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We investigate Hamiltonian chaotic scattering in physically realistic three-dimensional potentials. We find
that the basin topology of the scattering dynamics can undergo a metamorphosis from being totally discon-
nected to being connected as a system parameter, such as the particle energy, is varied through a critical value.
The dynamical origin of the metamorphosis is investigated, and the topological change in the scattering basin
is explained in terms of the change in the structure of the invariant set of nonescaping orbits. A dynamical
consequence of this metamorphosis is that the fractal dimension of the chaotic set responsible for the chaotic
scattering changes its behavior characteristically at the metamorphosis. This topological metamorphosis has no
correspondence in two-degree-of-freedom open Hamiltonian systems.

PACS numbes): 05.45.Jn

[. INTRODUCTION sible in the corresponding planar scattering system. We note
that the related transient chaotic dynamics in such high-
Chaotic scattering is a phenomenon that has been identiimensional phase space is a defying problem that has not
fied in many physical contexts such as atomic phyfids been well studied so far.
astrophysicg2], fluid dynamics[3], chemical reactionf4], The paper is organized as follows. In Sec. Il the scattering
and electron transport in mesoscopic systéﬁ]sh’] a cha- model is described. In Sec. Il we present evidence for cha-
otic scattering process, the plot of some output variable, suc@ltic scattering by studying the scattering functions. In Sec.
as the scattering function, after the scattering versus somi/ the topological metamorphosis of the scattering dynamics
input variable before the scattering typically contains an uniS addressed. In Sec. V the change in the invariant set at the
countably infinite number of singularities. The output of the Metamorphosis is studied on an invariant plane of the poten-
system then depends sensitively on the input in that a smalial- A conclusion is presented in Sec. VI.
change in the input variable can cause a large change in the
output—this being the hallmark of chaos. Dynamically, cha-
otic scattering is caused by nonattracting chaotic saddles in
the phase space and it is a direct manifestation of transient \We consider the following class of three-degree-of-
chaos in physical systents, 7]. freedom, time-independent Hamiltonian systeri(x,p)
A fundamental problem in the study of chaotic scattering=|p|?/2m+V(x), where x,pe R® are the coordinate and
is to understand how the scattering characteristics change asomentum vectors, anah is the particle mass. To be more
a system parameter of physical interest changes. In this repecific and without loss of generality, we study the situation
gard, there has been research on two-degree-of-freedojhere there are four potential hills, located at the four verti-
Hamiltonian systemf8—10] and on three-degree-of-freedom ces of a regular tetrahedron of unit side lengths, in the three-
Hamiltonian systems but with hard-wall potentigls]. The  dimensional physical space. The locations of the vertices of
aim of this paper is to investigate chaotic scattering in threethe tetrahedron are x{,y;,2,)=(0,01/2/3), (X2.Y2.25)
degree-of-freedom Hamiltonian systems consisting of physi= (1/2 - 1/(2v3),0), (x3,y3,23)=(—1/2,~1/(2V3),0), and
cally realistic soft potentials. Our motivation comes from theEx4,y4,z4)=(0,m,0), as shown in Fig. 1. To mimic

1. MODEL

desire to understand the dynamics in phenomena such as thgysical situations such as particle scattering by nonrotating

scattering of particles by molecules in three-dimensionayiatomic molecules. we choose the Morse poterfa] for

physical space. In phase space, the scattering dynamics ds,ciy hill, which has been a paradigm in chemical and atomic

then five dimensional. We use a particular model of fourphysics[13]. The potential due to each Morse hillV&,(x),
Morse potential hills in a tetrahedron configuration, but thiswherex:(x y,2), and

model is sufficiently general to allow us to draw conclusions
on high-dimensional systems, besides being interesting and
physically realistic by itself. Our principal results aB the
topology of the chaotic scattering dynamics can undergo a
sudden changéa metamorphosjs as a system parameter
(e.g., energy changes continuously(2) at the topological
metamorphosis, the behavior of the fractal dimension of thevherer ;= \/(x—xj)2+(y—y]-)2+(z—zj)z, andV,, «, and
chaotic saddle changes characteristically, #8d chaotic r. are parameters of the Morse potentialis related to the
scattering can occur in energy regimes where it is not possteepness of the potential, ang is the effective range of

\Y \Y
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FIG. 1. A schematic illustration of the scattering system: four
Morse potential hills located at the vertices of a regular tetrahedron.  -0.2+

-0.4-

each potential hill. The additive constantl/2 ensures that
Vu(X)—0 forr—o. Each Morse hill is spherically symmet-
ric and has a repulsive region, arouxe X; , surrounded by
an attractive region. For>r,, the potential is negligible,
and the particles there can be considered to be in free motion.
We notice that although we chose to work with the Morse
potential, our results are expected to be qualitatively the (b)
same for any short-range potential with a repulsive core and
an attractive tail, such as the Lennard-Jones potential.

The dimensionless potential function of our scattering
system can then be written as 12+

4
V<x.y,z>=j§1 Vi(X). 2

0.8+

0.6+

N 0.4
Due to the conservation of energy, the phase-space dimen-
sion is five. In our work, we fix the following set of param-
eter valuesn=1,Vy=1, a=6, r,=0.68, and we choose the
particle energyE as the bifurcation parameter. Equivalently,
we could have chosen some other parameter \VgayHam-
ilton’s equations are integrated by using thérBter-Verlet
method which preserves the symplectic structure of the sys-
tem [14]. We note that the potential distribution is highly
localized and we denote the region around,y(z)

=(0,0,0), in whichV(x,y,z) is appreciable, the scattering
region. FIG. 2. Surfaces of equal energy for the potentilfor ener-

We now focus our attention on the region of the three-gies above and below the critical enerfgy. (a) Isoenergy surface

dimensional physical space that is inaccessible to a particl®" E=1 (E<Ec); (b) isoenergy surface fdE=4(E>E,).

with energyE. This region is given by/(x)>E. Throughout

this paper, we restrict ourselves to energies below the maxthe invariant set, which is the set of orbits that do not leave
mum energy of the potential hills:E<Ey=V(X;,y;,z) the scattering region for both— +~ andt— —«. As the
(j=1,...,4) [15]. For energies higher than a certain critical energy drops belov., a whole family of orbits in the in-
energyE. (and lower thark,), the inaccessible part of space variant set is destroyed, consisting of orbits that bounce back
consists of four disconnected regions, each surrounding orend forth between each pair of forbidden regions an arbitrary
vertex of the tetrahedron, as shown in Figa)2 they are number of times, including the six unstable periodic orbits
approximately spherical in shapghey are not perfectly connecting each pair of hills that exist far>E.. As these
spherical because their shape is distorted by the othej.hillsorbits are destroyed, however, another family of orbits is
As the energy decreases towakK]s the inaccessible regions created aE=E_; these orbits bounce off the newly created
grow in radius, and aE=E_. the previously disconnected forbidden regions connecting each pair of hills. We will de-
regions touch each other. By symmetry, every pair of twoscribe this change in the invariant set in more detail later.
previously disconnected regions must touch each oth&r at This qualitative(that is, topologicalchange in the dynamics
=E.. For E<E_, the forbidden region is fully connected; of the system aE. is the metamorphosis that is the main
an example is shown in Fig(l®. This topological change in subject of this paper.

the configuration space causes a corresponding change in the The critical energye. can be estimated as follows. Con-
dynamics of the system, as can be understood by analyzirgjder the three Morse potentials in the y) plane in Fig. 1.
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For each individual potential, the radius of the classically
forbidden spherical region is=r.— (1/a)In(1+2E/V,).

If there is no overlapping between the potentials, two adja-
cent potentials touch each otherrat 1/2. Thus,E. is ap-
proximately determined by

1+\/2EC 1/2
Vo TF

We obtainE;~1.9. Due to the overlapping among poten-
tials, the actual value dE; will be slightly higher than this
estimated one. In fact, we find numericalfy~2.25.

The basic physics associated with the topological meta-
morphosis can be understood in terms of the structural
change in the “holes” on each side plane of the tetrahedron
potential configuration as the particle energy is decreased.
ForE>E_., the forbidden regions surrounding the vertices of
the tetrahedron are isolated. FBK E, they are connected,
and an incoming particle can penetrate the interior of the

re——In
€ o

tetrahedron through the holes on the side planes. For the set
of parameters chosen by us, the holes in the central regions
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FIG. 3. Contours of three Morse potential hills in the plane
0 for E=4,E=3, E=2, andE=1 (inside out, respectively

of the side planes are always present, because of the attra@igle ¢ and the polar angle. Figure 4a) shows, forE

tive parts of each Morse hill. This allows particles to enter

=4, the plot of¢ after the scattering versug,, where par-

the scattering region inside the tetrahedron at low energiesicles are launched upwards wifyo=p,o=0, p,o= V2E at

For E<E., the holes are large and, hence, the range o

#o=—10.0, and the scattering functiofi(xy) is recorded

initial conditions with which particles can enter the holes arewhen the particles exit the scattering region, say, when
appreciable. In this case, chaotic scattering can be readily 10. The plot exhibits typical features of chaotic scattering

observed. The holes, however, become smalleE s de-
creased further frork. . In particular, if there is no overlap-

[8]: regions of smooth variations interspersed by abrupt
changes in the scattering function. In fact, there is a Cantor

ping between the potentials, the size of the holes is given bget of singularities in the scattering function. Chaotic scatter-

S 1+2E/V,
—In .
2 a1+ \2E./V,

For E slightly belowE, so that E.—E)/E.=AE/E <1, we
have

v3i—-1 1

s~C—h(E,)AE, 3)
where C=(vV3—1)/2 and h(Ey)=1[ay2E./Vy(1

++2E;/Vy)]. Thus, to observe chaotic scattering at very
low energies in an experimental setting, initial conditions

have to be prepared carefully so that particles can enter the
holes, as the scattering will not be chaotic if the particles stay

outside the holegno unstable periodic orbit can be formed
there forE<E,, as can be seen in Fig).3

IIl. SCATTERING FUNCTIONS

We now analyze the scattering of test particles by the

potentialV of Eq. (2) by means of a scattering function de-
fined as follows. Particles are launched towards the scatte
ing region with a fixed velocity from a line segment, say
aligned along the direction, located far away from the scat-
tering region, wheré&/~0. Each particle will enter the scat-

tering region, stay there for a certain time, and typically
leave towards — o0 again. The scattering function character-

ing persists over a wide energy range, as shown in Riy. 4
for E=1.

The presence of a Cantor set of singularities in the scat-
tering dynamics, as suggested by Figs) 4nd 4b), implies
the presence of a chaotic saddle whose fractal dimension in
the five-dimensional phase space is larger than 3. This, in
general, can be argued as follows. 2{ and D, be the

(a)

izes the dynamical state, such as the direction of the particle _8_5 0

motion, after leaving the scattering region. Since the physical
space is three dimensional, there are two angles characteriz-
ing the momentum of a scattering particle: the azimuthal

-0.5 0 0.5
X
0
(b)
6
r_
4}
=
2
0.5
XO

. 4. Scattering functiomp(x,) for (a) E=4 and(b) E=1.
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dimensions of the stable and unstable foliations of the 4.4
chaotic saddle in the scattering region. Due to the symplectic

nature of Hamiltonian flows, we hai@,=D . The dimen- 4.3
sion of the chaotic saddle is given Hy.=D,+D,—N

=2D¢—N, since, dynamically, the chaotic saddle is the 4.0
intersecting set between the stable and unstable foliations,

where N is the dimension of the phase space. Let, o

<1 be the fractal dimension of the Cantor set of singularities
probed by a scattering function, which is in fact the set

of intersecting points between the stable foliation and 4

the one-dimensional line segment from which particles

are launched. We thus hav®,=Ds+1—N or, Dg 3.9

=Dgy+N-—1. This gives for the dimension of the chaotic

saddle 38
D.=2Dg+N—-2=3+2Dy. 4

FIG. 5. Fractal dimensio® of the chaotic saddle versus the
Since 0<Dy=<1 andN=5, we see that D.<5. These energyE. The dimension remains constant fr E. and decreases
arguments also suggest thaDf <3, the scattering function asE is decreased throudh, .
is smooth and, hence, no chaotic behavior can be observed
by examining only the scattering function, even though ther
is a chaotic saddle in the phase space and the scattering
namics is chaoti¢11].

While the scattering functions observed Bt4 [Fig.
4(a)] and atE=1 [Fig. 4(b)] imply the presence of chaotic
saddle withD ;>3 in both cases, the dynamical and physical
nature of the scattering observed at these energies are ex-
pected to be different, because of the topological change in

the structure of the invariant set explained in Sec. Il. This

suggests that there may be a characteristic change in @ ESEc, whereA andB are positive constants. This scal-
dynamical invariants of the invariant set in the transitionind relation indicates that the fractal dimension of the chaotic

from E>E. to E<E;. saddle decreases as the endfgyg decreased from the meta-
To verify this, we compute the fractal dimension of the morphosis poinE., due to the shrinkage of the holes on the
chaotic saddleD, by using the uncertainty algorithfri6]. side planes of the potential configuration. The inverse loga-
Specifically, we randomly choose a large number of pairs ofithmic dependence oAE of Dy in the relation is apparently
particles at distance apart from a line segment in the initial not resolved in our numerical experiments.
plane P, and compute, for each pair, whether the two par- We notice that at energies abdtit 1, chaotic scattering
ticles exit the scattering region through different planes ofdoes not occur if the system only has two degrees of free-
the tetrahedron. The fraction of these uncertain péfe9  dom, such as the configuration of three potential hills in the
typically scales withe asf(€) ~ €'~ P0, whereDy is the frac-  plane which has been studied extensivil$,8,9. This can
tal dimension of the set of singularities in the scattering funche understood by plotting the contour of potential hills in the
tions in Figs. 4a) and 4b). The dimension of the chaotic plane, as done in Fig. 3 f&=4 (thick lineg andE=1 (thin
saddle is then given by Eq4). We find that forE=4, the  |ineg), respectively. We see that Bt=4, the classically for-
dimension isD.=4.33+0.02, andD.=3.83-0.02 for E  pigden regions are isolated, allowing the formation of cha-
=1. Figure 5 show® versusk [17] for I<E<4. We see  qic saddled8,9] in both two- and three-degree-of-freedom

that for E>E,, the dimension remains, roughly, constant. o nijonian systems. However, Bt=1, these forbidden re-
This is due to the structural stability of the chaotic saddle in

. . . ; V€ ions are connected. Thus, for two-degree-of-freedom sys-
this energy regime where the potential hills remain |solatecfJ g y

; . . ems, no particle coming from outside the scattering region
and, hence, there is no exponential decrease in the numbergan enter the bounded triangularlike region formed at the
unstable periodic orbits. FEE<E_., the dimensiorD. ap- 9 9

pears to decrease &sis decreased center of the potential hills. The dynamics in the bounded

The reason why the fractal dimension decreases as tﬁ&?‘”gu'af”ke re,gion Is typicall}/ made up of chaptic seas
energy is decreased frof, can be heuristically understood Mix€d with Komogorov-Arnol'd-Moser(KAM) tori. Al-
as follows. Consider initial conditions on a line that containst10Ugh there is bounded chaos in this case, it is not acces-
a Cantor set of singularities. The Cantor set corresponds wsjble fo'r particles from outside and, hence, there is no chaptlc
particle trajectories that can enter the holes at the side plané§attering. In the case of three-degree-of-freedom potentials,
of the tetrahedron and stay in the scattering region foreve@t the same energlg=1, the corresponding classically al-
Those that cannot enter the holes or enter the holes but el@wed bounded region in the center of the potential hills is
cape in finite time correspond to gaps between points in th@ccessible for scattering particles coming from outside. Cha-
Cantor set. Decreasing the size of the holes is equivalent tatic scattering is thus possible, which, for this class of scat-
enlarging these gaps. For a self-similar Cantor set with pritering systems, is a uniquely high-dimensional phenomenon.

ary gap sized, its box-counting dimension is given by
o=1In2/IN[2/(1—A)]. Assuming that + A is proportional
to s, the size of the holes, we obtain, using E8).

Do~(A—BIns) 1~{A—BIn[c—h(E.)AE]} "%, (5
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<0.4) in the planeP, located atzo= —10.0. In the compu-
tation, 500< 500 particles uniformly distributed in the initial
area are launched towards the scattering region along the
direction. If a particle exits through the plane defined by the
vertex(1,2,4 shown in Fig. Jor (1,3,9, (1,2,3, or (2,3,9],

its location in the initial two-dimensional area is denoted by
red (or yellow, blue, or green As can be seen from Fig.
6(a), the boundary contains isolated points where the four
colors meet, but for almost all points in the boundary only
two colors meet. Successive enlargement of F{@ &bout

any one of these points indicate that these common boundary
points are indeed isolated. The basin boundary is the set of
intersecting points between the stable manifold of the chaotic
saddle with the initial plan®,. For this energy, then, the set

of common boundary points with four colors is isolated. As
the energy is lowered, the previously classically forbidden
regions become connected and extended parts of the basin
boundary points are now common to the four colors, as
shown in Fig. 6b) for E=1. This is the Wada property of
basing[19,2(0. We see that the topology of the basin under-
goes a sudden changmetamorphosjsfrom being discon-
nected to being Wada at the critical energy valtie This
metamorphosis is a uniquely higher-dimensional phenom-
enon which has no counterpart in two degrees of freedom
systems—it is a consequence of the topological change of
the forbidden region from disconnected to connectedas
goes througle., as we now explain.

First consider the casE>E., when the forbidden re-
gions are disconnectefdrig. 2(@)]. A scattering trajectory
will typically enter the scattering region, bounce off the for-
bidden regions a number of times, and leave. As a particle
leaves the scattering region, it crosses one of the side planes
shown in Fig. 1. For typical trajectories, one can continu-
ously change the initial conditions so as to cause a continu-
ous change in the trajectorithis is not true if the initial
condition lies on the stable manifold of the invariant set, but
such points have zero measure in phase 9pdoeother
words, there are paths in the space of initial conditions such
that the escape parametdsich as escape angles, escape

time, etc) change continuously, and these paths contain all
-0.2 -01 a 01 0.2 - "
¥ initial conditions except for a set of null measure. We now
consider a subspadé in the full space of initial conditions;

FIG. 6. (Color) Basins of scattering trajectories f@ E=4 and W€ ChooseM to have dimension 2 or higher. Consider one
(b) E=1. In (a) the basin boundaries common to the four colors SUch path, denote@, that connects two pointsandb in M
consist of completely isolated points. [b) the part of the basin belonging to two different escape basins, denote®pgnd

boundary common to the four colors is connected and it is Wada.S,. Distinct side planegwhich define the different escapes
are separated by segments which connect two adjacent trian-

gular faceqFig. 1). For E>E_, part of these segments lies
outside the forbidden regions. Therefore, we can choose the
To explore the dynamical consequences of chaotic scapathC in M such that the corresponding trajectories go from
tering in different energy regimes, we examine the topologyone escape to a neighboring one continuously, without going
of the scattering dynamics. In particular, we study the basinhrough any other escape; in other words, all pointCin
structure of scattering trajectories. For the tetrahedron corbelong to eithe; or S,. This corresponds to a basin bound-
figuration, there are four side planes through which particleary that separates only two escapes, and therefore to a non-
can exit. Say we launch a large number of particles from aVada basin. The points for which this construction cannot be
two-dimensional area in arx-y plane at some large made are those on the stable manifold of the invariant set,
negativez position towards the scattering region. After the which do not escape after entering the scattering region. All
scattering, we color code the particles in the initial planethis means that in a surface of initial conditions one can think
depending on through which plane, formed by any three poef the escape basin in many ways as a usual four-colored
tentials, they exit the system. Figuréapshows, forE=4,  “world” map, each “country” being a different escape. As
the basin structure in the area defined by0(4<Xy,Yq in this case, a boundary point in a usual four-colored map

IV. TOPOLOGY OF CHAOQOTIC SCATTERING
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typically separates only two colors, and points which sepa- (a)
rate three or more colors are isolated. Of course, the scatter-
ing basin “map” is different from a usual map in that it is
fractal, and has “country” structures of arbitrarily small
size.

The picture described above completely changes when the
energy goes belo.. The forbidden regions are now con-
nected into one single region, and the boundaries between
the side planes that define the different escapes lie entirely
within it. It is clear that the construction described above
does not work here, since one can no longer go smoothly -1.
from one escape to another by a continuous change of initial . 57
conditions, due to the presence of forbidden regions separat-
ing the escape routes. Consider again a faith M connect-
ing pointsa and b belonging to different escape basiBg
andsS,. As we follow C, the corresponding orbits will even- a A,
tually come close to the forbidden region that separates the
two faces of the tetrahedron corresponding to esc&pesd
S,, and will be more and more deflected by it as we pick L 40.5 vy
initial conditions further alongC. At some point along the
path, the deflection will be large enough to make typical - 10
orbits escape by a third side plane, and exit through an es-
cape route that is different froi®; andS,. This means that
between any two pointa andb in C, with aeS; andb
e S,, there exists a point which does not belong to either
S, andS,. Since this argument holds for any pathin the (c)
space of initial conditions connecting two points belonging : . . . . 1.5
to distinct basins, no matter how close they are, the above
implies that typical boundary points have the Wada property, - A 11
as can be seen in Fig(l§.

An important point is that the above change in the topo- i 10.5 ¥
logical structure of the escape basin is only possible in three-
dimensional space, and does not happen for two-degrees-of-
freedom systems, where the basin boundary of systems with . ,
three or more escapes typically has the Wada property. The -1.5 -1 -0.5
reason is that the forbidden regions separating distinct es-
capes can never be bypassed as one goes from one escape to
another, as can be seen from a quick glance at Fig. 3. As FIG. 7. (a) shows the potential restricted to the invariant plane,
explained earlier, when the forbidden regions become conlb) shows the equipotential contoi=2.14, and(c) shows the
nected, the inner region becomes inaccessible to particlé®ntoure=2.5.
coming from outside and there is no chaotic scattering.

V(x,y)
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energies, the periodic orbits that connected pairs of forbidden
V. INVARIANT PLANES AND THE METAMORPHOSIS regions do not exist, since the forbidden region is now one
DYNAMICS single connected piece, and therefore we expect the symbolic
dynamics and the invariant set to be different. In order to
For E>E,, the forbidden region consists of four discon- better understand the change in the dynamick gses be-
nected pieces, centered on the four vertices of the tetrahedrdow E, we look at what happens on the invariant symmetric
of Fig. 1. The orbit of a particle inside the scattering regionplanes of the potential.
can be understood as doing a series of bounces off the for- Due to the spatial symmetry of the potentia], there are
bidden regiongat least to a first approximati@rBecause the six invariant planes, such that if a particle is on one of these
regions are disconnected, a particle can go from one regioplanes with a velocity vector in the plane, it never leaves it,
to any one of the other three. If we associate the symfigls because the component of the force perpendicular to the
2, 3, 4 with the forbidden regions, an orbit in the invariant plane vanishes. Spatial reflection about these planes leaves
set can be described by a bi-infinite sequence of symbol¥(x) unchanged. Each such plane cuts through the center of
---a_q3pa;a, *+, With eacha,, belonging to the sefl, 2, 3, two vertices of the tetrahedron and crosses the midpoint of
4}, the only rule being that the same symbol cannot occuthe segment connecting the other two vertices. In the poten-
twice in a row. This symbolic dynamics is equivalent to atial configuration we have chosen theplane as a symmetry
full shift on three symbols. All this implies that the dynamics plane.
for E>E. is qualitatively similar to that of four hard balls on Figure {a) shows the potentiaV restricted to one of the
a tetrahedron configuration, studied[id]. symmetry planes; the picture is the same for each of the
This is no longer true, however, fdE<E.. For those other five planes. FdE>E_, the forbidden region restricted
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FIG. 8. Periodic orbits foE=2.14. FIG. 9. One single trajectory in the invariant set, followed for a

) ) _long time, forE=2.14.
to the symmetry plane consists of two disconnected regions

centered about the vertices lying in the plane, as is seen in i

Fig. 7(b). We denote the two forbidden regions By and  Proachingd. ForE<E., however, the gap betweeh, and
A,. For this energy, the only periodic orbit in the plane is the”2 1S closed, and orbits can no longer make consecutive
orbit bouncing back and forth betweexy and A, this is bour)ces offA an arbitrary number of times, and there is a
true for all energies abovE.. There are six such orbits, Maximum number of bouncesnm,(E) that an orbit can
each one lying in one of the symmetry planes, each on8@ke, which depends on the energy. Large values,pf
connecting a pair of forbidden regions. imply a higher number of fundamental periodic orbigE).

As E is decreased througE., A, and A, are joined, As the energy a|c?|oroachei‘sC from below, 'thg_numbef of
forming a single connected forbidden regidnand the pe- allowed bounces increases, and goes to infinitask; ,
riodic orbit that connectef; andA, is destroyed. However, and therefore the number of fundamental periodic orhits
there is a new forbidden regioB in the symmetry plane, 9oes to |nf|n|ty, too. The creation of each new fundamental
given by the intersection of the symmetric plane and thedrbit implies the inclusion of new symbols in the symbolic
forbidden region connecting the two other vertices that arélynamics, as discussed in the previous paragraph, and there-
off the plane. This is shown in Fig(@). The appearance of fore it implies the creation of an uncountable set of new
this new forbidden region and the connection of the two_orbits in the .in_varifant set. Each one of these orbits is created
previously disconnected regions represent a topologicdl @ homoclinic bifurcation, through a saddle center and a
change on the accessible phase space of the system, implyifgscade of period-doubling bifurcations. The appearance of
a corresponding topological chan¢gmetamorphosisin the egch fu_ndamental orbit gorresponds to one such homoclinic
dynamics. The metamorphosis consists of the destruction d#ifurcation. Each such bifurcation occurs in an energy range
the periodic orbits connecting pairs of forbidden regions withAE, where there are tangencies between the stable and un-
the simultaneous creation of new orbits, due to the newwstable foliations of the invariant set. Therefore, for these en-
created forbidden regions. Some of the new periodic orbit§rdies the invariant set is not hyperbolic, and there are stable
created in the metamorphosis can be seen in Fig. 8, whici§lands surrounded by KAM surfaces embedded in the in-
shows orbits forlE=2.14, slightly below the critical energy Variant set. For energies in between the homoclinic bifurca-
E.~2.25. The periodic orbits shown in Fig. 8 are the funda-tions, however, the invariant set is hyperbolic. Bs-E ,
mental periodic orbits of the systeffor this energy, in the  the bifurcations become closer and closer in energy, and their
sense that any orbit in the invariant set can be thought of agorresponding energy rangdE becomes smaller and
made of “pieces” of these orbitéapproximately. This fact ~smaller, and goes to zero in the limit &=E.. For E
is illustrated in Fig. 9, which shows an orbit in the invariant =E, we have an accumulation of homoclinic bifurcations,
set, calculated by the proper-interior-maxim@RiM) triple ~ meaning that for any neighborhood Bf (that is, for any
method[21]. Comparing Fig. 8 with Fig. 9, we can see that interval [E.— 6,E;], no matter how smalb is) there is an
a typical trajectory in the invariant set follows closely one of infinite number of homoclinic bifurcations, resulting from
the periodic orbits shown in Fig. 8, and then, as it approachete creation of an infinite number of fundamental periodic
the region surroundind® where the fundamental periodic orbits. In the limitE—E_ , we have an infinite number of
orbits are close to each other, it may follow another periodidundamental periodic orbits, and an infinite number of sym-
orbit, and so on. Each periodic orbit can be associated with bols in the corresponding symbolic dynamics. This multitude
symbol, and thus each orbit in the invariant set is associatedf orbits is destroyed suddenly Bdecomes higher thag, ,
with a bi-infinite sequence of symbols. being replaced by a single periodic orbit bouncing between

To each periodic orbit in Fig. 8 we can associateghe  regions A; and A,. This happens through a topological
number of successive bounces that a given orbit make& off change in the phase spaead not by the usual saddle-center
without approachind. For E>E_, there is a periodic orbit and period-doubling bifurcation mechanism
that bounces offA; and A, an infinite number of times ap- The above discussion is based on the behavior of orbits in
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the symmetry planes of potenti#P), which is a lower- The change in the structure of the invariant set is studied on
dimensional subset of the whole dynamical system. Neveran invariant plane of the potential. The scattering configura-
theless, the understanding of this simpler subsystem is essetivn studied is physically realistic and, hence, the results of
tial for the understanding of the scattering dynamics in thethis work are expected to be observable. We should point out

full five-dimensional phase space. that, presently, not much is known about high-dimensional
chaotic scattering and transient chaos, which is an important
VI. CONCLUSION area because of its physical relevance.
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