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Catastrophe of riddling
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Most existing works on riddling assume that the underlying dynamical system possesses an invariant sub-
space. We find that, under arbitrarily small, deterministic perturbations, a riddled basin is typically destroyed
and replaced by fractal ones, acatastropheof riddling. We elucidate, based on analyzing unstable periodic
orbits, the dynamical mechanism of the catastrophe. Analysis of the critical behaviors leads to the finding of a
transient chaotic behavior that is different from those reported previously.

PACS number~s!: 05.45.Jn, 05.45.Ac
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It is common for nonlinear dynamical systems to poss
multiple coexisting attractors@1,2#. The basin boundaries be
tween the attractors can be smooth or complicated. For s
systems, an important question concerns whether
asymptotic attractor can be predicted if initial conditions a
chosen in the vicinity of the boundary. For smooth boun
aries, an improvement in the precision to specify the ini
conditions results in an equal amount of improvement in
predictability of the asymptotic attractor. For fractal bas
boundaries@1#, a more precise specification of the initi
conditions often results in a much smaller improvement
the probability to predict the attractor correctly. In the e
treme case of riddled basins@3–9#, a vast reduction in the
uncertainty to specify the initial conditions typically resu
in almost no improvement in ability to predict the final a
tractor. As such, the phenomenon of riddled basins has
ceived a lot of recent attention.

Riddling is first noticed by Pikovsky and Grassberger
their study of coupled map lattices@3# and is independently
discovered, analyzed, and named for general chaotic sys
by Alexanderet al. @4#. The dynamical conditions for rid
dling to occur are described in Ref.@4#, where it is shown
that for systems with an invariant subspaceS: ~a! if there is
a chaotic attractor inS, and~b! if a typical trajectory in the
chaotic attractor is stable with respect to perturbations tra
verse toS, then the basin of the chaotic attractor inS can be
riddled with holes that belong to the basin of another attr
tor off S, provided that such an attractor exists. Physica
the presence of a riddled basin means that, for every in
condition that asymptotes to the chaotic attractor inS, there
are initial conditions arbitrarily nearby that asymptote to t
attractor offS. As such, prediction of the asymptotic attra
tors becomes practically impossible because of the inevit
error in the specification of the initial conditions or param
eters. Mathematically, a riddled basin is the complement
denseopen set belonging to the basin of the other attrac
Thus, a riddled basin contains no open sets, in contras
fractal basins that do@1#. In most existing works on riddling
a common assumption is that the system possesses a p
invariant subspace. Such an invariant subspace is usu
caused by a simple symmetry in the system.

In this Rapid Communication, we address how symme
breaking affects riddling in chaotic systems. Here we c
sider smooth deterministic perturbations, say, of magnit
PRE 621063-651X/2000/62~4!/4505~4!/$15.00
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e, that destroy the existence of invariant subspace. Tha
when e50, the system possesses a perfect symmetry
consequently an invariant subspaceS. Assume that there are
other coexisting attractors outsideS, as shown schematically
in Fig. 1~a!, let a be a system parameter whose variati
perserves the system symmetry, and letac be the blowout
bifurcation point@10#. Thus, if e50, for a&ac , the chaotic
attractor inS is transversely stable and its basin is riddl
and, fora*ac , the chaotic attractor is transversely unstab
and it is no longer an attractor in the full phase space. O
principal results are as follows:~1! In the subcritical case
(a,ac), the riddled basin of the chaotic attractor inS is
immediately destroyed and replaced by fractal ones in
presence of a symmetry-breaking perturbation, no ma
how small it is. Accompanying this catastrophe of riddling

FIG. 1. Schematic illustrations of the dynamics of unstable
riodic orbits: ~a! for e50, y50 is invariant and the roots of the
tongues are dense iny50, creating a riddled basin;~b! for eÞ0,
y50 is no longer invariant, the locations of the periodic orb
shifted abouty50, and the roots of the tongues are no long
dense, leading to fractal basins.
R4505 ©2000 The American Physical Society
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the birth of long chaotic transients whose lifetimes scale w
the parameter variation as

t;exp@C~e!~ac2a!u ln eu#, a,ac , ~1!

where C(e).0 is a factor that depends one. ~2! In the
supercritical case (a.ac), a smooth-to-fractal basin bound
ary metamorphosis arises ase is increased from zero. In thi
case, the chaotic transient lifetime is much shorter than
in the subcritical case. We establish the above results
analyzing the behavior of unstable periodic orbits, by der
ing scaling laws based on a physical theory, and by num
cal support.

A riddled basin contains no open sets and it is full
holes ~in the measure-theoretic sense!, yet it must have a
positive Lebesgue measure@4#. Thus, to argue that the bas
of attractor A ~in the Milnor’s sense@11#! is riddled, the
following two conditions must be established:~i! a set of
positive measure is attracted to the attractorA; and ~ii ! the
complement of the basin ofA is a denseopen set, i.e., suffi-
ciently many points nearA are repelled from it. In contrast,
fractal basin is open and it is defined with respect to
basin boundary: a basin is fractal if its boundary is a frac
set. These are the key differences between a riddled b
and a fractal one. In view of the mathematical difficulty
establish such an existence, it is suggested in Ref.@7# that the
existence of riddling can be argued by focusing on its
namical mechanism. In particular, Ref.@7# describes how
riddling can arise as a system parameter changes. The
point is that the chaotic attractorA in the invariant subspac
S has embedded within itself an infinite number of unsta
periodic orbits. Depending on the parameter, these peri
orbits can be stable or unstable with respect to perturbat
transverseto S. Riddling occurs when an unstable period
orbit, typically of low period, first becomes transversely u
stable@7#. When this occurs, a set consisting of an infin
number of tongue-like structures is open at the location
the periodic orbit and the locations of all its preimages. T
‘‘roots’’ of these structures are thusdensein S and have
Lebesgue measure zero. The complement of the set of t
roots thus assumes the full measure inS. By continuity, in
the vicinity of S, the complement of the set of tongue
which is the basin ofA in S, must have a positive measur
thereby establishing condition~i! for riddling. Away fromS,
the set of infinite number of tongues intersect with a hyp
plane of the same dimension as that ofS in a set of positive
measure. The tongues thus constitute an open set in the t
verse subspace. The open dense set of tongues constitut
basin of another attractor~if it exists!. This establishes con
dition ~ii ! for riddling.

We can now describe what happens when there i
symmetry-breaking. The key observation here is that
stable periodic orbits arestructurally stablein the sense tha
they cannot be destroyed by smooth perturbations. If
symmetry-breaking perturbation is small, we expect the
bilities of most of the unstable periodic orbits inS to be
unchanged. That is, most orbits remain transversely st
~unstable! under a small perturbation if they are transvers
stable~unstable! in the absence of the perturbation. We e
pect, however, the locations of these orbits to shift under
perturbation. Specifically, say when there is no symme
h
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breaking (e50), the invariant subspaceS is located aty
50, wherey is a vector in the transverse subspace. In t
case, all unstable periodic orbits inS are localized iny50
and the set of all their preimages, including themselves
dense iny50, as shown schematically in Fig. 1~a!. For e
*0, these orbits no longer havey50. Instead, their locations
will be shifted and most of them will be confined, approx
mately, in thee-neighborhood ofy50, as shown in Fig. 1~b!.
Because of the redistribution of the unstable periodic orb
in the vicinity of y50, typically the set of all their preimage
~including themselves! is no longer dense, leaving its
complement an open set. Riddling is thus destroyed an
replaced by fractal basins, no matter how smalle is.

To be illustrative, we consider the following analyzab
two-dimensional map:

xn115T~xn!5H 2xn , 0<x,1/2

2~12xn!, 1/2<x<1,
~2!

yn115H axnyn2e, 0<y,1

lyn , y>1,

whereT(x) is the tent map;a, e.0, andl.1 are param-
eters; and the phase-space region of interest is$0<x<1,
2`,y,`%. When e50, the system possesses the on
dimensional invariant subspace:y50, which is caused by
the reflecting symmetry:y→2y. The symmetry is broken
wheneÞ0. Becausel.1, Eq. ~2! has two other attractors
y56`. For e50, the transverse Lyapunov exponent of t
chaotic attractor iny50 can be defined as follows:hT

5*0
1 ln(ax)r(x)dx5ln a21, wherer(x)51 ~for 0<x<1) is

the natural invariant density of the chaotic attractor in t
tent map. We see that a blowout bifurcation occurs atac
5e, wherehT<0 for a<ac andhT.0 for a.ac . The ex-
istence of riddling fora<ac can be established through th
following theorem.

Theorem.For e50, let A be the chaotic attractor in th
invariant subspacey50. The basin ofA is riddled for a
&ac .

The proof of the theorem proceeds in two steps@12#: ~1!
SincehT&0, by Lemma 2 in Ref.@4#, there is a set of posi-
tive measure that asymptotes toA; and ~2! explicit math-
ematical estimates can be obtained which show that the
a dense open set asymptoting to the attractors at infinity

When e is increased from zero, unstable periodic orb
embedded in the original chaotic attractor iny50 are per-
turbed. In particular, for a periodic orbit of periodp:
(x1

(p),0),(x2
(p),0), . . . ,(xp

(p),0), where T(xi
(p))5xi 11

(p) ( i
51, . . . ,p21) andT(xp

(p))5x1
(p) , for ueuÞ0, they locations

of the orbit points are given by

yi
(p)52eF11axi 21

(p) 1a2xi 21
(p) xi 22

(p) 1 . . .

1ap21 )
l 51,lÞ i

p

xl
(p)G Y F12ap )

m51

p

xm
(p)G . ~3!

From Eq.~3!, the following can be seen:~1! if the original
periodic orbit is a repeller, i.e.,ap)m51

p xm
(p).1, it remains a
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repeller but its location is shifted upward, i.e.,yi
(p).0; ~2! if

the original orbit is a saddle, i.e.,ap)m51
p xm

(p),1, it is still a
saddle but its position is shifted downward:yi

(p),0. Thus,
under the symmetry-breaking perturbation, all repellers
located iny.0 and all saddles are located iny,0. As a
consequence, a trajectory starting iny.0 can move across
thex axis and asymptote to they52` attractor. That is, due
to the symmetry breaking, they52` attractor acquires ba
sins in y.0. Insofar as the original symmetric system po
sesses two distinct classes of unstable periodic orbits~repel-
lers and saddles!, the basin of they52` attractor has a
component iny.0, regardless of whethera&ac or a*ac .
It can be argued that there is still an open set in 0<(x,y)
<1 that asymptotes to they51` attractor, but this set is no
longer dense@12#. The boundary between the basins of t
y56` attractors is thus fractal. We remark, however, th
under the perturbation, the basin of they52` attractor may
appear undistinguishable, say, in numerical experime
from that of a riddled basin because most unstable perio
orbits in the original invariant subspace are perturbed o
slightly.

The critical behaviors associated with the catastrophe
riddling can be analyzed using the model of random w
introduced in Ref.@5#. By solving the Fokker-Planck~FP!
equation for the probability distribution of walker in spa
and time, adopting various initial and boundary conditio
we are able to derive the scaling laws@12# for the following
quantities that can be measured in numerical or physical
periments:~1! the fraction of fractal basins after the catastr
phe, ~2! the lifetime of the chaotic transient, and~3! the
dimension of the fractal basin boundary. Here we brie
describe results~2! and~3!. Say we distribute a large numbe
N0 of initial conditions neary50. Then the number of tra
jectories that still remain in the vicinity ofy50 at timet is
N(t)5N0 exp(2t/t), wheret is the lifetime of the chaotic
transient. Solution of the FP equation, under appropriate
tial and boundary conditions, yields Eq.~1!. We see thatt
increasesexponentiallyasa is decreased fromac . To get a
rough idea about how long the transient lifetime can be,
we haveC51 andueu510210. Thus, ifac2a50.1, we have
t;103. But if ac2a51.5, thent;1015. We note that the
exponential scaling is different from both the typical alg
braic scaling for low-dimensional chaotic transients@13# and
that associated with superpersistent chaotic transient@14,7#.
For ~3!, the dimension of the fractal basin boundary, t
result is that the dimension is fairly close to that of t
phase-space dimension. This indicates that the basins
the catastrophe of riddling, while being fractal, lead to
similar type of extreme sensitivity of the asymptotic attrac
on initial conditions to that resulted from a riddled basin.

We now present numerical support with the followin
two-dimensional map: (xn ,yn)→„f (xn)10.1yn

2 ,axnyn1yn
3

2e…, where f (xn)53.8xn(12xn) is the logistic map that
apparently possesses a chaotic attractor,a, b, r, and e>0
~characterizing the symmetry-breaking! are parameters. Fo
e50, y50 is the one-dimensional invariant subspace. T
y3 term stipulates that trajectories with large values oy
asymptote to the attractors atuyu5` rapidly. There is a
blowout bifurcation atac'1.726, wherehT&0 for a&ac
and hT*0 for a*ac . Thus, for a&ac , the basin of the
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chaotic attractor iny50 is riddled, as shown in Fig. 2~a!,
where a51.7, a grid of 100031000 initial conditions are
chosen in (0,x,1,21,y,1), and black dots denote ini
tial conditions whose trajectories stay within 10210 of y50
for successive 1000 iterations~which are numerically consid
ered as having approached they50 chaotic attractor!. Figure
2~b! illustrates that arbitrarily neary50, there are initial
conditions that asymptote to they56` attractors, where
black dots iny.0 (y,0) denote initial conditions to they
51` (y52`) attractor.

WheneÞ0, y50 is no longer invariant and, the riddlin
observed in Figs. 2~a! and 2~b! is destroyed and is replace
by fractal basins, no matter how smalle is. For e*0, the
y,0 region still belongs to the basin of they52` attractor
but it now has a basin component iny.0, due to the
symmetry-breaking. The basin boundary between they5
1` and they52` attractors iny.0 is a fractal, as shown
in Fig. 3~a! for a51.72&ac(e50), where black dots denot
initial conditions that asymptote to they52` attractor. Al-
though, as we have argued, the basins are fractal, they m
riddled basins, which is demonstrated by Fig. 3~b!, where a
small region neary50 in Fig. 3~a! is magnified but now

FIG. 2. Fore50 in the numerical model,~a! the basin of the
y50 chaotic attractor~black regions!, and ~b! the basin of they
56` attractors~black dots! neary50.

FIG. 3. Fore510210 anda51.72,ac(e50) in the numerical
model, ~a! the basin of they52` chaotic attractor~black dots!,
and ~b! the basin of they51` attractors~black dots! neary50.
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black dots denote initial conditions that go to they51`
attractor. We see that there are initial conditions arbitra
neary50 that asymptote to they51` attractor, similar to
the behavior depicted in Fig. 2~b!. Comparing Figs. 3~a! and
3~b! with Figs. 2~a! and 2~b!, we observe that the symmetry
breaking induced fractal basins are visually similar to ridd

FIG. 4. Exponential scaling of the chaotic transient lifetime u
der small symmetry-breaking perturbations.
A
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r-

A

tt

ni
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d

basins. In fact, similar fractal basins exist fora*ac(e50).
The exponential scaling of the transient lifetime is shown
Fig. 4 for e51028, 10210, and 10212, where we see that fo
a,ac(e50), the lifetime can easily reach 106 iterations
even whena is slightly belowac(e50). Extensive numeri-
cal computations also establish support for the scaling of
fraction and dimension of the fractal basins after the ca
trophe of riddling@12#.

In summary, we establish in this Rapid Communicati
that, while riddling is robust against perturbations that p
serve the symmetry and invariance of the system, it is str
turally unstable under perturbations that destroy the sym
try. Such perturbations remove riddling, create fractal bas
with physical properties similar to those of a riddled one, a
induce long chaotic transients that scale exponentially w
parameter variations. An implication of this work is th
riddled basins may not actually be observable in phys
experiments, say, in systems of coupled, slightly nonide
cal chaotic oscillators. What can be observed is fractal ba
that appear like riddled ones.

This work is supported by AFOSR under Grant N
F49620-98-1-0400 and by NSF under Grant No. PH
9722156.
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