, �, and �,
respectively. According to Ref. �11�, the occurring probabili-
ties of the three relations are normalized by the sum of the
probabilities. Without loss of generality, we assume
u=�=1 �11�. Individual mobility M is defined �18� as
M =��2N�−1, which is proportional to the number of sites
explored by one mobile individual per time step. Initially,
three species populate a square lattice of N sites with peri-
odic boundary conditions. At each time step, a random pair
of neighboring sites is chosen for possible interaction, and
one interaction from prey, reproduction and migration will
occur, depending on their probabilities. Whether the interac-
tion can successfully occur is determined by the states of
both sites. An actual time step is defined when each indi-
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vidual has experienced interaction once on average, i.e., in
one time step N pairwise interactions will have occurred.

Epidemic spreading. This process is independent of cyclic
competitions. We use the standard susceptible-infected-dead
model to describe the process, where each individual can be
in one of the three states: susceptible �Sa,b,c�, infected �Ia,b,c�,
or dead. Virus is transmitted and spread in space through
contact among neighboring individuals. Intra- and interspe-
cies infections are described, as follows:

IaSa→
�

IaIa, IbSb→
�

IbIb, IcSc→
�

IcIc, �4�

Ⓘ�→
�

ⒾⒾ , �5�

where Ⓘ and � represent infected and susceptible individu-
als in any of the three species. Relation �4� stands for in-
traspecies infection with probability � and relation �5� for
interspecies infection by which virus can spread both within
and across species with probability �. A direct consequence

of infection is death with probability � :Ⓘ→
�

�, which occurs
to any infected individuals for both intra- and interspecies
infections. The infection process is updated synchronously at
each actual time step t. At an arbitrary time t after the infec-
tion, individuals infected at or early than t−1 can die with
probability �. Either intra- or interspecies infections can oc-
curs in population and the situation that both arise is not
considered.

To guide our computations, we use one result in Ref. �11�,
where a critical mobility Mc= �4.5�0.5��10−4 was identi-
fied. In the absence of virus spreading, for M �Mc, only one
species can survive, so coexistence is ruled out. To effec-
tively reveal the role of spreading in coexistence, it is then
useful to distinguish two regimes: M �Mc and M 	Mc. Fig-
ures 1�a�–1�d� show typical snapshots of spatial pattern for
different values of � and �, where Figs. 1�a�–1�c� are for
intraspecies and Fig. 1�d� is for interspecies spreading. In
particular, Fig. 1�a� demonstrates entangled moving spiral
waves for M 	Mc for relatively small values of � and �,
similar to what happens in the absence of infection spreading
�11�. For relatively larger values of � and �, spiral-wave
patterns become less pronounced, as shown in Fig. 1�b�. Fig-
ure 1�c� exemplifies the spatial pattern for M �Mc, where
color dots spread out uniformly, indicating stable coexist-
ence, in sharp contrast to the case of no virus spreading,
where coexistence cannot occur. However, for interspecies
spreading, extinctions still occur for M �Mc, while for
M 	Mc, spiral waves are preserved but there are a large
number of empty sites caused by interspecies infection for
small values of � and �, as shown in Fig. 1�d�. For large
values of � and �, spiral-wave patterns are blurred, similar to
the case of intraspecies spreading. All these patterns can be
obtained theoretically by deriving and solving a set of PDEs
�Eq. �7��, as shown in Figs. 1�e�–1�h�.

The numerically obtained spiral-wave patterns can in fact
be predicted theoretically by using nonlinear PDEs �11,13�.
Let Ia,b,c�r , t� and Sa,b,c�r , t� be the infection and susceptible
densities of populations a, b, and c at time t and spatial site
r= �r1 ,r2�. Neighbors are located at r��r ·ei, where �ei� is

the basis of two-dimensional lattice. The quantities

a,b,c�r , t�= Ia,b,c�r , t�+Sa,b,c�r , t� represent the densities of
the three species at position r and time t, and

�r , t�=
a�r , t�+
b�r , t�+
c�r , t� is the total density at �r , t�.
The parameters �=� / ��+u+�� and �=� / ��+u+�� are the
rescaled probabilities of infection and death. We then obtain
the following evolutionary equations for any one of popula-
tions, say:

�tIa�r,t� =
1

4 �
i�2D

�2�Ia�r � �r · ei,t� − Ia�r,t�� + ��aSa�r,t�

− �Ia�r,t� − uIa�r,t�
c�r � �r · ei,t�� ,

�tSa�r,t� =
1

4 �
i�2D

�2�Sa�r � �r · ei,t� − Sa�r,t�� − ��aSa�r,t�

− uSa�r,t�
c�r � �r · ei,t�

+ �
a�r � �r · ei,t��1 − 
�r,t��� , �6�

where for intra- and interspecies transmissions,
�a,b,c= Ia,b,c�r��r ·ei , t� and �a,b,c= Ia�r��r ·ei , t�
+ Ib�r��r ·ei , t�+ Ic�r��r ·ei , t�, respectively. For N→�
and lattice size fixed at one, �r→0. Thus, r can be treated as
a continuous variable. Using the expansion for
Ia�r��r ·ei , t� �similar for Sa�r��r ·ei , t��: Ia�r��r ·ei , t�
= Ia�r , t���r�iIa�r , t�+ 1

2�r2�i
2Ia�r , t�+o��r2�, the first terms

in the right-hand side of the PDEs become � /2��r2�i
2Ia�r , t�

and � /2��r2�i
2Sa�r , t� up to the second order. For other

terms, zeroth-order contributions dominate for �r→0. By

FIG. 1. �Color online� �a–c� Examples of spatial patterns under
intraspecies spreading. Parameters are: �a� M =2�10−5	Mc,
�=0.02, and �=0.01, �b� M =2�10−5, �=0.1, and �=0.05, and �c�
M =1�10−3�Mc, �=0.8, and �=0.05. �d� Pattern in the presence
of interspecies spreading for M =2�10−5	Mc, �=0.2, and
�=0.05. �e–f� Corresponding theoretical patterns predicted by Eq.
�7�. The lattice size is 400�400. In the simulation patterns, three
colors represent three species and gray is for empty site. The color
of each site is the species of the individual who occupies the site. In
the theoretical patterns, the color of a site is determined by the
densities of three species probabilistically, that is the probability of
showing a color at a site is proportional to the density of the species
represented by the color. The densities of three species at a site in
theoretical model is obtained by numerically solving Eq. �7�. The
time series of densities in �c� and �g� are quite stable with small
fluctuations about their respective mean values, signifying coexist-
ence induced by intraspecies virus spreading.
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rescaling the exchange rate  with the system size N accord-
ing to =2MN0.5, we have �r2=2M. We thus obtain the
following set of PDEs:

�tIa = M�2Ia + ��aSa − �Ia − uIa
c;

�tSa = M�2Sa − ��aSa − uSa
c + �
a�1 − 
�;

�tIb = M�2Ib + ��bSb − �Ib − uIb
a;

�tSb = M�2Sb − ��bSb − uSb
a + �
b�1 − 
�;

�tIc = M�2Ic + ��cSc − �Ic − uIc
b;

�tSc = M�2Sc − ��cSc − uSc
b + �
c�1 − 
�; �7�

where for intra- and interspecies transmissions �a,b,c= Ia,b,c
and �a,b,c= Ia+ Ib+ Ic, respectively. Given the initial densities
of infected and susceptible species and empty sites, as well
as the values of � and �, we can numerically solve the PDE
system to obtain patterns in Figs. 1�e�–1�h�, which show a
good agreement with direct numerical simulations.

Figures 2�a�–2�d� show two-parameter phase diagrams of
the survival probability in the presence of intraspecies infec-
tion for different values of M in the regime M �Mc. We see
that, regardless of the choice of M, a coexistence region
always exists �Figs. 2�a�–2�c��, defined as the region where

the survival probabilities of all three species are one. The
coexistent region in the parameter space can be well pre-
dicted by our PDE formulation. Considering that, in the ab-
sence of virus spreading, coexistence cannot occur, these re-
sults indicate that intraspecies spreading can promote
coexistence in a wide region of the parameter space. The
area of the coexistence parameter region thus provides a way
to characterize the strength of species coexistence for differ-
ent values of M. As shown in Fig. 2�d�, the area Sco of the
coexistence region is approximately an algebraic function of
M, and Sco decreases slowly as M is increased. In contrast,
for interspecies virus spreading, there is no coexistence re-
gion for M �Mc, as verified by both direct simulation and
PDEs.

The mechanism underlying the effect of intra- and inter-
species spreading on coexistence can be heuristically ex-
plained by relating these processes to intraspecies competi-
tion such as AA→A� and natural death A→�, respectively.
Intraspecies spreading, which is somewhat similar to in-
traspecies competition, is most effective on the dominant
subpopulation due to propagation, thereby reducing its pre-
dominance. This naturally favors coexistence. The empty
sites resulting from death also act as topological defects that
can help prevent extinction. The process of interspecies
spreading resembles natural death if the infection probability
is high. However, the barrier effect by natural death is not
sufficient to sustain coexistence, so in general interspecies
spreading cannot facilitate coexistence.

We now study basins of coexistence and extinction to
provide a more comprehensive picture for the effects of virus
spreading. Since the initial densities of three species satisfy

a+
b+
c=1−
e �
e being the density of empty sites�, for a
fixed value of 
e, all possible combinations of 
a, 
b, and 
c
can be represented by a triangular region, the simplex S2.
There are four possible final states, corresponding to three
single species �uniform� and coexistence. Thus, in the phase
space S2, the coordinates of a point represent a group of three
initial densities, and the color of the point denotes the final
state. As shown in Fig. 3�a�, in the absence of virus spread-
ing, for M �Mc, we obtain three uniform basins that are
symmetrical and spirally entangled at the center. However, in
the presence of intraspecies spreading, for the same value of
M, a vast coexistence basin predominates S2 with small ba-
sins near the borders for extinction, indicating the robustness
of coexistence as induced by intraspecies spreading, regard-
less of the heterogeneity in the initial population densities.
This is a remarkable feature as, intuitively, population het-
erogeneity is thought to be disadvantageous to species coex-
istence. For interspecies infection, no coexistence basin can
arise, as shown in Fig. 3�c� �solution from PDEs� and Fig.
3�d� �direct numerical simulations�. An observation from Fig.
3�c� is that the initial density 
e of empty sites does not
change the structure of the uniform basin, but merely shrinks
the area of the simplex S2. Under intraspecies virus spread-
ing, for very large value of M, the uniform �extinction� basin
appears to be determined by � and � but not by M. For a
fixed value of M in this regime, we show in Fig. 4 the struc-
tures of the uniform basins, which are distinct for different
values of � and �. The basins exhibit some interesting fea-
tures. For example, for �=0.01, when � is changed from 0.01
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FIG. 2. �Color online� Under intraspecies virus spreading, sur-
vival probability �defined as the fraction of survival times in a num-
ber of independent realizations� in the �-�-parameter space for �a�
M =9�10−4, �b� M =1.2�10−3, and �c� M =1.6�10−3, all larger
than Mc. In all cases, a sizable coexistence area appears. The green
curves are the predicted boundary of the coexistence area from
Eq. �7�. �d� Area of coexistence region Sco as a function of
M �N=200�200 for inset�, where the red vertical line represents
Mc and the green curve is obtained from Eq. �7�. The quantity Sco is
approximately an algebraic function of M, and slowly decreases as
M increases. The lattice size except the inset in �d� is 100�100 and
each point in the two-parameter space is obtained by averaging over
50 different realizations.
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to 0.4, the basins appear clockwise. For �=0.01 and �=0.2,
there is a large entangled region where small deviations in
the initial composition could lead to completely different be-
havior. Although the structures can be dramatically changed
with respect to � and �, the rotational symmetry is always
preserved.

In conclusion, we have investigated the effects of intra-
and interspecies virus spreading on species coexistence in
spatial rock-paper-scissors game of mobile individuals. A
striking finding is that intraspecies spreading can strongly
promote coexistence in that robust coexistence basin can

arise in parameter regimes where coexistence is ruled out in
the absence of spreading. In contrast, interspecies spreading
is not able to promote coexistence. We have derived a set of
nonlinear PDEs incorporating both types of spreading pro-
cess, and the theoretically predicted basin structures agree
well with those from direct simulations. We speculate that
intraspecies virus spreading can be a fundamental mecha-
nism for species coexistence and biodiversity in nature.
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FIG. 3. �Color online� Basin structures in the simplex S2 for
M =1.0�10−3�Mc. �a� Spirally entangled basins of three species
in the absence of virus spreading. �b� Rising of a vast area of co-
existence �green� as a result of intraspecies spreading. �c� Theoreti-
cally predicted basin structures from Eq. �7� under interspecies
spreading for different values of initial density 
e of empty sites. �d�
Simulated basin structure under interspecies spreading. In �a,b,d�,
the value of 
e is fixed at 0.1. The color at each location represents
the final state obtained from stochastic simulations by using 50
random realizations, under the same initial condition. Infection and
death probabilities are �=0.6 and �=0.13, respectively. The lattice
size is 100�100. For the PDEs, extinction is defined when the
density of any species is less than 1 /N. The species preyed by the
extinction species is the exclusive survivor. The definition takes into
account the physical meaning of survival in that the number of
survival species cannot be less than one.

FIG. 4. �Color online� Structures of uniform basins in the pres-
ence of intraspecies infection as functions of infection parameters �
and � for M =3�10−3�Mc. Data points in each simplex S2 are
obtained by averaging over 50 realizations. The color coding and
other parameters are the same as in Fig. 3. All basin structures are
rotationally symmetric and are insensitive to mobility for M �Mc.

WANG, LAI, AND GREBOGI PHYSICAL REVIEW E 81, 046113 �2010�

046113-4

http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1073/pnas.012399899
http://dx.doi.org/10.1073/pnas.012399899
http://dx.doi.org/10.1103/PhysRevLett.94.038102
http://dx.doi.org/10.1103/PhysRevLett.95.238701
http://dx.doi.org/10.1103/PhysRevLett.95.238701
http://dx.doi.org/10.1103/PhysRevE.74.011901
http://dx.doi.org/10.1103/PhysRevLett.100.058104
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1103/PhysRevLett.102.048102
http://dx.doi.org/10.1073/pnas.72.12.5160
http://dx.doi.org/10.1073/pnas.72.12.5160
http://dx.doi.org/10.1038/306368a0
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1038/380240a0
http://dx.doi.org/10.1088/0305-4470/38/30/005
http://dx.doi.org/10.1103/PhysRevE.69.031911
http://dx.doi.org/10.1103/PhysRevE.76.051921
http://dx.doi.org/10.1103/PhysRevE.77.041919
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1038/nature06095
http://dx.doi.org/10.1103/PhysRevLett.99.238105
http://dx.doi.org/10.1103/PhysRevLett.99.238105
http://dx.doi.org/10.1016/j.jtbi.2008.05.014
http://dx.doi.org/10.1016/j.jtbi.2008.05.014
http://dx.doi.org/10.1103/PhysRevLett.101.058102
http://dx.doi.org/10.1103/PhysRevLett.101.058102
http://dx.doi.org/10.1103/PhysRevE.78.031906
http://dx.doi.org/10.1103/PhysRevE.81.030901
http://dx.doi.org/10.1103/PhysRevE.81.030901
http://dx.doi.org/10.1103/PhysRevLett.90.028701
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1073/pnas.0510525103
http://dx.doi.org/10.1186/1741-7015-5-34

