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Most existing works on riddling assume that the underlying dynamical system possesses an invariant sub-
space. We find that, under arbitrarily small, deterministic perturbations, a riddled basin is typically destroyed
and replaced by fractal ones,catastropheof riddling. We elucidate, based on analyzing unstable periodic
orbits, the dynamical mechanism of the catastrophe. Analysis of the critical behaviors leads to the finding of a
transient chaotic behavior that is different from those reported previously.

PACS numbsd(s): 05.45.Jn, 05.45.Ac

It is common for nonlinear dynamical systems to possesg, that destroy the existence of invariant subspace. That is,
multiple coexisting attractond,2]. The basin boundaries be- when e=0, the system possesses a perfect symmetry and
tween the attractors can be smooth or complicated. For suatbnsequently an invariant subspateAssume that there are
systems, an important question concerns whether thether coexisting attractors outside as shown schematically
asymptotic attractor can be predicted if initial conditions arein Fig. 1(a), let a be a system parameter whose variation
chosen in the vicinity of the boundary. For smooth bound-perserves the system symmetry, anddgtbe the blowout
aries, an improvement in the precision to specify the initialbifurcation point[10]. Thus, ife=0, fora<a,, the chaotic
conditions results in an equal amount of improvement in thettractor inS is transversely stable and its basin is riddled
predictability of the asymptotic attractor. For fractal basinand, fora=a., the chaotic attractor is transversely unstable
boundaries[1], a more precise specification of the initial and it is no longer an attractor in the full phase space. Our
conditions often results in a much smaller improvement inprincipal results are as followg1) In the subcritical case
the probability to predict the attractor correctly. In the ex-(a<a.), the riddled basin of the chaotic attractor &his
treme case of riddled basifi8—9], a vast reduction in the immediately destroyed and replaced by fractal ones in the
uncertainty to specify the initial conditions typically results presence of a symmetry-breaking perturbation, no matter
in almost no improvement in ability to predict the final at- how small it is. Accompanying this catastrophe of riddling is
tractor. As such, the phenomenon of riddled basins has re-
ceived a lot of recent attention.

Riddling is first noticed by Pikovsky and Grassberger in (a) ¢ =0
their study of coupled map latticé8] and is independently
discovered, analyzed, and named for general chaotic systen
by Alexanderet al. [4]. The dynamical conditions for rid-
dling to occur are described in Rg#], where it is shown
that for systems with an invariant subspatea) if there is
a chaotic attractor it5, and(b) if a typical trajectory in the
chaotic attractor is stable with respect to perturbations trans
verse toS, then the basin of the chaotic attractorSrcan be
riddled with holes that belong to the basin of another attrac-
tor off S, provided that such an attractor exists. Physically, (b) [e[~0
the presence of a riddled basin means that, for every initial
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condition that asymptotes to the chaotic attractosjrhere

are initial conditions arbitrarily nearby that asymptote to the A,

attractor offS. As such, prediction of the asymptotic attrac- s Aaas i asas \\&,H —————————————— e
tors becomes practically impossible because of the inevitable HH Ve R I 8
error in the specification of the initial conditions or param- M W i

eters. Mathematically, a riddled basin is the complement of a
denseopen set belonging to the basin of the other attractor.
Thus, a riddled basin contains no open sets, in contrast tc
fractal basins that dfil]. In most existing works on riddling,
a common assumption is that the system possesses a perfectr|c. 1. Schematic illustrations of the dynamics of unstable pe-
invariant subspace. Such an invariant subspace is usualidic orbits: (a) for e=0, y=0 is invariant and the roots of the
caused by a simple symmetry in the system. tongues are dense =0, creating a riddled basir{p) for €0,

In this Rapid Communication, we address how symmetryy=0 is no longer invariant, the locations of the periodic orbits
breaking affects riddling in chaotic systems. Here we conshifted abouty=0, and the roots of the tongues are no longer
sider smooth deterministic perturbations, say, of magnitudeense, leading to fractal basins.
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the birth of long chaotic transients whose lifetimes scale withpreaking €=0), the invariant subspac§ is located aty

the parameter variation as =0, wherey is a vector in the transverse subspace. In this
case, all unstable periodic orbits & are localized iny=0
m~exfC(e)(a.—a)|lnel], a<a, (1 and the set of all their preimages, including themselves, is

dense iny=0, as shown schematically in Fig(a. For e
where C(€)>0 is a factor that depends on (2) In the =0, these orbits no longer haye= 0. Instead, their locations
supercritical casea>a.), a smooth-to-fractal basin bound- will be shifted and most of them will be confined, approxi-
ary metamorphosis arises ass increased from zero. In this mately, in thee-neighborhood of=0, as shown in Fig. ().
case, the chaotic transient lifetime is much shorter than thaBecause of the redistribution of the unstable periodic orbits
in the subcritical case. We establish the above results b the vicinity of y=0, typically the set of all their preimages
analyzing the behavior of unstable periodic orbits, by deriv-(including themselvesis no longer dense leaving its
ing scaling laws based on a physical theory, and by numericomplement an open set. Riddling is thus destroyed and is
cal support. replaced by fractal basins, no matter how sneait.

A riddled basin contains no open sets and it is full of To be illustrative, we consider the following analyzable
holes (in the measure-theoretic sefsget it must have a two-dimensional map:
positive Lebesgue measu]. Thus, to argue that the basin

of attractorA (in the Milnor's sensg/11]) is riddled, the 2Xp,, o=x<1/2
following two conditions must be established) a set of Xn+1=T(Xn)= B
. . b 2(1-x,), 1/2sx<1,
positive measure is attracted to the attradipand (ii) the @)
complement of the basin & is adenseopen set, i.e., suffi- ax.y. — 0<v<1
ciently many points neahk are repelled from it. In contrast, a y +1={ nYn ™€ =Y
fractal basin is open and it is defined with respect to the " AYn, y=1,

basin boundary: a basin is fractal if its boundary is a fractal

set. These are the key differences between a riddled basihere T(x) is the tent mapg, >0, and\>1 are param-

and a fractal one. In view of the mathematical difficulty to eters; and the phase-space region of intereq0isx<1,

establish such an existence, it is suggested in[Réfhat the =~ —o<y<w=}. When €=0, the system possesses the one-

existence of riddling can be argued by focusing on its dy-dimensional invariant subspacg:=0, which is caused by

namical mechanism. In particular, R€f7] describes how the reflecting symmetryy— —y. The symmetry is broken

riddling can arise as a system parameter changes. The kayhene#0. Because.>1, Eq.(2) has two other attractors:

point is that the chaotic attractdvrin the invariant subspace y= *%. Fore=0, the transverse Lyapunov exponent of the

S has embedded within itself an infinite number of unstablechaotic attractor iny=0 can be defined as follows

periodic orbits. Depending on the parameter, these periodie- [§In(aX)p(X)dx=Ina—1, wherep(x)=1 (for 0=<x<1) is

orbits can be stable or unstable with respect to perturbationge natural invariant density of the chaotic attractor in the

transverseto S. Riddling occurs when an unstable periodic tent map. We see that a blowout bifurcation occursaat

orbit, typically of low period, first becomes transversely un-=e, whereh;<0 for a<a, andh>0 for a>a.. The ex-

stable[7]. When this occurs, a set consisting of an infiniteistence of riddling fora<a, can be established through the

number of tongue-like structures is open at the location ofollowing theorem.

the periodic orbit and the locations of all its preimages. The Theorem.For e=0, let A be the chaotic attractor in the

“roots” of these structures are thusensein S and have invariant subspacg=0. The basin ofA is riddled for a

Lebesgue measure zero. The complement of the set of thesea, .

roots thus assumes the full measureSinBy continuity, in The proof of the theorem proceeds in two stgp2]: (1)

the vicinity of S, the complement of the set of tongues, Sinceh;=<0, by Lemma 2 in Ref[4], there is a set of posi-

which is the basin oA in S, must have a positive measure, tive measure that asymptotes 1 and (2) explicit math-

thereby establishing conditidi) for riddling. Away fromS, ematical estimates can be obtained which show that there is

the set of infinite number of tongues intersect with a hyper-a dense open set asymptoting to the attractors at infinity.

plane of the same dimension as thatSoih a set of positive When € is increased from zero, unstable periodic orbits

measure. The tongues thus constitute an open set in the trarsmbedded in the original chaotic attractoryis-0 are per-

verse subspace. The open dense set of tongues constitutes tiibed. In particular, for a periodic orbit of periof:

basin of another attractdif it exists). This establishes con- (X(P) 0),(xP,0), «P,0), where T(xP)=xP, (i

dition (ii) for riddling. .p—1) andT(pr)) x(p) for|e|#0, they locations
We can now describe what happens when there is 6f the orblt points are given by

symmetry-breaking. The key observation here is that un-

stable periodic orbits arstructurally stablein the sense that

they cannot be destroyed by smooth perturbations. If the yPl=—¢l 1+axtP) +a>xP xP,+ . ..

symmetry-breaking perturbation is small, we expect the sta-

bilities of most of the unstable periodic orbits & to be

unchanged. That is, most orbits remain transversely stable +aP L [T x® /

(unstable under a small perturbation if they are transversely 1Ll

stable(unstablg in the absence of the perturbation. We ex-

pect, however, the locations of these orbits to shift under th&rom Eq.(3), the following can be seerfl) if the original

perturbation. Specifically, say when there is no symmetryperiodic orbit is a repeller, i.eapH&=lx§§’)>l, it remains a

p
—a 1l P
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repeller but its location is shifted upward, i.g{P>0; (2) if Y
the original orbit is a saddle, i.ePITP_,x(P<1, itis still a
saddle but its position is shifted downwargf”’<0. Thus,
under the symmetry-breaking perturbation, all repellers are
located iny>0 and all saddles are located y<0. As a
consequence, a trajectory startingyirrO can move across
thex axis and asymptote to the= — oo attractor. That is, due
to the symmetry breaking, the= —« attractor acquires ba-
sins iny>0. Insofar as the original symmetric system pos-
sesses two distinct classes of unstable periodic oftafsel-
lers and saddlgsthe basin of they=—« attractor has a
component iny>0, regardless of whethex<a. or a=a..
It can be argued that there is still an open set i (8,y) 05' 052 054 Py 0"58 o
=<1 that asymptotes to the= + < attractor, but this set is no ' ' Tox ' '
longer dens¢12]. The boundary between the basins of the , , ,
y= o attractors is thus fractal. We remark, however, that ' 'C; 2- Fore=0 in the numerical modela the basin of the
. . y=0 chaotic attractofblack regiony and (b) the basin of they
under the pe_rtL_erat_lon, the basin (_)f e —oo_attractor May .o attractors(black dots neary=0.
appear undistinguishable, say, in numerical experiments,
from that of a riddled basin because most unstable periodic
orbits in the original invariant subspace are perturbed onl
slightly.

The critical behaviors associated with the catastrophe
riddling can be analyzed using the model of random wal
introduced in Ref[5]. By solving the Fokker-PlanckFP)
equation for the probability distribution of walker in space

and time, adopting various initial and boundary conditions, diti h o h
we are able to derive the scaling lajd<?] for the following conditions that asymptote to the= oo attractors, where

guantities that can be measured in numerical or physical explack dots iny>0 (y<0) denote initial conditions to thy

periments(1) the fraction of fractal basins after the catastro- — +oo (y=—0) attra}ctor. . . -
phe, (2) the lifetime of the chaotic transient, an@) the Whene#0, y=0 is no longer invariant and, the riddling
dimension of the fractal basin boundary. Here we brieflyoPServed in Figs. (@) and 2b) is destroyed and is replaced
describe result€) and(3). Say we distribute a large number PY fractal basins, no matter how smallis. For =0, the
N, of initial conditions neay=0. Then the number of tra- Y <0 region stil belongs to the basin of tiye- —= attractor
jectories that still remain in the vicinity of=0 at timetis  PUt it now has a basin component y>0, due to the
N(t)=N, exp(~t/7), wherer is the lifetime of the chaotic SYmmetry-breaking. The basin boundary between ythe
transient. Solution of the FP equation, under appropriate ini-~ > @nd they= —c attractors iny>0 is a fractal, as shown
tial and boundary conditions, yields E¢L). We see tharr N Fig. 3@ fora=1.72<a(e=0), where black dots denote
increasesxponentiallyasa is decreased from,. To get a initial conditions that asymptote to the= — o attractor. Al-

rough idea about how long the transient lifetime can be, say’ough, as we have argued, the basins are fractal, they mimic
we haveC=1 and|e|=10"1°. Thus, ifa,—a=0.1, we have riddled basins, which is demonstrated by Fi¢h)3where a

7~1C°. But if a.—a=1.5, then7~10'°. We note that the small region neay=0 in Fig. 3a is magnified but now

exponential scaling is different from both the typical alge-
braic scaling for low-dimensional chaotic transiefi8] and
that associated with superpersistent chaotic trangieh).
For (3), the dimension of the fractal basin boundary, the
result is that the dimension is fairly close to that of the
phase-space dimension. This indicates that the basins after
the catastrophe of riddling, while being fractal, lead to a
similar type of extreme sensitivity of the asymptotic attractor
on initial conditions to that resulted from a riddled basin.
We now present numerical support with the following
two-dimensional map: X, ,yn) — (f(x,) +0.1y2 ,ax,y,+y>
—¢€), where f(x,) =3.8x,(1—x,) is the logistic map that
apparently possesses a chaotic attracpt, r, and e=0
(characterizing the symmetry-breakjngre parameters. For

haotic attractor iny=0 is riddled, as shown in Fig.(2),
herea=1.7, a grid of 100& 1000 initial conditions are
0(1;hosen in (6<x<1,—1<y<1), and black dots denote ini-
ial conditions whose trajectories stay within 8 of y=0
or successive 1000 iteratiofwhich are numerically consid-
ered as having approached twe 0 chaotic attractor Figure
2(b) illustrates that arbitrarily neay=0, there are initial

e=0, y=0 is the one-dimensional invariant subspace. The 0.5 0.52 0.54 0.56 0.58 0.6
y® term stipulates that trajectories with large valuesyof X
asymptote to the attractors @|=o rapidly. There is a FIG. 3. Fore=10"'°anda=1.72<a(e=0) in the numerical

blowout bifurcation ata.~1.726, whereh;<0 for a<a, model, (a) the basin of they= — chaotic attractorblack dots,
and ht=0 for a=a.. Thus, fora<a., the basin of the and(b) the basin of they= +« attractors(black dot$ neary=0.
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7 ' ' basins. In fact, similar fractal basins exist f@=a.(e=0).
el The exponential scaling of the transient lifetime is shown in
&51 e, . [ Fig. 4 fore=10"8, 101 and 102 where we see that for
N N | a<a.(e=0), the lifetime can easily reach %Gterations
e The even whera is slightly belowa,(e=0). Extensive numeri-
5548 = 107, \'\. I cal computations also establish support for the scaling of the
';e AN el fraction and dimension of the fractal basins after the catas-
S 5{ e AR A i trophe of riddling[12].
e = 10’8‘\\.\ Tea el In summary, we establish in this Rapid Communication
4.51 e, Tl ' [ that, while riddling is robust against perturbations that pre-
o \“w\,\.*f\f 1 serve the symmetry and invariance of the system, it is struc-
turally unstable under perturbations that destroy the symme-
35 , , - try. Such perturbations remove riddling, create fractal basins
1.71 1.715 172 1.725 with physical properties similar to those of a riddled one, and

a induce long chaotic transients that scale exponentially with

FIG. 4. Exponential scaling of the chaotic transient lifetime un-parameter variations. An implication of this work is that
der small symmetry-breaking perturbations. riddled basins may not actually be observable in physical
experiments, say, in systems of coupled, slightly nonidenti-

black dots denote initial conditions that go to thie + oo cal chaotic oscillators. What can be observed is fractal basins
that appear like riddled ones.

attractor. We see that there are initial conditions arbitrarily
neary=0 that asymptote to thg= +o attractor, similar to
the behavior depicted in Fig(l®. Comparing Figs. @) and This work is supported by AFOSR under Grant No.
3(b) with Figs. 2a) and 2b), we observe that the symmetry- F49620-98-1-0400 and by NSF under Grant No. PHY-
breaking induced fractal basins are visually similar to riddled9722156.
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