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Topology of high-dimensional chaotic scattering
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We investigate Hamiltonian chaotic scattering in physically realistic three-dimensional potentials. We find
that the basin topology of the scattering dynamics can undergo a metamorphosis from being totally discon-
nected to being connected as a system parameter, such as the particle energy, is varied through a critical value.
The dynamical origin of the metamorphosis is investigated, and the topological change in the scattering basin
is explained in terms of the change in the structure of the invariant set of nonescaping orbits. A dynamical
consequence of this metamorphosis is that the fractal dimension of the chaotic set responsible for the chaotic
scattering changes its behavior characteristically at the metamorphosis. This topological metamorphosis has no
correspondence in two-degree-of-freedom open Hamiltonian systems.

PACS number~s!: 05.45.Jn
en

u
om
un
he
m

t
a
s
ie

ing
e
r

do
m

ee
ys
he
s
na
cs
u

hi
n
a

o
r

th

o

ote
gh-
not

ing
ha-
ec.
ics
t the
ten-

of-

e
ion
rti-
ee-
of

ting

mic
I. INTRODUCTION

Chaotic scattering is a phenomenon that has been id
fied in many physical contexts such as atomic physics@1#,
astrophysics@2#, fluid dynamics@3#, chemical reactions@4#,
and electron transport in mesoscopic systems@5#. In a cha-
otic scattering process, the plot of some output variable, s
as the scattering function, after the scattering versus s
input variable before the scattering typically contains an
countably infinite number of singularities. The output of t
system then depends sensitively on the input in that a s
change in the input variable can cause a large change in
output—this being the hallmark of chaos. Dynamically, ch
otic scattering is caused by nonattracting chaotic saddle
the phase space and it is a direct manifestation of trans
chaos in physical systems@6,7#.

A fundamental problem in the study of chaotic scatter
is to understand how the scattering characteristics chang
a system parameter of physical interest changes. In this
gard, there has been research on two-degree-of-free
Hamiltonian systems@8–10# and on three-degree-of-freedo
Hamiltonian systems but with hard-wall potentials@11#. The
aim of this paper is to investigate chaotic scattering in thr
degree-of-freedom Hamiltonian systems consisting of ph
cally realistic soft potentials. Our motivation comes from t
desire to understand the dynamics in phenomena such a
scattering of particles by molecules in three-dimensio
physical space. In phase space, the scattering dynami
then five dimensional. We use a particular model of fo
Morse potential hills in a tetrahedron configuration, but t
model is sufficiently general to allow us to draw conclusio
on high-dimensional systems, besides being interesting
physically realistic by itself. Our principal results are~1! the
topology of the chaotic scattering dynamics can underg
sudden change~a metamorphosis!, as a system paramete
~e.g., energy! changes continuously,~2! at the topological
metamorphosis, the behavior of the fractal dimension of
chaotic saddle changes characteristically, and~3! chaotic
scattering can occur in energy regimes where it is not p
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sible in the corresponding planar scattering system. We n
that the related transient chaotic dynamics in such hi
dimensional phase space is a defying problem that has
been well studied so far.

The paper is organized as follows. In Sec. II the scatter
model is described. In Sec. III we present evidence for c
otic scattering by studying the scattering functions. In S
IV the topological metamorphosis of the scattering dynam
is addressed. In Sec. V the change in the invariant set a
metamorphosis is studied on an invariant plane of the po
tial. A conclusion is presented in Sec. VI.

II. MODEL

We consider the following class of three-degree-
freedom, time-independent Hamiltonian systems:H(x,p)
5upu2/2m1V(x), where x,pPR3 are the coordinate and
momentum vectors, andm is the particle mass. To be mor
specific and without loss of generality, we study the situat
where there are four potential hills, located at the four ve
ces of a regular tetrahedron of unit side lengths, in the thr
dimensional physical space. The locations of the vertices
the tetrahedron are (x1 ,y1 ,z1)5(0,0,A2/3), (x2 ,y2 ,z2)
5„1/2,21/(2)),0…, (x3 ,y3 ,z3)5„21/2,21/(2)),0…, and
(x4 ,y4 ,z4)5(0,A1/3,0), as shown in Fig. 1. To mimic
physical situations such as particle scattering by nonrota
diatomic molecules, we choose the Morse potential@12# for
each hill, which has been a paradigm in chemical and ato
physics@13#. The potential due to each Morse hill isVM(x),
wherex5(x ,y ,z), and

VM~x!5
V0

2
@12e2a~r j 2r e!#22

V0

2
, ~1!

wherer j5A(x2xj )
21(y2yj )

21(z2zj )
2, andV0 , a, and

r e are parameters of the Morse potential.a is related to the
steepness of the potential, andr e is the effective range of
6421 ©2000 The American Physical Society
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6422 PRE 62LAI, de MOURA, AND GREBOGI
each potential hill. The additive constant21/2 ensures tha
VM(x)→0 for r→`. Each Morse hill is spherically symme
ric and has a repulsive region, aroundx5xj , surrounded by
an attractive region. Forr @r e , the potential is negligible
and the particles there can be considered to be in free mo
We notice that although we chose to work with the Mor
potential, our results are expected to be qualitatively
same for any short-range potential with a repulsive core
an attractive tail, such as the Lennard-Jones potential.

The dimensionless potential function of our scatter
system can then be written as

V~x,y,z!5(
j 51

4

VM~x!. ~2!

Due to the conservation of energy, the phase-space dim
sion is five. In our work, we fix the following set of param
eter valuesm51, V051, a56, r e50.68, and we choose th
particle energyE as the bifurcation parameter. Equivalent
we could have chosen some other parameter, sayV0 . Ham-
ilton’s equations are integrated by using the Sto¨rmer-Verlet
method which preserves the symplectic structure of the
tem @14#. We note that the potential distribution is high
localized and we denote the region around (x,y,z)
5(0,0,0), in whichV(x,y,z) is appreciable, the scatterin
region.

We now focus our attention on the region of the thre
dimensional physical space that is inaccessible to a par
with energyE. This region is given byV(x).E. Throughout
this paper, we restrict ourselves to energies below the m
mum energy of the potential hills:E,E05V(xj ,yj ,zj )
( j 51,...,4) @15#. For energies higher than a certain critic
energyEc ~and lower thanE0), the inaccessible part of spac
consists of four disconnected regions, each surrounding
vertex of the tetrahedron, as shown in Fig. 2~a!; they are
approximately spherical in shape~they are not perfectly
spherical because their shape is distorted by the other h!.
As the energy decreases towardsEc , the inaccessible region
grow in radius, and atE5Ec the previously disconnecte
regions touch each other. By symmetry, every pair of t
previously disconnected regions must touch each otherE
5Ec . For E<Ec , the forbidden region is fully connected
an example is shown in Fig. 2~b!. This topological change in
the configuration space causes a corresponding change i
dynamics of the system, as can be understood by analy

FIG. 1. A schematic illustration of the scattering system: fo
Morse potential hills located at the vertices of a regular tetrahed
n.
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the invariant set, which is the set of orbits that do not lea
the scattering region for botht→1` and t→2`. As the
energy drops belowEc , a whole family of orbits in the in-
variant set is destroyed, consisting of orbits that bounce b
and forth between each pair of forbidden regions an arbitr
number of times, including the six unstable periodic orb
connecting each pair of hills that exist forE.Ec . As these
orbits are destroyed, however, another family of orbits
created atE5Ec ; these orbits bounce off the newly create
forbidden regions connecting each pair of hills. We will d
scribe this change in the invariant set in more detail la
This qualitative~that is, topological! change in the dynamics
of the system atEc is the metamorphosis that is the ma
subject of this paper.

The critical energyEc can be estimated as follows. Con
sider the three Morse potentials in the~x, y! plane in Fig. 1.

r
n.

FIG. 2. Surfaces of equal energy for the potential~2! for ener-
gies above and below the critical energyEc . ~a! Isoenergy surface
for E51 (E,Ec); ~b! isoenergy surface forE54(E.Ec).
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For each individual potential, the radius of the classica
forbidden spherical region isr 5r e2(1/a)ln(11A2E/V0).
If there is no overlapping between the potentials, two ad
cent potentials touch each other atr 51/2. Thus,Ec is ap-
proximately determined by

r e2
1

a
lnS 11A2Ec

V0
D'1/2.

We obtainEc'1.9. Due to the overlapping among pote
tials, the actual value ofEc will be slightly higher than this
estimated one. In fact, we find numericallyEc'2.25.

The basic physics associated with the topological me
morphosis can be understood in terms of the struct
change in the ‘‘holes’’ on each side plane of the tetrahed
potential configuration as the particle energy is decrea
For E.Ec , the forbidden regions surrounding the vertices
the tetrahedron are isolated. ForE,Ec they are connected
and an incoming particle can penetrate the interior of
tetrahedron through the holes on the side planes. For th
of parameters chosen by us, the holes in the central reg
of the side planes are always present, because of the a
tive parts of each Morse hill. This allows particles to en
the scattering region inside the tetrahedron at low energ
For E&Ec , the holes are large and, hence, the range
initial conditions with which particles can enter the holes a
appreciable. In this case, chaotic scattering can be rea
observed. The holes, however, become smaller asE is de-
creased further fromEc . In particular, if there is no overlap
ping between the potentials, the size of the holes is given

s'
)21

2
1

1

a
ln

11A2E/V0

11A2Ec /V0

.

For E slightly belowEc so that (Ec2E)/Ec[DE/Ec!1, we
have

s'C2h~Ec!DE, ~3!

where C5()21)/2 and h(Ec)51/@aA2Ec /V0(1
1A2Ec /V0)#. Thus, to observe chaotic scattering at ve
low energies in an experimental setting, initial conditio
have to be prepared carefully so that particles can enter
holes, as the scattering will not be chaotic if the particles s
outside the holes~no unstable periodic orbit can be forme
there forE,Ec , as can be seen in Fig. 3!.

III. SCATTERING FUNCTIONS

We now analyze the scattering of test particles by
potentialV of Eq. ~2! by means of a scattering function d
fined as follows. Particles are launched towards the sca
ing region with a fixed velocity from a line segment, s
aligned along thex direction, located far away from the sca
tering region, whereV'0. Each particle will enter the sca
tering region, stay there for a certain time, and typica
leave towardsr→` again. The scattering function characte
izes the dynamical state, such as the direction of the par
motion, after leaving the scattering region. Since the phys
space is three dimensional, there are two angles charact
ing the momentum of a scattering particle: the azimut
y
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angle f and the polar angleu. Figure 4~a! shows, forE
54, the plot off after the scattering versusx0 , where par-
ticles are launched upwards withpx05py050, pz05A2E at
z05210.0, and the scattering functionf(x0) is recorded
when the particles exit the scattering region, say, wher
>10. The plot exhibits typical features of chaotic scatteri
@8#: regions of smooth variations interspersed by abr
changes in the scattering function. In fact, there is a Can
set of singularities in the scattering function. Chaotic scat
ing persists over a wide energy range, as shown in Fig. 4~b!
for E51.

The presence of a Cantor set of singularities in the s
tering dynamics, as suggested by Figs. 4~a! and 4~b!, implies
the presence of a chaotic saddle whose fractal dimensio
the five-dimensional phase space is larger than 3. This
general, can be argued as follows. LetDs and Du be the

FIG. 3. Contours of three Morse potential hills in the pla
z50 for E54, E53, E52, andE51 ~inside out, respectively!.

FIG. 4. Scattering functionf(x0) for ~a! E54 and~b! E51.
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6424 PRE 62LAI, de MOURA, AND GREBOGI
dimensions of the stable and unstable foliations of
chaotic saddle in the scattering region. Due to the symple
nature of Hamiltonian flows, we haveDs5Du . The dimen-
sion of the chaotic saddle is given byDc5Ds1Du2N
52Ds2N, since, dynamically, the chaotic saddle is t
intersecting set between the stable and unstable foliati
where N is the dimension of the phase space. Let 0,D0
<1 be the fractal dimension of the Cantor set of singularit
probed by a scattering function, which is in fact the s
of intersecting points between the stable foliation a
the one-dimensional line segment from which partic
are launched. We thus haveD05Ds112N or, Ds
5D01N21. This gives for the dimension of the chaot
saddle

Dc52D01N225312D0 . ~4!

Since 0,D0<1 and N55, we see that 3,Dc<5. These
arguments also suggest that ifDc,3, the scattering function
is smooth and, hence, no chaotic behavior can be obse
by examining only the scattering function, even though th
is a chaotic saddle in the phase space and the scatterin
namics is chaotic@11#.

While the scattering functions observed atE54 @Fig.
4~a!# and atE51 @Fig. 4~b!# imply the presence of chaoti
saddle withDc.3 in both cases, the dynamical and physic
nature of the scattering observed at these energies are
pected to be different, because of the topological chang
the structure of the invariant set explained in Sec. II. T
suggests that there may be a characteristic change in
dynamical invariants of the invariant set in the transiti
from E.Ec to E,Ec .

To verify this, we compute the fractal dimension of th
chaotic saddleDc by using the uncertainty algorithm@16#.
Specifically, we randomly choose a large number of pairs
particles at distancee apart from a line segment in the initia
planeP0 and compute, for each pair, whether the two p
ticles exit the scattering region through different planes
the tetrahedron. The fraction of these uncertain pairsf (e)
typically scales withe as f (e);e12D0, whereD0 is the frac-
tal dimension of the set of singularities in the scattering fu
tions in Figs. 4~a! and 4~b!. The dimension of the chaoti
saddle is then given by Eq.~4!. We find that forE54, the
dimension isDc54.3360.02, andDc53.8360.02 for E
51. Figure 5 showsDc versusE @17# for 1<E<4. We see
that for E.Ec , the dimension remains, roughly, consta
This is due to the structural stability of the chaotic saddle
this energy regime where the potential hills remain isola
and, hence, there is no exponential decrease in the numb
unstable periodic orbits. ForE,Ec, the dimensionDc ap-
pears to decrease asE is decreased.

The reason why the fractal dimension decreases as
energy is decreased fromEc can be heuristically understoo
as follows. Consider initial conditions on a line that conta
a Cantor set of singularities. The Cantor set correspond
particle trajectories that can enter the holes at the side pl
of the tetrahedron and stay in the scattering region fore
Those that cannot enter the holes or enter the holes bu
cape in finite time correspond to gaps between points in
Cantor set. Decreasing the size of the holes is equivalen
enlarging these gaps. For a self-similar Cantor set with
e
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mary gap sizeD, its box-counting dimension is given b
D05 ln 2/ln@2/(12D)#. Assuming that 12D is proportional
to s, the size of the holes, we obtain, using Eq.~3!

D0;~A2B ln s!21;$A2B ln@c2h~Ec!DE#%21, ~5!

for E&Ec , whereA andB are positive constants. This sca
ing relation indicates that the fractal dimension of the chao
saddle decreases as the energyE is decreased from the meta
morphosis pointEc , due to the shrinkage of the holes on th
side planes of the potential configuration. The inverse lo
rithmic dependence onDE of D0 in the relation is apparently
not resolved in our numerical experiments.

We notice that at energies aboutE51, chaotic scattering
does not occur if the system only has two degrees of fr
dom, such as the configuration of three potential hills in
plane which has been studied extensively@18,8,9#. This can
be understood by plotting the contour of potential hills in t
plane, as done in Fig. 3 forE54 ~thick lines! andE51 ~thin
lines!, respectively. We see that atE54, the classically for-
bidden regions are isolated, allowing the formation of ch
otic saddles@8,9# in both two- and three-degree-of-freedo
Hamiltonian systems. However, atE51, these forbidden re-
gions are connected. Thus, for two-degree-of-freedom s
tems, no particle coming from outside the scattering reg
can enter the bounded triangularlike region formed at
center of the potential hills. The dynamics in the bound
triangularlike region is typically made up of chaotic se
mixed with Kol’mogorov-Arnol’d-Moser~KAM ! tori. Al-
though there is bounded chaos in this case, it is not ac
sible for particles from outside and, hence, there is no cha
scattering. In the case of three-degree-of-freedom potent
at the same energyE51, the corresponding classically a
lowed bounded region in the center of the potential hills
accessible for scattering particles coming from outside. C
otic scattering is thus possible, which, for this class of sc
tering systems, is a uniquely high-dimensional phenomen

FIG. 5. Fractal dimensionDc of the chaotic saddle versus th
energyE. The dimension remains constant forE.Ec and decreases
asE is decreased throughEc .
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IV. TOPOLOGY OF CHAOTIC SCATTERING

To explore the dynamical consequences of chaotic s
tering in different energy regimes, we examine the topolo
of the scattering dynamics. In particular, we study the ba
structure of scattering trajectories. For the tetrahedron c
figuration, there are four side planes through which partic
can exit. Say we launch a large number of particles from
two-dimensional area in anx-y plane at some large
negative-z position towards the scattering region. After th
scattering, we color code the particles in the initial pla
depending on through which plane, formed by any three
tentials, they exit the system. Figure 6~a! shows, forE54,
the basin structure in the area defined by (20.4<x0 ,y0

FIG. 6. ~Color! Basins of scattering trajectories for~a! E54 and
~b! E51. In ~a! the basin boundaries common to the four colo
consist of completely isolated points. In~b! the part of the basin
boundary common to the four colors is connected and it is Wa
t-
y
in
n-
s
a

e
-

<0.4) in the planeP0 located atz05210.0. In the compu-
tation, 5003500 particles uniformly distributed in the initia
area are launched towards the scattering region along the1z
direction. If a particle exits through the plane defined by t
vertex~1,2,4! shown in Fig. 1@or ~1,3,4!, ~1,2,3!, or ~2,3,4!#,
its location in the initial two-dimensional area is denoted
red ~or yellow, blue, or green!. As can be seen from Fig
6~a!, the boundary contains isolated points where the f
colors meet, but for almost all points in the boundary on
two colors meet. Successive enlargement of Fig. 6~a! about
any one of these points indicate that these common boun
points are indeed isolated. The basin boundary is the se
intersecting points between the stable manifold of the cha
saddle with the initial planeP0 . For this energy, then, the se
of common boundary points with four colors is isolated. A
the energy is lowered, the previously classically forbidd
regions become connected and extended parts of the b
boundary points are now common to the four colors,
shown in Fig. 6~b! for E51. This is the Wada property o
basins@19,20#. We see that the topology of the basin unde
goes a sudden change~metamorphosis! from being discon-
nected to being Wada at the critical energy valueEc . This
metamorphosis is a uniquely higher-dimensional pheno
enon which has no counterpart in two degrees of freed
systems—it is a consequence of the topological change
the forbidden region from disconnected to connected aE
goes throughEc , as we now explain.

First consider the caseE.Ec , when the forbidden re-
gions are disconnected@Fig. 2~a!#. A scattering trajectory
will typically enter the scattering region, bounce off the fo
bidden regions a number of times, and leave. As a part
leaves the scattering region, it crosses one of the side pl
shown in Fig. 1. For typical trajectories, one can contin
ously change the initial conditions so as to cause a cont
ous change in the trajectory~this is not true if the initial
condition lies on the stable manifold of the invariant set, b
such points have zero measure in phase space!. In other
words, there are paths in the space of initial conditions s
that the escape parameters~such as escape angles, esca
time, etc.! change continuously, and these paths contain
initial conditions except for a set of null measure. We no
consider a subspaceM in the full space of initial conditions;
we chooseM to have dimension 2 or higher. Consider o
such path, denotedC, that connects two pointsa andb in M
belonging to two different escape basins, denoted byS1 and
S2 . Distinct side planes~which define the different escape!
are separated by segments which connect two adjacent t
gular faces~Fig. 1!. For E.Ec , part of these segments lie
outside the forbidden regions. Therefore, we can choose
pathC in M such that the corresponding trajectories go fro
one escape to a neighboring one continuously, without go
through any other escape; in other words, all points inC
belong to eitherS1 or S2 . This corresponds to a basin boun
ary that separates only two escapes, and therefore to a
Wada basin. The points for which this construction cannot
made are those on the stable manifold of the invariant
which do not escape after entering the scattering region.
this means that in a surface of initial conditions one can th
of the escape basin in many ways as a usual four-colo
‘‘world’’ map, each ‘‘country’’ being a different escape. A
in this case, a boundary point in a usual four-colored m

.
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6426 PRE 62LAI, de MOURA, AND GREBOGI
typically separates only two colors, and points which se
rate three or more colors are isolated. Of course, the sca
ing basin ‘‘map’’ is different from a usual map in that it i
fractal, and has ‘‘country’’ structures of arbitrarily sma
size.

The picture described above completely changes when
energy goes belowEc . The forbidden regions are now con
nected into one single region, and the boundaries betw
the side planes that define the different escapes lie ent
within it. It is clear that the construction described abo
does not work here, since one can no longer go smoo
from one escape to another by a continuous change of in
conditions, due to the presence of forbidden regions sepa
ing the escape routes. Consider again a pathC in M connect-
ing pointsa and b belonging to different escape basinsS1
andS2 . As we follow C, the corresponding orbits will even
tually come close to the forbidden region that separates
two faces of the tetrahedron corresponding to escapesS1 and
S2 , and will be more and more deflected by it as we p
initial conditions further alongC. At some point along the
path, the deflection will be large enough to make typi
orbits escape by a third side plane, and exit through an
cape route that is different fromS1 andS2 . This means that
between any two pointsa and b in C, with aPS1 and b
PS2 , there exists a pointc which does not belong to eithe
S1 andS2 . Since this argument holds for any pathC in the
space of initial conditions connecting two points belongi
to distinct basins, no matter how close they are, the ab
implies that typical boundary points have the Wada prope
as can be seen in Fig. 6~b!.

An important point is that the above change in the top
logical structure of the escape basin is only possible in th
dimensional space, and does not happen for two-degree
freedom systems, where the basin boundary of systems
three or more escapes typically has the Wada property.
reason is that the forbidden regions separating distinct
capes can never be bypassed as one goes from one esc
another, as can be seen from a quick glance at Fig. 3
explained earlier, when the forbidden regions become c
nected, the inner region becomes inaccessible to part
coming from outside and there is no chaotic scattering.

V. INVARIANT PLANES AND THE METAMORPHOSIS
DYNAMICS

For E.Ec , the forbidden region consists of four disco
nected pieces, centered on the four vertices of the tetrahe
of Fig. 1. The orbit of a particle inside the scattering regi
can be understood as doing a series of bounces off the
bidden regions~at least to a first approximation!. Because the
regions are disconnected, a particle can go from one re
to any one of the other three. If we associate the symbols$1,
2, 3, 4% with the forbidden regions, an orbit in the invaria
set can be described by a bi-infinite sequence of sym
¯a21a0a1a2¯ , with eachan belonging to the set$1, 2, 3,
4%, the only rule being that the same symbol cannot oc
twice in a row. This symbolic dynamics is equivalent to
full shift on three symbols. All this implies that the dynami
for E.Ec is qualitatively similar to that of four hard balls o
a tetrahedron configuration, studied in@11#.

This is no longer true, however, forE,Ec . For those
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energies, the periodic orbits that connected pairs of forbid
regions do not exist, since the forbidden region is now o
single connected piece, and therefore we expect the symb
dynamics and the invariant set to be different. In order
better understand the change in the dynamics asE goes be-
low Ec , we look at what happens on the invariant symmet
planes of the potential.

Due to the spatial symmetry of the potential~2!, there are
six invariant planes, such that if a particle is on one of the
planes with a velocity vector in the plane, it never leaves
because the component of the force perpendicular to
plane vanishes. Spatial reflection about these planes le
V(x) unchanged. Each such plane cuts through the cente
two vertices of the tetrahedron and crosses the midpoin
the segment connecting the other two vertices. In the po
tial configuration we have chosen thexzplane as a symmetry
plane.

Figure 7~a! shows the potentialV restricted to one of the
symmetry planes; the picture is the same for each of
other five planes. ForE.Ec , the forbidden region restricted

FIG. 7. ~a! shows the potential restricted to the invariant plan
~b! shows the equipotential contourE52.14, and~c! shows the
contourE52.5.
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to the symmetry plane consists of two disconnected reg
centered about the vertices lying in the plane, as is see
Fig. 7~b!. We denote the two forbidden regions byA1 and
A2 . For this energy, the only periodic orbit in the plane is t
orbit bouncing back and forth betweenA1 and A2 ; this is
true for all energies aboveEc . There are six such orbits
each one lying in one of the symmetry planes, each
connecting a pair of forbidden regions.

As E is decreased throughEc , A1 and A2 are joined,
forming a single connected forbidden regionA, and the pe-
riodic orbit that connectedA1 andA2 is destroyed. However
there is a new forbidden regionB in the symmetry plane
given by the intersection of the symmetric plane and
forbidden region connecting the two other vertices that
off the plane. This is shown in Fig. 7~c!. The appearance o
this new forbidden region and the connection of the t
previously disconnected regions represent a topolog
change on the accessible phase space of the system, imp
a corresponding topological change~metamorphosis! in the
dynamics. The metamorphosis consists of the destructio
the periodic orbits connecting pairs of forbidden regions w
the simultaneous creation of new orbits, due to the ne
created forbidden regions. Some of the new periodic or
created in the metamorphosis can be seen in Fig. 8, w
shows orbits forE52.14, slightly below the critical energ
Ec'2.25. The periodic orbits shown in Fig. 8 are the fund
mental periodic orbits of the system~for this energy!, in the
sense that any orbit in the invariant set can be thought o
made of ‘‘pieces’’ of these orbits~approximately!. This fact
is illustrated in Fig. 9, which shows an orbit in the invaria
set, calculated by the proper-interior-maximum~PIM! triple
method@21#. Comparing Fig. 8 with Fig. 9, we can see th
a typical trajectory in the invariant set follows closely one
the periodic orbits shown in Fig. 8, and then, as it approac
the region surroundingB where the fundamental periodi
orbits are close to each other, it may follow another perio
orbit, and so on. Each periodic orbit can be associated wi
symbol, and thus each orbit in the invariant set is associa
with a bi-infinite sequence of symbols.

To each periodic orbit in Fig. 8 we can associaten, the
number of successive bounces that a given orbit makes oA
without approachingB. For E.Ec , there is a periodic orbit
that bounces offA1 andA2 an infinite number of times ap

FIG. 8. Periodic orbits forE52.14.
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proachingB. For E,Ec , however, the gap betweenA1 and
A2 is closed, and orbits can no longer make consecu
bounces offA an arbitrary number of times, and there is
maximum number of bouncesnmax(E) that an orbit can
make, which depends on the energy. Large values ofnmax
imply a higher number of fundamental periodic orbitsN(E).
As the energy approachesEc from below, the number of
allowed bounces increases, and goes to infinity asE→Ec

2 ,
and therefore the number of fundamental periodic orbitsN
goes to infinity, too. The creation of each new fundamen
orbit implies the inclusion of new symbols in the symbo
dynamics, as discussed in the previous paragraph, and th
fore it implies the creation of an uncountable set of n
orbits in the invariant set. Each one of these orbits is crea
in a homoclinic bifurcation, through a saddle center and
cascade of period-doubling bifurcations. The appearanc
each fundamental orbit corresponds to one such homoc
bifurcation. Each such bifurcation occurs in an energy ran
DE, where there are tangencies between the stable and
stable foliations of the invariant set. Therefore, for these
ergies the invariant set is not hyperbolic, and there are st
islands surrounded by KAM surfaces embedded in the
variant set. For energies in between the homoclinic bifur
tions, however, the invariant set is hyperbolic. AsE→Ec

2 ,
the bifurcations become closer and closer in energy, and t
corresponding energy rangeDE becomes smaller and
smaller, and goes to zero in the limit ofE5Ec . For E
5Ec , we have an accumulation of homoclinic bifurcation
meaning that for any neighborhood ofEc ~that is, for any
interval @Ec2d,Ec#, no matter how smalld is! there is an
infinite number of homoclinic bifurcations, resulting from
the creation of an infinite number of fundamental period
orbits. In the limitE→Ec

2 , we have an infinite number o
fundamental periodic orbits, and an infinite number of sy
bols in the corresponding symbolic dynamics. This multitu
of orbits is destroyed suddenly asE becomes higher thanEc ,
being replaced by a single periodic orbit bouncing betwe
regions A1 and A2 . This happens through a topologic
change in the phase space~and not by the usual saddle-cent
and period-doubling bifurcation mechanism!.

The above discussion is based on the behavior of orbit

FIG. 9. One single trajectory in the invariant set, followed for
long time, forE52.14.
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the symmetry planes of potential~2!, which is a lower-
dimensional subset of the whole dynamical system. Nev
theless, the understanding of this simpler subsystem is es
tial for the understanding of the scattering dynamics in
full five-dimensional phase space.

VI. CONCLUSION

In summary, we have uncovered a topological bifurcat
~metamorphosis! in high-dimensional chaotic scattering sy
tems, and we explain it in terms of the topological change
the accessible phase space as the energy~or another param-
eter! is varied. We have given a qualitative analysis and
merical evidence for the behavior of the fractal dimension
the underlying chaotic saddle through this metamorpho
oc
.
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The change in the structure of the invariant set is studied
an invariant plane of the potential. The scattering configu
tion studied is physically realistic and, hence, the results
this work are expected to be observable. We should point
that, presently, not much is known about high-dimensio
chaotic scattering and transient chaos, which is an impor
area because of its physical relevance.
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