PHYSICAL REVIEW E VOLUME 61, NUMBER 3 MARCH 2000

Noise scaling of phase synchronization of chaos
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We investigate the effect of noise on phase synchronization of coupled chaotic oscillators. It is found that
additive white noise can induce phase slips in integer multiplesnd th parameter regimes where phase
synchronization is observed in the absence of noise. The average time duration of the temporal phase synchro-
nization scales with the noise amplitude in a way that can be describ&apasgpersistent transientVe give
two independent heuristic derivations that yield the same numerically observed scaling law.

PACS numbd(s): 05.45.Xt

The phenomenon of synchronous chaos has attractgghrameters such as the coupling strength,lKard is a con-
much attention since the work of Pecora and Carroll in 199Gstant. An implication of this is that in the presence of only a
[1]. Typically, when two chaotic oscillators are coupled to- small noise, the average time duration to observe phase syn-
gether, synchronization between them can occur when thehronization can be extremely long. Phase synchronization is
coupling strength is large enough. Recently, a more delicatéobust in this sense. In what follows, we first report our nu-
type of synchronization phenomenon was discovered bynerical experiments with the system of two coupleds&ter
Rosenblum, Pikovsky, and Kurthig]. This is the phase syn- o_scnlators. We then give two independent heuristic deriva-
chronization of chaotic oscillators which occurs at smallertions for scaling law(1). ,
coupling strength than that required for complete synchroni- We consider the following system of two coupledsRter
zation. Briefly, if trajectories in each chaotic oscillator can be@SCillators, the one that was originally used in Réf.to first
regarded as a rotation, then the phase angle of the rotatidfPort Phase dsync/hdroi1|zat|ondx1,2/dt= _“’lldﬂ’é,f 7&2
increases steadily with tim@{t) = wt+ ¢(t), wherew is the 18(2)531_ X1_~2)1’0 0Y1,2 t_h“’leXéZ.Jr 9[#5/12’ "i‘.n Ztle ih
average rotation frequency ae(t) is a term characterizing 2+ (X1,2~ 10. )21'2’_W eret. 1S e coupiing strength,
chaotic fluctuations. As such, the rate of increase of phas%nd we choosed,, ) =(1.015,0.985), so that the wo 0s-

can e modeled . il  zero mean chaotc rocess IS 21 SN Srerl b oo o mime Ao
In the absence of coupling, the phase angles of the two o P P

cillators 6,(t) and 6,(t) are uncorrelated. That is, if one ?ectly |derr1]t|cql. The Rqslelr chaotic attractor[]ﬂ has thg
measures the differenca 6(t)=|8,(t) — 6,(t)|, one finds property that its(x,y) variables represent a chaotic rotation
that A9(t) increases steadily with time. However, when aWIth WeII-defl_ned phase angl4g]. T.O compute _the _phase
small amount of coupling is presemtg(t) can be cc,)nfined a_ngles associated with the tyvo oscillators, we find it conve-
within 277, while the amplitudes of the rotations are still nient to use the polar coprdmates 0 to_replace thetxy)
. . . coordinates. In the cylindrical coordinater, §,z), the
completely uncorrelated. The bifurcation that leads to thi gssler equations become
phase synchronization was subsequently investigaded).
The ability of chaotic systems to have phase synchronization dr,, _
has implications on digital communication with chaos using T=0-151,23|n2 01,2
the natural chaotic symbolic dynamig]. In such a case, it
is highly desirable to suppress phase diffusions between cha- +[C(r,1€0865 1~ ,C0S0; ) — Z; 5|COSH, 5,
otic communication channels to ensure proper timing for de-
coding. dé
In this Brief Report, we address to what extent phase dt
synchronization can be observed in laboratory experiments
by investigating the effect of noise on phase synchronization.
Our principal results ar€l) additive white noise, a type of
noise encountered commonly in experimental situations, can
induce phase slips in units of72oetween the coupled oscil-
lators, which would otherwise be synchronized in phase in dz ,
the absence of noise, an#) the average time duration be- ——=0.2+(r;,c0s60;,—10.02; ,.
tween successive phase slips appears to obey a scaling law
with the noise amplitude, When there is no coupling, the phase anglg&) and 6,(t)
are uncorrelated and, hence, the phase differenéét)
T~expKe ), (1) =]6,(t)— 6,(t)| increases steadily with time. Phase syn-
chronization occurs whe@€ is increased through the critical
where >0 is the scaling exponent depending on systemvalue C,~0.029, in which we have §(t)<2. The lower

= w1 ,+0.155sind,; ,c0s6, ,

1
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FIG. 1. For a system of two coupled 8sler oscillators: phase FIG. 2. For a system of two coupled &sler oscillators aC
synchronization without noisélower trace; 3and 27 phase slips  =0.03: log, 7 vs e ¢, wherea~0.31 is a fitting parameter. Each
induced by the noise of the amplitude-10"° (upper tracg point represents an average over 100 time intervals.

ation of phase synchronization whek® remains within 2r
trace in Fig. 1 shows such a situation f6r=0.03, where !f it starts with a value less thanm2 Next we examine_ the
A6(t) versust is plotted. To model noise, we add different influence of noise on the pheisze-space structure in k&, 3
realizations of the termsa, ,,(t) to each of the six vari- &S shown in Fig. @) for e=10"°. We see that the basins of
ables in the coupled Rsler systeniEq. (2)] at each step of
integration, wheree is the noise amplitude and thes are (@)
random variables uniformly distributed ir-1, 1]. The upper 30
trace in Fig. 1 showa 4(t) versust for C=0.03, where the
noise amplitude is~10 3. We see that noise induces oc- 25}
casional phase slips in units of approximately i A 6(t).
However, these phase slips are rare and become extremely 41
infrequent as the noise amplitude is decreased further. r

To quantify the 2r phase slips in Fig. 1, we compute how

the average time intervat [8] between successive phase
slips changes as the noise amplitude is changed. For the pa-
rameter setting described above, we find thatan be so
prohibitively long that numerical computation of it becomes

infeasible when the noise amplitudeis smaller than, say, 5 x P an an
10 4. Figure 2 shows logr versuse @ for 10 3°<e AO
=10 1° (approximately two orders of magnitude ie), (b)

wherea~0.31 is a fitting parameter. The approximate linear
scaling behavior in Fig. 2 suggests scaling relatibnwhich
implies that the average time interval to observe the 2
phase slips behaves like as e—0. This is similar to the
behavior of the superpersistent chaotic transients observed
previously[9,10,3.

To qualitatively understand the scaling behavior in Fig. 2, T
we perform the following numerical experiment. First we set
e=0 and plot, in the coordinater € \/r21+r22,A0), the at-
tractors that result from two different initial conditions with
0<A6<27m and 2r<A#<4m, respectively, as shown in
Fig. 3(a). Note that the variabld§ is in fact a lifted angle
variable[4], by which differences of the integer multiples of
27 are considered distinct. We see that initial conditions
with 27 differences inA# result in attractors that live in FIG. 3. Using the lifted phase variahle for the system of two
different basins of attraction. Depending on the initial condi-coupled Rssler oscillators(a) two isolated phase-synchronized at-
tions, there is an infinite number of these attractors separat@ghctors in 0<A §<27 and 2r<A #<41 in the absence of noise;
from each other by 2 in Aé. In the absence of noise, these and(b) tunneling between the previously isolated attractors due to
attractors are completely isolated, corresponding to the situroise.

n 2n 3n 4n
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attraction of the previously isolated attractors are now conmately constanfphase synchronizatipnUnder the influence

nected. There is now a nonzero probability that a trajectoryf noise, however, some of the periodic orbits become un-

can switch to different attractors separated hwyi2 Ag, cor-  stable in thed® direction and, as such, a set of “tongues”

responding to the 2 phase slips observed in Fig. 1. The opens at the locations of these periodic orbits, allowing the

switch occurs when the trajectory falls into an open “tun-trajectory to escape from one approximately constastate

nel” connecting the basins. The widths of these tunnels musto another2# phase slips Typically, these orbits have low

be exponentially small, so that the probability for the trajec-periods and the sizes of the tongues are exponentially small

tory to fall into a tunnel is extremely small, leading to the [9,10], which accounts for the extremely long time duration

superpersisitent transient behavior observed in Fig. 2. between the successiverZphase slips. Lei>0 be the
The numerically observed scaling law, as in Fig. 2, is onlyLyapunov exponent of the chaotic attractor and It be the

indicative of the dynamical characteristic of the noise-time for a trajectory to tunnel through one of the tongues.

induced phase slips. It is difficult to extend the range ofWe have, for the typical size of the opening of the tongue,

numerical computations because of the extremely long trans~e *T. The average time between the successive phase

sient behavior between the phase slips. It is thus important tslips is then

be able to derive heuristic theories to account for the scaling

law. In what follows, we provide two independent theories, 1

one based on the dynamical system approach and another on ™ SNe : ®)

statistical mechanical methodology. Both theories yield the

same scaling law. The tunneling timeT can be estimated by noting that when
(1) Dynamical system approachote that in Eq(2), the T is large, the map equation i® in Eqg. (4) can be

scales of the time variation of the amplitude variableg(t) approximated as: d®/dt=e+[pg;(x) —1]P + g,(x) D>

and phase variableg, ,(t) are generally distinct. Since, on +g3(x)®3, which yields

average, we havé, J(t)~wot, we see that the phase angles

0, (t) are “fast” variables. The amplitudas ,(t) are, how- [ do

ever, slow variables because thesBler chaotic trajectories - fo e+[pg;—1]D+g,d2+gd°>

have approximately a circularly rotational structure. Thus

one can average over rotations of the phase angles to sepphe dependence dfon e thus depends on the specific func-

rate out the dynamics of the slow variables. Lettiyg(t)  tions g, ,4(x). For instance, since we know that most peri-

= wot+ ¢ 1), and performing averaging in the time inter- odic orbits embedded in thechaotic attractor are stable in

(6)

val te[0,2m/ w], yields[11] the @ direction, we havepg;(x)=<1. A possible condition

da (1) for a limit cycle oscillator isg,(x)~1 andgs(x)~0. Under
i -1/2

~28w+CG(rq,r,)sin®(t)+white noise term, these conditions, we havé~e™ '~ If,ﬁg/gwever, we have

dt 0,(X)~0 andgs(x)~1, we haveT~e “~. In general, we

(3)  expectT~e * and we obtain the scaling lait).
_ . _ B _ (2). Statistical mechanical approadi2]. Note that Eq.
where ® ()= (1) = ¢1(1) = 05(1) — ,(1), dw=w1—wy, (3), in the absence of noise, models the motion of a classical
andG(r4,r,) is a function that depends on the chaotic am-

. ) : : article in a potential of the following formV(®)=
plitudesr, o(t). Equation(3) thus describes the dynamics of 'i . .
a chaaotically driven limit-cycle oscillator. While the specific 20w®+CG(ry,rp)cosd. When the coupling strength is

form of Eq. (3) is suitable for the system of coupled §&ter large enough, the potential functiaf(®) possesses an infi-
oscillators, we note a general feature of the phase[]Ite number of local minima separated byr #h the phase

synchronization problema limit-cycle oscillator driven by yarlabIeCI?. On average, these'mlnlmum values of the ppten—
chaos tial function V(®) decrease linearly because of the linear

To facilitate analysis, we construct the following model of term —28w®. The chaotic amplitude fact@s(r,,r,) models

two-dimensional maps incorporating the general dynamicatlhe fluctuations of the minimum potential values. When these

features of phase synchronizatifir]; minima are present, a particle starting near one of the local
' minima is trapped in its vicinity forever in a noiseless situa-

Xnt 1= F(Xn), tion, signifyjng sustained phase _synch(onizatio_n. In the pres-
(4) ence of noise, however, a particle originally in one of the
D, 1= e+ pgi(x,) P+ gz(xn)dbﬁJr gs(Xn)‘I’§, local minima can be kicked into one of the adjacent minima,

giving rise to a 2r phase jump. The probability for this to
wheref(x) is a chaotic map in which the variabdemodels  occur isP~e 2T, whereAE is the typical height of the
the chaotic amplitudes in EB), e=0 models the combina- potential barrier that separates neighboring minima, hisl
tion of the small noise and the slight parameter mismatchhe “temperature” that is determined by the noise. Typi-
between the two coupled chaotic oscillatogs,, i(x) are cally, we haveT~€“, wherea>0. The average time for a
smooth functions, angd is a parameter that is proportional to 27 phase jump to occur is thus given by~1/P
the coupling strength. Assume thigix) generates a chaotic ~exp@Ee ), which is the scaling laEq. (1)].
attractor with an infinite number of unstable periodic orbits In summary, we have studied the effect of small random
embedded in it, and that phase synchronization occurs fanoise on phase synchronization of coupled chaotic oscillators
p>p.. In thed direction, these periodic orbits can be stable[13]. Under the influence of noise, indefinite phase synchro-
or unstable. Fop=p., all periodic orbits are stable intie  nization is no longer possiblel4]. Instead, Zr phase slips
direction in the absence of noise, 9o remains approxi- between the oscillators occur. When the noise amplitude is
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small, these phase slips are extremely rare. Thus we still We thank Professor A. Pikovsky and S. Taherion for dis-
expect to be able to observe phase synchronization for longussions. This work was supported by AFOSR under Grant
times in well-controlled laboratory experiments where noiseNo. F49620-98-1-0400 and by NSF under Grant No. PHY-
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