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Pseudospin-1 wave scattering that defies chaos Q-spoiling and Klein tunneling
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Q-spoiling is a known phenomenon in wave chaos, where an open chaotic cavity deformed from an integrable
one exhibits a significantly reduced Q-value. In relativistic quantum mechanics, another mechanism that makes
trapping of waves difficult is Klein tunneling. For chaotic scattering of a pseudospin-1 wave from a deformed
scalar potential domain, both “leaking” mechanisms are thus present. Surprisingly, we find an energy range
in which a pseudospin-1 chaotic cavity is capable of defying both Q-spoiling and super-Klein tunneling. The
physical origin of this remarkable phenomenon is a peculiar type of unexpectedly robust edge modes that
absolutely have no counterpart in nonrelativistic quantum or even in pseudospin-1/2 systems. The phenomenon
can be tested experimentally in emerging electronic or photonic metamaterials with pseudospin-1 Dirac
cones.
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I. INTRODUCTION

A well-established notion in quantum chaos is that classi-
cal dynamics defined by the geodesic ray path are relevant in
the short wavelength limit when the effective Planck constant
approaches zero. Because of this relevance, characteristic and
universal fingerprints of classical chaos can emerge in the
corresponding wave system [1,2]. Take quantum/wave scat-
tering [3] as an example. For integrable classical dynamics,
there can be sharp quantum resonances due to the stable orbits
in the scattering region with a divergent lifetime, leading to
an algebraic decay of the particles. If the classical dynamics
are fully chaotic with no stable periodic orbits, the particle
decay is exponential with a finite average lifetime, broadening
the quantum resonances. Semiclassical arguments based on
the quantum-classical correspondence [4] stipulate that the
statistical fluctuation patterns with energy of the quantum
scattering matrix elements are characteristically distinct for
classical integrable and chaotic dynamics [5–7]. A ray-wave
correspondence thus exists, which is believed to be a general
and universal principle in physics.

The ray-wave correspondence results in remarkable phe-
nomena such as Q-spoiling in optics. For example, deformed
dielectric microcavities allowing exponentially slow evanes-
cent leakage and refractive escape on the entire boundary [8]
can lead to ray chaos, which in the wave picture can dras-
tically reduce the lifetime of high-Q resonant modes via the
mechanism of chaos-assisted tunneling. Associated with Q-
spoiling is a highly anisotropic output, which can be expected
from the corresponding ray dynamics model [9–11]. A related
phenomenon occurs in electronic transport through a ballistic
quantum dot [12–17], where classically integrable dynamics
often leads to sharp conductance fluctuations with energy or
the magnetic field strength. Fully developed chaos, because

*Ying-Cheng.Lai@asu.edu

of its ability to broaden the isolated narrow resonances, can
smooth out the conductance fluctuations. This means that
classical chaos can be used to modulate conductance fluctu-
ations [18,19].

In relativistic quantum systems, another mechanism that
makes wave trapping or confinement difficult is Klein tun-
neling, where substantial tunneling can occur even when the
potential barrier is wide and the particle energy is below
the potential height [20–23]. When both chaos and Klein
tunneling are present, intuitively, confinement of the particle
for a relatively long time would seem impossible.

In this paper, we present a class of relativistic quantum
scattering systems that defy chaos Q-spoiling and Klein tun-
neling, a phenomenon that absolutely breaks the ray-wave
correspondence. It occurs in Dirac material systems hosting
pseudospin-1 quasiparticles with a conical intersection of
triple degeneracy in the underlying energy band [24–51],
whose physics is described by the generalized Dirac-Weyl
equation for massless spin-1 particles [25,26,44]. Pseudospin-
1 quasiparticles are different from Dirac, Weyl, and Majorana
fermions, and are of particular interest to the broad research
community with diverse experimental realization schemes
such as artificial photonic lattices [30,34,38,39,42,52,53], op-
tical [40], and electronic Lieb lattices [49,50], as well as
superconducting qutrits [51]. A striking relativistic quantum
hallmark of pseudospin-1 particles is super-Klein tunneling
through a scalar potential barrier [26,28,41,54], where omni-
directional and perfect transmission of probability one occurs
when the incident energy is about one half of the poten-
tial height. Generally, Klein tunneling defines optical-like,
negatively refracted ray paths through the barrier interface
via angularly resolved transmittance in the short wavelength
limit [55–57]. When both super-Klein tunneling and chaos
are present, one may intuitively expect severe leakage to
predominantly occur so trapping would be impossible. How-
ever, quite counterintuitively, we uncover an energy range
in which robust wave confinement occurs in spite of chaos
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and super-Klein tunneling. Especially, we find that the three-
component spinor wave concentrates in a particular region of
the boundary through strongly squeezed local current vortices
generated there, whose pattern in physical space can be ma-
nipulated in a reconfigurable manner, e.g., by deforming the
boundary shape or setting the direction of the excitation wave.
While these modes are distributed unevenly in physical space
because of the irregular deformations, even fully developed
chaos and super-Klein tunneling are not able to reduce their
trapping lifetime. That is, these modes break the quantum-
classical correspondence totally and completely, contradict-
ing the intuitive expectation that electrostatically confining
relativistic type of carriers/particles to a finite chaotic do-
main is impossible due to the simultaneous presence of two
leaking (Q-spoiling) mechanisms: chaos assisted tunneling
and Klein tunneling. This phenomenon has no counterpart in
nonrelativistic quantum or even in pseudospin-1/2 systems.
The resulting narrow resonances are also characteristically
different from those due to scarring modes concentrating
on periodic orbits in conventional wave chaotic scattering,
in quantum dots [58–64], or in open optical microcavities
[9–11], for which there is still a reasonable ray-wave cor-
respondence. A key technical breakthrough that makes the
discovery possible is our development of an extremely ef-
ficient and accurate method to solve relativistic quantum
chaotic scattering of massless spin-1 particles from an elec-
trostatic potential barrier of finite range and arbitrary shape
(Appendix A).

II. PSEUDOSPIN-1 DIRAC-WEYL SYSTEMS

In recent years, a large number of lattice systems have
been discovered, which host exotic low-energy, relativistic
quantum quasiparticles that have no apparent counterparts
with conventional particles (e.g., Dirac, Weyl, and Majorana
particles) in high-energy physics [30,35,40,42,44,49,50]. Typ-
ically, such lattice systems do not obey the stringent con-
straints imposed by the Poincaré symmetry but are governed
by only certain subgroups of it. Our work focuses on one type
of such quasiparticles: pseudospin-1 particles.

Particularly, we study the scattering of pseudospin-1 parti-
cles in a planar potential field V (r) of finite range whose shape
can be chosen to generate classically integrable or chaotic
dynamics. For simplicity, we consider a piecewise constant
potential, which corresponds to a junction or a dot/cavity
device in an experimentally accessible lattice system, a set-
ting that has been widely used in studying the scattering
of spin-1/2 Dirac-Weyl particles [65–69] and in graphene-
based experiments [70,71]. For scattering of pseudospin-1
waves, super-Klein tunneling can occur, which is charac-
teristically different from conventional Klein tunneling that
occurs only at normal incidence in scattering of massless
pseudospin-1/2 Dirac fermions [21]. Intuitively, it would then
be significantly more difficult to confine pseudospin-1 par-
ticles electrostatically than to confine massless pseudospin-
1/2 particles. Even for a classically integrable cavity, quasi-
bound states could be much less robust against perturbations
for pseudospin-1 particles than for pseudospin-1/2 fermions.
When the perturbations are strong enough to induce fully
developed classical chaos so the two Q-spoiling mechanisms,

i.e., chaos-assisted tunneling and Klein tunneling, are simul-
taneously present, any kind of quasibound states would be
eliminated for pseudospin-1 particles. Is this intuitive picture
true?

The starting point of our study is the effective low-energy
Hamiltonian describing the motion of a massless pseudospin-
1 particle in the plane r = (x, y) under the action of a scalar
potential V (r). In the position representation, the Hamiltonian
reads

Ĥ = vF Ŝ · p̂ + S0V (r), (1)

where vF is the magnitude of the Fermi velocity, Ŝ = (Sx, Sy )
are spin-1 matrices, p̂ is the momentum operator, and S0 is the
three-by-three identity matrix. The particle dynamics with en-
ergy E are governed by the generalized Dirac-Weyl equation
for energy eigenstates �(r) = [ψ1(r), ψ2(r), ψ3(r)]T :

Ĥ�(r) = E�(r). (2)

For a spatially homogeneous/constant potential, e.g., V (r) =
V0, the eigenenergies are E = V0 and

E = V0 + sh̄vF |k|,
with s = ± being the dispersive band index, while the corre-
sponding plane-wave solutions can be written as

�k,0(r) = 1/
√

2[−e−iβ, 0, eiβ ]T eik·r

and

�k,s(r) = 1

2

⎛⎝e−iβ√
2s

eiβ

⎞⎠eik·r, (3)

where the wave vector k = (kx, ky) has length k = |k| and
makes an angle β = arctan(ky/kx ) with the x axis. The current
operator is defined from Eq. (1) as

û = ∇pĤ = vF Ŝ. (4)

The local current associated with a given state �(r) can be
calculated from the local expectation value of û as

u(r) = vF (ψ∗
1 , ψ∗

2 , ψ∗
3 )Ŝ

⎛⎝ψ1

ψ2

ψ3

⎞⎠
=

√
2vF (�[ψ∗

2 (ψ1 + ψ3)],−�[ψ∗
2 (ψ1 − ψ3)]). (5)

Using the plane wave Eq. (3), we obtain u = svF k/k. The
effects of the applied scalar potential are to shift the Dirac
point (k = 0) in the energy domain, to tune the particles’
kinetic energy ε = (E − V0)/h̄vF , and to alter their attributes
from hole to electron type, and vice versa.

The focus of our paper is on the interplay between relativis-
tic quantum, three-component pseudospinor wave dynamics,
and classical chaos. This is different from the commonly
studied interplay between pseudospin-1/2 Dirac fermion sys-
tem and chaos in the field of relativistic quantum chaos
[72,73], and also distinct from the existing studies of the three-
component SU(3)-model-based quantum nonlinear dynamics
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and chaos [74] for systems such as spinor Bose gases in
ultracold atomic physics to which relativistic quantum effects
are irrelevant.

Our prototypical setting is a two-dimensional potential step
(scatterer) of the stadium shape that permits fully developed
chaos in the classical limit. Unlike the case of a circular
potential barrier where analytic solutions can be obtained
[75], analytic treatment of quantum scattering of pseudospin-
1 wave from a stadium (chaotic) domain is not possible.
Because the classical scattering system is nonintegrable, it
cannot simply be reduced to a one-dimensional problem. To
our knowledge, prior to our work, not even an effective nu-
merical method existed for the task. We thus seek to develop
a feasible and efficient computational method. Mathemati-
cally, the problem is to solve the generalized Dirac-Weyl
spinor wave equation with given scalar potential steps of an
irregular closed shape in the open space, taking into account
the physically open boundary conditions. It is effectively a
problem of relativistic quantum chaotic scattering of two-
dimensional massless pseudospin-1 particles from short-range
obstacles in the presence of relativistic-tunneling-based res-
onant interaction. Because of classical chaos, a Dirac-type
of matrix wave equation is nonseparable. While the real-
space Green’s-function-based boundary element method [76]
or more general methods based on the Lippmann-Schwinger
equation [6] can in principle be adopted to solving quan-
tum chaotic scattering of spinless or spin-1/2 particles, such
methods did not exist for pseudospin-1 particles. In fact, it is
extremely difficult to obtain the real-space Green’s function
for pseudospin-1 waves in a closed form expression due to
the emergence of the singularity in the density of state caused
by the flat band of the underlying lattice system [77]. To
overcome this difficulty, we exploit the close analogy between
the massless pseudospin-1 particle and light photon in that
they both possess a linear dispersion relation. Specifically, in
optics, there exists a multiple multipoles method (method of
“fictitious” sources) for treating scattering of electromagnetic
waves from a cavity of arbitrary shape [78–82]. We have
adopted this method to pseudospin-1 wave scattering systems
with an arbitrary piecewise homogeneous potential, where the
multipoles or “fictitious’ sources” are defined in terms of the
analytic three-component spinor cylindrical wave basis of the
eigensolutions to the generalized Dirac-Weyl equation in each
subregion separated by the potential boundaries. The multiple
multipole method is thus of the semianalytic type, which is
powerful for near-field calculations and is in principle suitable
for potential domains of an arbitrary shape. The details of this
method are described in Appendix A.

To establish the generality of our finding, we also study
pseudospin-1 wave scattering from a class of chaotic cav-
ities with an eccentric annular shape. For such cavity sys-
tems, quantum scattering of pseudospin-1/2 particles was re-
cently studied, where the phenomenon of relativistic quantum
chimera was uncovered [83]. To solve pseudospin-1 wave
scattering from the eccentric annular chaotic cavity, we de-
velop a scattering matrix approach based on wave-function
matching, which is extremely efficient for the particular
geometric domain. The method is also of the semianalytic
type.

III. QUANTUM CHAOTIC SCATTERING OF
PSEUDOSPIN-1 WAVES IN A STADIUM POTENTIAL

A. Emergence of edge resonant modes

Contrary to intuition, here we demonstrate the emergence
of an unexpectedly robust class of sharp resonances asso-
ciated with massless pseudospin-1 particle scattering, which
generate chaos-immune, high-Q confinement of small modal
volume at the boundary in the semiclassical regime where the
wavelength is short compared with the cavity/dot size. This
is surprising as the confining modes occur in the super-Klein
tunneling regime with fully developed chaotic ray dynamics,
in which the system is expected to be a perfectly transparent
lens. According to conventional wisdom, there would be no
room for any trapping nodes in the semiclassical sense.

Specifically, we consider the prototypical setting of plane
wave incident on the potential barrier region of a stadium
shape parameterized by the aspect ratio a/R [Fig. 1(e)], which
generates chaos in the classical limit, and analyze spinor
wave scattering and its correspondence with the underlying
ray dynamics. This setting is different from that of scattering
transport through a quantum dot structure. We first examine
the scattering wave functions of an incident plane spinor wave
of short wavelength both inside and outside of the scatterer.
Representative results are shown in Fig. 1. Due to super-Klein
tunneling [Fig. 1(a)] and the defocusing mechanism of clas-
sical chaos, semiclassically the scatterer acts as a superlens
with the stadium shape, generating a folded (rainbow) caustic
pattern inside, which corresponds to the envelope of the nega-
tively refracted ray paths of parallel incident rays, as shown
in the upper panel of Fig. 1(b). The corresponding result
from the exact wave calculation is shown in the lower panel
of Fig. 1(b), which exhibits significant deviations from the
classical ray result due to the emergence of peculiar localized
states at the straight side boundary. The deviations can be
quantified, as demonstrated in Fig. 1(c), where the y-axis dis-
tribution of the integral amplitude intensity over the horizontal
range of the shaded domain in Fig. 1(b) is obtained quantum
mechanically through Iq(y) = ∫ a

−a �†(r)�(r)dx and semiclas-
sically by Isc(y) = ∑

n∈My
Pn. In particular, we discretize the

y axis in small steps of h and enumerate all segments be-
tween successive collisions inside the scatterer, where Pn

(n = 1, 2, · · · ) is the survival intensity of the nth ray segment
and My is the number set of rays passing through an ele-
ment {(x, y′)|x ∈ [−a, a], y′ ∈ [y − h/2, y + h/2]}. For com-
parison, we include the corresponding results for pseudospin-
1/2 Dirac fermion scattering from the same system, as shown
in Figs. 1(d)–1(f). In stark contrast to quantum chaotic scat-
tering of pseudospin-1 particles, the scattering of pseudospin-
1/2 fermions enjoys a well defined ray-wave correspondence.

We next study the interplay between relativistic quan-
tum wave dynamics and the underlying classical transient
chaos from the perspective of scattering resonance, as shown
in Fig. 2 through the local density of states (LDOS) ∝
�†(r∗)�(r∗) in the Klein tunneling regime, where r∗ is a
specific position inside the scatterer. For the integrable barrier,
there are sharp resonances leading to strong confinement, as
shown in Figs. 2(a) and 2(b) for massless pseudospin-1/2
wave (solid orange curve) and pseudospin-1 wave (solid gray
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FIG. 1. Caustics anomaly due to the emergent localized modes
at the straight side boundary in the pseudospin-1 Dirac-Weyl
system with chaotic ray scattering dynamics from a stadium-
shaped electrostatic-potential barrier in the Klein tunneling regime.
(a) Super-Klein tunneling with omnidirectional and perfect transmis-
sion for the particle through a single straight potential step, where the
incident wave energy is half of the potential height. (b) Stationary
ray pattern inside the stadium barrier generated by reflections at
the inner boundary. Due to Klein tunneling, the effective refractive
index of the barrier is negative. Parallel ray paths are incident from
the top of the stadium (one marked in blue), which correspond to
a plane spinor wave in the short wavelength limit (upper panel).
Lower panel: The result from full wave simulation, represented by
the color-coded probability density distribution (in scale of its fourth
root). (c) Quantitative test of ray-wave correspondence using the
Y -dependent profile of the integral amplitude intensity over the hori-
zontal range of the shaded region in the lower panel of (b), where the
quantum and classical results are obtained from full wave simulation
and the corresponding semiclassical ray model, respectively. (d)–(f)
Results from the pseudospin-1/2 Dirac-Weyl scattering system with
the same parameter setting for comparison. Parameters are a/R = 1,
incident wave number kR = 300, and barrier height V0 = 600 h̄vF /R.

line), respectively. The sharp resonances are a manifestation
of the algebraic decay of the classical survival probability
P(t ), as shown in Fig. 2(c) (dashed-orange and solid-gray
lines). For either type of particles, the decay law is obtained
from ray simulation that takes into account Klein tunneling.
When there is classical chaos, for pseudospin-1/2 particles the
sharp resonances have mostly disappeared [the green curve
in Fig. 2(a)] but some resonances located at E ∼ 50 (i.e.,
2πR/λ ∼ 50) persist for pseudospin-1 particles [the red curve
in Fig. 2(b) and inset] in spite of a faster particle decay
due to super-Klein tunneling from ray simulation [insets of
Fig. 2(c)]. Representative distributions of LDOS patterns and
local current vectors u(r) = vF �†(r)Ŝ�(r) for one such mode
[specified by the cyan diamond marker in Fig. 2(b)], are

FIG. 2. Unique relativistic type of underbarrier scattering reso-
nances against super-Klein tunneling which survive classical chaos.
LDOS at a given position inside the potential barrier of height
V0 = 100 (in units of h̄vF /R) as a function of energy E (h̄vF /R)
for (a) pseudospin-1/2 and (b) pseudospin-1 systems, where two
representative barrier shapes, a circle (a/R = 0 - integrable) and a
stadium (a/R = √

3/2 - chaotic), are used. (c) Semiclassical decay of
the dwell time probability P(t ) (scaled by the ray-tracing trajectory
length) for pseudospin-1 (thick solid lines) and pseudospin-1/2 (thin
dashed lines) particles. For classically integrable or chaotic dynam-
ics, the decay is algebraic (solid-gray and dashed-orange lines) or
exponential (solid-red and dashed-green lines), respectively. The
insets show the shape of the electrostatic potential barrier, inside
which a typical ray path starting from an arbitrary position on
the boundary (indicated by a purple pentagram marker) is formed
via successive amplitude loss at boundary reflections due to Klein
tunneling (top), the related ergodic ray dynamics on the Poincaré
surface of section (middle), and semi logarithmic plot of the resulting
survival probability time distribution (bottom). (d) Upper panel:
Typical real space probability density (on a square root scale) pattern
of the edge mode as indicated by the cyan diamond marker in (b);
lower panel: the associated local current density distribution with the
formation of peculiar succession vortices strongly squeezed about a
particular portion of the boundary (inset).

shown in Fig. 2(d). We see that, associated with this mode,
particles are trapped locally near the boundary by strongly
squeezed current vortices formed there. At a given resonant
frequency, depending on the direction of the “illuminating”
wave, its profile can change dramatically, e.g., from a con-
nected one to two split ones with the chaotic cavity shape con-
sidered while the feature of peculiar edge localization persists.
Remarkably, the cavity boundary harboring the localized edge
excitations separates domains of a massless particle with ap-
proximately identical wavelength but opposite chirality, which
is thus highly penetrable due to super-Klein tunneling in the
absence of any external anti-Klein tunneling mechanisms of a
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FIG. 3. Profiles of high Q, edge resonant modes that defy chaos
and super-Klein tunneling. (a) The scatterer geometry where the blue
stars and red circles denote the positions of multipoles or “fictitious”
sources. (b) Numerical results of LDOS from our method with an
inset showing the corresponding scattering cross section. (c) Spatial
patterns of the edge mode for the specific energy value marked in
(b) versus the direction of the incident wave indicated by the gray
arrows. (d) The semiclassical counterparts. Parameters are a/R =√

3/2 and V0 = 100 h̄vF /R.

magnetic field or gap-opening perturbations. The occurrence
of the edge modes requires the creation of vortices near the
boundary dominantly and can be attained in a narrow energy
window [75]. Note that super-Klein tunneling enables mass-
less spin-1 particles to pass through the boundary unimpeded
at arbitrary incidence angles. The edge modes are capable
of configuring the tangent/transverse component of the local
current/spin density reversely across the boundary without
degrading the magnitude. Dominant edge current and spin
vortices can thus emerge at the boundary without translational
invariance, which are responsible for the peculiar localized
edge states in an ordered arrangement. Strikingly, the strong
confinement persists in the presence of fully chaotic dynamics
even in the relatively small wavelength limit, defying the
semiclassical expectations.

B. Controllable morphology of the emergent resonance modes

The spatial profiles of edge resonant modes that survive
chaos and defy Q-spoiling can be controlled by changing
the incident direction of the “illuminating” wave, as shown
in Fig. 3. Especially, Fig. 3(a) shows the stadium geometry
where the positions of multipoles or “fictitious” sources are
indicated (the blue stars and red circles). Figure 3(b) and its
inset show the LDOS and the scattering cross section versus
the energy. Several spatial patterns of a typical resonant edge
mode are shown in Fig. 3(c). The pseudospin, which is locked
to momentum and hence the incident direction, can in general
be regarded as being analogous to light polarization. This
correspondence indicates that the surface resonant modes in
pseudospin-1 systems uncovered here mimic the localized
edge resonance modes in deformed metal nanoparticles [84].

Moreover, the emergence of the edge resonant modes con-
tradicts the intuitive, semiclassical-based thinking that, in the
presence of super-Klein tunneling, the chaotic (stadium) cav-
ity is effectively a transparent superlens, as shown in Fig. 3(d).

IV. SCATTERING OF PSEUDOSPIN-1 PARTICLES FROM
NONINTEGRABLE CAVITIES OF AN ECCENTRIC

ANNULAR POTENTIAL STEP

To demonstrate the peculiar cavity edge modes and their
immunity to chaos more generally, we consider scattering
of pseudospin-1 particles from an annular potential barrier,
in which the degree of classical chaos can be systematically
adjusted by varying the eccentricity parameter ξ . For this
system, quantum scattering can be solved using the analytic
scattering (S) matrix formalism developed for pseudospin-1
Dirac-Weyl systems.

A. S-matrix formulation

For the nonintegrable potential step with the eccentric
annular shape, the scattering matrix can be obtained ana-
lytically through the techniques of wave-function matching
and coordinate transformations, which were previously de-
veloped for scalar wave scattering in nonrelativistic quantum
systems [85–87]. Here we extend the method to generalized
pseudospin-1 wave scattering.

The required algebraic derivations are lengthy and more
complicated than those for scalar or pseudospin-1/2 wave
systems, as detailed in Appendix B. Here we list the main
results in terms of formulas for the key quantities charac-
terizing the quantum scattering. In particular, given that the
potential shape is defined by two disks of different radii (R1

and R2 < R1) with a finite relative displacement ξ between the
disk centers, the resulting S matrix is given by

S = −Z(2) − Y(2) − sIsIIX(2)T

Z(1) − Y(1) − sIsIIX(1)T
, (6)

where sI,II denote the band indices in the corresponding
regions, T = F−1(H − G) with the conventions F = x(2) +
Sod x(1),G = y(2) + Sod y(1),H = z(2) + Sod z(1),⎧⎪⎪⎨⎪⎪⎩

X(1,2) = [
H (1,2)

m (k0R1)δm j
]
,

Y(1,2) = [
H (1,2)

m+1 (k0R1)δm j
]
,

Z(1,2) = [
H (1,2)

m−1 (k0R1)δm j
]
,

(7)

⎧⎪⎪⎨⎪⎪⎩
x(1,2) = [

H (1,2)
m (k1R1)δm j

]
,

y(1,2) = [
H (1,2)

m+1 (k1R1)δm j
]
,

z(1,2) = [
H (1,2)

m−1 (k1R1)δm j
]
,

(8)

and

Sod = [Jm−l (k1ξ )]
[
Scd

l δll ′
]
[Jμ−l (k1ξ )], (9)

with

Scd
l = −Scd−T

l

Scd−B
l

(10)
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and {
Scd−T

l ≡ Jl (kIIIR2)
(
H (2)

l−1(kIIR2) − H (2)
l+1(kIIR2)

) − sIIsIIIH
(2)
l (kIIR2)(Jl−1(kIIIR2) − Jl+1(kIIIR2)),

Scd−B
l ≡ Jl (kIIIR2)

(
H (1)

l−1(kIIR2) − H (1)
l+1(kIIR2)

) − sIIsIIIH
(1)
l (kIIR2)(Jl−1(kIIIR2) − Jl+1(kIIIR2)).

(11)

B. Edge-resonant modes that defy chaos Q-spoiling
and Klein tunneling

The confinement quality can be characterized by the
Wigner-Smith time delay, which can be obtained from the S
matrix as τ (E ) = −ih̄Tr[S†∂S/∂E ]. Sharp resonances with
energy and thus strong confinement correspond to large posi-
tive values of τ . Figures 4(a) and 4(b) show the dimensionless
time delay versus ξ and particle energy E for pseudospin-1
and pseudospin-1/2 systems, respectively. For the former,
there exists a particular set [red curves in Fig. 4(a)] where
the time delay retains high values and is unaffected when the
corresponding classical system becomes increasingly more
chaotic. The quality factor of a cavity mode at energy En

FIG. 4. Superconfinement in a chaotic scattering system of an-
nular potential barrier. The degree of chaos can be controlled by
the eccentric deformation parameter ξ . The characterizing quantities
are obtained from a scattering matrix based analysis. (a), (b) Di-
mensionless Wigner-Smith time delay versus ξ (in units of R1)
and particle energy E (in units of h̄vF /R1) for (a) pseudospin-1
and (b) pseudospin-1/2 systems, respectively. (c) Dependence of
the Q factor of the representative modes marked in (a) and (b) on
ξ . The left inset shows the shape of the potential barrier, inside
which one typical ray trajectory (orange) initially undergoes total
internal reflections and escapes from the barrier completely via Klein
tunneling after a few collisions with perpendicular incidence at the
outer boundary. Right inset: Chaos-rendered ergodic ray motion in
the corresponding Poincaré surface of section. Other parameters are
R2/R1 = 0.6, the potentials in the annular and inner disk regions are
VI = −10 and VII = 40, respectively.

is given by [88] Qn = (En/h̄)τ (En). For ξ = 0 (integrable
dynamics), a large number of high-Q modes exist [highlighted
by red, blue, and green colors in Figs. 4(a) and 4(b)]. The
values of their quality factors versus ξ is shown in Fig. 4(c).
Conventional wisdom stipulates that severe Q-spoiling would
occur as the value of the deformation parameter is increased
due to chaos-assisted tunneling [schematically illustrated
in inset of Fig. 4(c)]. We see that the conventional wisdom
holds, but only for the pseudospin-1/2 scattering system and
for some states of the pseudospin-1 system, but, for the latter,
there is a particular set of high-Q modes that are completely
immune to classical chaos. As the system and solution meth-
ods here are completely different from those for the stadium
system, the results in Fig. 4 represent independent confir-
mation of the emergence of high-Q cavity edge modes that
defy chaos and Klein tunneling. A plausible physical origin
of the robustness of these modes is spin-momentum locking,
which can be elucidated by analyzing the transverse spin as
done in a recent work on the quantum spin Hall effect of
light [89].

C. Spatial profiles of edge modes

Figure 4 presents the results of scattering of pseudospin-1
wave by an annular potential barrier. Here we provide the
exact wave-calculation result, as shown in Fig. 5, where the
red modes are localized edge modes, which can occur at either
the inner or outer boundaries of the ring domain. For the given
parameter values illustrated, they are confined at the inner
boundary of the ring geometry. This is because, in this case,
the required condition of sign change in the band indices ren-
dering the edge modes arises only across the inner boundary.
In Fig. 5, representative patterns for the conventional modes
are also included (middle and right panels) for comparison,

FIG. 5. Exactly calculated spatial profiles of representative res-
onant modes in pseudospin-1 and pseudospin-1/2 wave scattering.
The modes are indicated by the corresponding colored triangles
in Fig. 4(c). Left panel: A confined surface resonant mode in
pseudospin-1 wave scattering. Middle panel: A conventional mode in
pseudospin-1/2 wave scattering. Right panel: A conventional mode
in pseudospin-1 scattering.
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FIG. 6. Energy window for edge resonant modes that defy chaos
Q-spoiling and Klein tunneling with respect to the external electro-
static potential. (a) Resonant modes in the energy domain versus
the value of VII for a strongly deformed annular barrier for ξ =
0.27, R2/R1 = 0.6, and VI = −10. (b) Edge modes in the chaotic
stadium barrier (a/R = √

3/2) for pseudospin-1 (left column) and
pseudospin-1/2 (right column) systems.

the confinement quality of which is typically destroyed by
classical chaos.

V. ENERGY WINDOW FOR EDGE RESONANT MODES

In the energy domain, the edge resonant modes associated
with pseudospin-1 wave scattering occur in a quite predictable
way in that the locations depend linearly on the applied poten-
tial, as shown in Figs. 6(a) and 6(b) for both types of chaotic
systems studied. There is, in fact, a tunable energy window in
which the modes can arise—a great advantage from the point
of view of experimental observation. We emphasize that no
such resonances are possible for pseudospin-1/2 particles.

We note that the presence of strong confinement does
not necessarily correspond to peaks in the plot of LDOS
defined at a given position versus the energy. The con-
finement, however, will have its manifestation of dramatic
variances/changes in LDOS over a small energy interval,
which would generically appear as peaks within a relatively
large energy range. Examples of such peaks are shown in
Fig. 2. In fact, the correspondence between peaks in LDOS
and the cross section is indicative of strong confinement but
becomes poor for weak confinement. The correspondence also
depends on the specific position chosen. While, in principle,
it is necessary to calculate the total DOS—a computationally
demanding task, in practice (e.g., in an experiment), one can
choose a proper position according to the pertinent parameters
such as the particle energy and potential height. For exam-
ple, when the energy and potential height are large, higher
angular-momentum channels will be excited. In this case,

choosing the position near the cavity/scatterer boundary
suffices.

VI. DISCUSSION

The phenomenon of Q-spoiling by ray (classical) chaos
has been known in optics for more than two decades [9–11].
In electronic transport through a quantum dot, chaos can
remove the sharp resonances associated with conductance
fluctuations, which would occur if the classical dynamics were
integrable [12–19]. We have uncovered a quantum chaotic
scattering paradox/anomaly for massless spin-1 particles:
In a relevant short-wavelength regime, high-Q (resonance)
trapping persists in leaking chaotic cavities with a super-
Klein tunneling enabled transparent boundary, contradicting
the semiclassical expectations. This presents a remarkable ex-
ception to the conventional wisdom that wave trapping would
be impossible in the simultaneous presence of chaos and Klein
tunneling: Not only do the modes defy chaos Q-spoiling,
they are also immune to super-Klein tunneling. This finding
is relevant to the fields of optics, solid state physics, and
quantum chaos, with potential applications in 2D Dirac-Weyl
material and photonic systems.

An experimental test of the phenomenon uncovered in
this paper is feasible through, e.g., two-dimensional elec-
tronic Lieb lattices that have been realized recently [49,50].
A concrete link with experiments is as follows. To ver-
ify the existence of edge resonant modes in pseudospin-1
wave scattering, a viable experimental setting is transport
in electronic Lieb lattice systems. In a typical transport and
conductance-probe setup with a quantum dot and waveguide
geometry, resonant scattering occurs naturally [90]. The in-
terference between the waveguiding channels (instead of sim-
ple unbounded plane waves) and individual cavity resonant
(quasibound) modes will give rise to intricate Fano patterns
that appear as asymmetric dips and peaks on top of the
background conductance plateau. The presence of long-lived
surface cavity modes would have their fingerprints as robust
and sharp conductance fluctuations in the energy regime of
Klein tunneling, regardless of classical chaos.

We make a number of remarks pertinent to the finding of
this paper.

Remark 1. Results in this paper that go beyond those
in our previous work. In Ref. [75], we studied scattering
of pseudospin-1 particles from a circular potential domain,
derived boundary conditions for the Dirac-Weyl equation, ob-
tained analytic formulas for various scattering cross sections,
and found a class of resonant modes that are trapped near the
boundary inside the potential region. From a classical point of
view, the dynamics in a circular domain are integrable and
there are stable periodic orbits inside the scattering region.
As such, the emergence of long-lived, sharp resonant modes
in the quantum regime is not surprising. A question that
is fundamental to the field of quantum chaos, which we
were not able to answer at that time, was whether these
modes can persist when the domain is deformed so there is
fully developed chaos in the classical limit. The difficulty
lies in the lack of even numerical methods to calculate the
scattering wave functions for the three-component spinor
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when the potential domain is deformed from the circular
shape.

According to wisdom from microcavity optics [9–11] and
mesoscopic transport physics [12–19], when the classical
dynamics are fully chaotic, long-lived resonant modes are
unlikely, which is the well-known phenomenon of Q-spoiling.
Intuitively, the expectations were that pseudospin-1 chaotic
scattering ought to behave in a similar way. Our development
of the multiple multipole method has enabled us to study
pseudospin-1 wave scattering in arbitrary potential domain,
as detailed in the present paper. What has been found, to our
surprise, is that pseudospin-1 particles can still be trapped
inside the potential domain through the long-lived resonant
modes, regardless of the boundary deformations—even those
that lead to fully developed chaos in the classical limit.
More surprisingly, in the energy regime studied, pseudospin-1
particles exhibit super-Klein tunneling, which would make
trapping even more unlikely. The emergence of the resonant
boundary trapping modes thus defies all existing understand-
ing of the interplay among classical chaos, trapping, and Klein
tunneling. The phenomenon reported in the current paper is
thus fundamental to at least three areas in physics: quantum
chaos, microlasing optics, and mesoscopic or nanotransport in
two-dimensional solid state systems, representing an advance
going far beyond the results in Ref. [75].

Remark 2. Persistence of long-lived boundary trapping
modes in the semiclassical, short-wavelength regime. There
was previous work discussing the persistent effect of classical
chaos in the deep quantum (long wavelength) regime [91,92].
This was counterintuitive because the quantum manifesta-
tions of chaos occur typically in the semiclassical (short
wavelength) regime. What we have found here is somewhat
opposite: Long-lived resonant modes, typically a quantum
behavior in the long wavelength regime, persist in the semi-
classical regime and completely defy classical chaos, leading
to a breakdown of the quantum-classical correspondence. A
plausible reason lies in the three-component spinor wave-
function structure of pseudospin-1 particles, where the bound-
ary conditions are drastically different from those for scalar or
even two-component spinor wave functions [75]. Especially,
at the boundary of the potential domain, two quantities must
be continuous: (1) the second (middle) spinor component and
(2) the algebraic sum of the phase modulated first and third
spinor components. Mathematically, the boundary conditions
mean that one of the spinor components can have an arbitrary
finite value. There are thus significantly more possibilities
to configure the distribution of the resulting wave density
and the corresponding local current density than for scalar
wave and spin-1/2 Dirac wave. A remarkable consequence is
the formation of vortexlike boundary trapping modes, which
was analytically demonstrated by using the Mie theory for
pseudospin-1 wave for the case of an integrable circular cavity
[75]. For chaotic cavities, an analytic theory is not feasible.
Nonetheless, as we have demonstrated in this paper, the wave-
coherence-based boundary trapping modes persist, regard-
less of the chaos rendered irregularities and/or randomness.
Unlike the conventional whispering gallery modes and scars
associated with a chaotic cavity for scalar or pseudospin-1/2
waves, the boundary trapping modes for pseudospin-1 waves
have no classical correspondence. The particular localization

feature of these modes is due to the nonintegrable cavity
geometry that breaks the circularly rotational symmetry. De-
pending on the direction of the incident wave, e.g., whether it
is along the axis of symmetry of the cavity or not, the locations
where these localized states occur are different.

Remark 3. Need to study the classical-quantum correspon-
dence in systems described by multicomponent spinor wave
functions. Most previous discussions of the classical-quantum
correspondence in the literature were for the scalar wave func-
tion described by the Schrödinger equation. The breakdown of
the classical-quantum correspondence uncovered in this paper
owes its origin to the three-component structure of the spinor
wave function for pseudospin-1 particles. As a fundamental
issue in physics, the classical-quantum correspondence in
systems described by multicomponent wave functions should
be examined more deliberately, as the “classical” equation
of motion may be different from the one in spinless systems
[93,94].
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APPENDIX A: MULTIPLE MULTIPOLES METHOD FOR
RELATIVISTIC QUANTUM SCATTERING OF

PSEUDOSPIN-1 WAVE

1. Implementation

For simplicity but without loss of generality, we develop
the multiple multipoles method based on the concrete setting
of a single potential step of arbitrary shape. This leads to
two subregions denoted by I and II, as shown in Fig. 7. The
generalized Dirac-Weyl equation in each subregion τ ∈ {I,II}
reads

Ŝ · k̂� (τ )(r) = ετ�
(τ )(r), (A1)

where ετ = (E − Vτ )/h̄vF . In the polar coordinates r = (r, θ ),
the spinor cylindrical wave basis of solutions with angular
momentum l is

�
(τ )
l (r) =

⎛⎜⎝Bl−1(kτ r)e−iθ

isτ Bl (kτ r)

−Bl+1(kτ r)eiθ

⎞⎟⎠eilθ , (A2)

where sτ = sgn(E − Vτ ) denotes the relevant band index and
kτ = |E − Vτ |/h̄vF . Assuming E>0 and choosing Bl (kτ r) =
H (1)

l (kτ r) (with H (1)
l being the Hankel function of the first

kind), we define the Dirac-type wave functions of multipoles
outside the specific solving region τ and positioned at rmτ

as

�
(τ )
l (dmτ

) = 1√
2

⎛⎜⎜⎝
H (1)

l−1

(
kτ dmτ

)
e−iθmτ

i
√

2sτ H (1)
l

(
kτ dmτ

)
−H (1)

l+1

(
kτ dmτ

)
eiθmτ

⎞⎟⎟⎠eilθmτ , (A3)

where τ denotes the complement of τ , dmτ
≡ |dmτ

| = |r −
rmτ

| and θmτ
= Angle(r − rmτ

) with r ∈ τ . Carrying out
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FIG. 7. Schematic illustration of scattering problem to be solved:
 is the physical boundary separating regions II and I, while ± are
auxiliary boundaries at which the multiple multipoles (“fictitious”
sources) are placed with coordinates denoted by rmI and rmII . The
sources at − (green circular dots) radiate the pseudospin-1 field
� I

l (r − rmI ) used to determine the wave function in region I, while
the ones at + (pentagrams) generate the field � II

l (r − rmII ) used to
determine the wave function in region II. Boundary conditions are
satisfied at the collocation points r j ∈ .

multiple multipoles expansion for the specific region, we
obtain the wave function in region II as

� (II)(r) =
∑
mI

∑
l

CmI
l

1√
2

⎛⎜⎜⎝
H (1)

l−1

(
kIIdmI

)
e−iθmI

i
√

2sIIH
(1)
l

(
kIIdmI

)
−H (1)

l+1

(
kIIdmI

)
eiθmI

⎞⎟⎟⎠eilθmI

≡

⎛⎜⎝ψ II
1

ψ II
2

ψ II
3

⎞⎟⎠. (A4)

The scattered (outgoing) wave function in region I has the
form

� (I)(r) =
∑
mII

∑
l

CmII
l

1√
2

⎛⎜⎜⎝
H (1)

l−1

(
kIdmII

)
e−iθmII

i
√

2sIH
(1)
l

(
kIdmII

)
−H (1)

l+1

(
kIdmII

)
eiθmII

⎞⎟⎟⎠eilθmII

≡

⎛⎜⎝ψ I
1

ψ I
2

ψ I
3

⎞⎟⎠. (A5)

A planar incident wave propagating along the direction that
makes an angle β with the x axis in region I can be

written as

� in(r) = 1

2

⎛⎜⎜⎝
e−iβ

√
2sI

eiβ

⎞⎟⎟⎠eik·r =

⎛⎜⎝ψ in
1

ψ in
2

ψ in
3

⎞⎟⎠. (A6)

Imposing the relevant boundary conditions parameterized by
the angle α between the outward normal at any boundary point
r j and the x axis,

(
ψ

(I)
2 + ψ in

2

)∣∣
r j∈

= ψ
(II)
2

∣∣
r j∈

, (A7)([
ψ

(I)
1 + ψ in

1

]
eiα + [

ψ
(I)
3 + ψ in

3

]
e−iα

)∣∣
r j∈

= (
ψ

(II)
1 eiα + ψ

(II)
3 e−iα

)∣∣
r j∈

, (A8)

we obtain

∑
mII

∑
l

jA(I)
lmII

CmII
l −

∑
mI

∑
l

jA(II)
lmI

CmI
l = − jψ in

2 , (A9a)

∑
mII

∑
l

jB(I )
lmII

CmII
l −

∑
mI

∑
l

jB(II)
lmI

CmI
l = − jχ in, (A9b)

where the substitutions are given by

jA(I)
lmII

= isIH
(1)
l

(
kI

∣∣r j − rmII

∣∣)eilθmII , (A10a)

jA(II)
lmI

= isIIH
(1)
l

(
kII

∣∣r j − rmI

∣∣)eilθmI , (A10b)

jB(I)
lmII

= 1√
2

[
H (1)

l−1

(
kI

∣∣r j − rmII

∣∣)ei(l−1)θmII eiα

− H (1)
l+1

(
kI

∣∣r j − rmII

∣∣)ei(l+1)θmII e−iα
]
, (A10c)

jB(II)
lmI

= 1√
2

[
H (1)

l−1

(
kII

∣∣r j − rmI

∣∣)ei(l−1)θmI eiα

− H (1)
l+1

(
kII

∣∣r j − rmI

∣∣)ei(l+1)θmI e−iα
]
, (A10d)

and

jψ in
2 = 1√

2
sIe

ikI·r j , (A10e)

jχ in = 1

2
[ei(α−β ) + e−i(α−β )]eikI·r j . (A10f)

In principle, the set consists of an infinite number of equations
with an infinite number of undetermined expansion coeffi-
cients CmII

l and CmI
l . To solve the system numerically, a finite

truncation is necessary, which turns out to be feasible in prac-
tice by discretizing the boundary to a finite number of points
J and setting the number of multipoles Mτ in the specific
region τ and l ∈ [−L, L] for all the multipoles. Carrying out
the discretization procedure, we arrive at the following finite
dimensional matrix equation:

M2J×N · CN×1 = −Y 2J×1, (A11)
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where N = (2L + 1) × (MI + MII ) = NI + NII and the compact substitutions are

CN×1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1II
−L
...

C1II
l

C2II
l
...

CMII
l
...

CMII
L

C1I
−L
...

C1I
l

C2I
l
...

CMI
l
...

CMI
L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N×1

; Y 2J×1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1ψ in
2

...
jψ in

2
...

Jψ in
2

1χ in

...
jχ in

...
Jχ in

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2J×1

(A12a)

and

M2J×N =
⎛⎝A(I) −A(II)

B(I) −B(II)

⎞⎠
2J×N

, (A12b)

with

A(τ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1A(τ )
−L1τ

· · · 1A(τ )
l1τ

1A(τ )
l2τ

· · · 1A(τ )
lMτ

· · · 1A(τ )
LMτ

2A(τ )
−L1τ

· · · 2A(τ )
l1τ

2A(τ )
l2τ

· · · 2A(τ )
lMτ

· · · 2A(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jA(τ )
−L1τ

· · · jA(τ )
l1τ

jA(τ )
l2τ

· · · jA(τ )
lMτ

· · · jA(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JA(τ )
−L1τ

· · · JA(τ )
l1τ

JA(τ )
l2τ

· · · JA(τ )
lMτ

· · · JA(τ )
LMτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
J×Nτ

, (A12c)

B(τ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1B(τ )
−L1τ

· · · 1B(τ )
l1τ

1B(τ )
l2τ

· · · 1B(τ )
lMτ

· · · 1B(τ )
LMτ

2B(τ )
−L1τ

· · · 2B(τ )
l1τ

2B(τ )
l2τ

· · · 2B(τ )
lMτ

· · · 2B(τ )
LMτ

... · · · ...
... · · · ... · · · ...

jB(τ )
−L1τ

· · · jB(τ )
l1τ

jB(τ )
l2τ

· · · jB(τ )
lMτ

· · · jB(τ )
LMτ

... · · · ...
... · · · ... · · · ...

JB(τ )
−L1τ

· · · JB(τ )
l1τ

JB(τ )
l2τ

· · · JB(τ )
lMτ

· · · JB(τ )
LMτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
J×Nτ

. (A12d)

As the expansions are generally nonorthogonal, more equa-
tions are required than unknowns to enable deduction of
an overdetermined matrix system with 2J � N , which can
be solved by the pseudoinverse algorithm (e.g., in Matlab):

C = −pinv(M) ∗ Y . In particular, we use the residual error
evaluated at the boundary

SSE = ||M ∗ C + Y ||
||Y ||
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as the criterion for testing convergence. Especially, we adjust
the number, the order and/or positions of the multipoles to
ensure SSE < tolerance. After the unknown coefficients C
have been obtained, the associated wave functions and hence
the LDOS in the specific region can be calculated accordingly.

We can also calculate the characteristic cross section from
the scattered wave function as given in Eq. (A5). Rewriting
the wave function in terms of the position variables r and θ ,
we have

� (I)(r, θ ) =
∑
mII

∑
l

CmII
l√
2

∑
n

Jn
(
krmII

)

×

⎛⎜⎜⎝
H (1)

l+n−1(kIr)e−iθ

i
√

2sIH
(1)
l+n(kIr)

−H (1)
l+n+1(kIr)eiθ

⎞⎟⎟⎠ei(l+n)θ . (A13)

In the far-field, i.e., kIr → ∞, we get

� (I)(r, θ ) →
∑
mII

∑
l

∑
n

√
2/πkCmII

l ei(l+n)θ

il+n
√−ir

× Jn
(
krmII

)⎛⎜⎜⎝
e−iθ

i
√

2sI

eiθ

⎞⎟⎟⎠. (A14)

The far-field scattering amplitude can be obtained as

f (θ ) =
√

2

πk

∑
mII

∑
l

∑
n

CmII
l Jn

(
krmII

)
il+n

ei(l+n)θ , (A15)

and associated cross section is given by

σ =
∮

| f (θ )|2dθ. (A16)

2. Method validation

To validate our method, we make use of a classically
integrable system for which the scattering characteristics can
be obtained analytically by evaluating the scattering cross
section according to the formula

σ̃ = 4

k

∑
l

|ãl |2, (A17a)

where

ãl = − F̃l

F̃l + iG̃l
, (A17b)

with

F̃l = Jl (βx)J ′
l (x) − sIsIIJ

′
l (βx)Jl (x),

G̃l = Jl (βx)Y ′
l (x) − sIsIIJ

′
l (βx)Yl (x),

and β = |E − V0|/|E |.
Figure 8 shows a comparison of the typical scattering reso-

nances obtained analytically and from the numerical method.
There is a good agreement. In fact, there is a quite accurate
correspondence between the peaks in the LDOS and in the
cross section in the regime of strong confinement (the focus of
our present paper), although the accuracy somewhat degrades

FIG. 8. Validation of the multiple multipoles method for a classi-
cally integrable scattering system. For pseudospin-1 waves, (a) scat-
tering resonances versus energy characterized by the cross section
obtained analytically from the partial wave decomposition method,
(b) the cross section calculated from our multipole method, (c) scat-
tering resonances characterized by the local density of states at a
given position inside the barrier (indicated by the green pentagram
in the inset), which are calculated numerically using the multiple
multipoles method, and (d) the corresponding residual error versus
energy characterizing the convergence of the multipole method. The
potential height is V0 = 100 h̄vF /R.

in the regime of weak confinement. In general, the effective-
ness of using peaks in the LDOS as an indicator of strong
confinement depends on the specific location to probe the
LDOS pattern, where locations near the domain boundary are
typically more effective. In practice (e.g., in an experimental
situation), the position can be chosen properly according to
the parameter values such as the particle energy and potential
height. For example, when the values of both energy and po-
tential height are relatively large, higher angular-momentum
channels are excited. In this case, the best region to choose
the position is near the cavity/scatterer boundary.

APPENDIX B: S-MATRIX APPROACH TO PSEUDOSPIN-1
WAVE SCATTERING FROM NONINTEGRABLE CAVITIES

OF AN ECCENTRIC ANNULAR POTENTIAL STEP

For a nonintegrable potential step with the eccentric an-
nular shape, the scattering matrix can be obtained analyti-
cally through the techniques of wave-function matching and
coordinate transformations, which were previously developed
for scalar wave scattering in nonrelativistic quantum systems
[85–87] and recently for relativistic quantum scattering of
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massless spin-1/2 Dirac fermions [83]. Here we extend the
method to generalized pseudospin-1 wave scattering.

Given that the potential shape is defined by two disks of
different radii (R1 and R2 < R1) with a finite relative displace-
ment ξ between the disk centers, we use the convention that
the global unprimed coordinates are defined by choosing the
origin as the center of the larger disk O while the local primed
ones have their origin sitting at the small disk center O′.
Adopting the standard S−matrix formalism, in the unprimed
polar coordinates r = (r, θ ), the wave function outside the
eccentric annular scatterer, i.e., |r| > R1, can be written as

� (I)(r) =
∞∑

m=−∞
aI

m

[
kI h(2)

m +
∞∑

m′=−∞
Smm′ kI h(1)

m′

]
, (B1)

where

kI h(1,2)
m = 1

2

⎛⎜⎜⎝
H (1,2)

m−1 (kIr)e−iθ

i
√

2sIH (1,2)
m (kIr)

H (1,2)
m+1 (kIr)eiθ

⎞⎟⎟⎠eimθ

and Smm′ denotes the S−matrix elements in terms of two given
channels indexed by m and m′, respectively, and the coefficient
a0

m is chosen to yield a desired kind of incident test wave. For

simplicity but without loss of generality, we set aI
m ≡ 1. We

thus have

� (I)(r) =
∞∑

m=−∞

[
k0 h(2)

m +
∞∑

m′=−∞
Smm′ k0 h(1)

m′

]
. (B2)

The wave function in the annular region, i.e., |r′| > R2 and
|r| < R1, can be expressed in the primed coordinates r′ =
(r′, θ ′) as

�̃ (II)(r′) =
∞∑

m=−∞

∞∑
l=−∞

mãII
l

[
kII h̃(2)

l + Scd
l

kII h̃(1)
l

]
, (B3)

where

kII h̃(1,2)
l = 1

2

⎛⎜⎜⎝
H (1,2)

l−1 (kIIr′)e−iθ ′

i
√

2sIIH
(1,2)
l (kIIr′)

H (1,2)
l+1 (kIIr′)eiθ ′

⎞⎟⎟⎠eilθ ′
,

and

Scd
l = −Scd−T

l

Scd−B
l

(B4)

with

{
Scd−T

l ≡ Jl (kIIIR2)
(
H (2)

l−1(kIIR2) − H (2)
l+1(kIIR2)

) − sIIsIIIH
(2)
l (kIIR2)(Jl−1(kIIIR2) − Jl+1(kIIIR2)),

Scd−B
l ≡ Jl (kIIIR2)

(
H (1)

l−1(kIIR2) − H (1)
l+1(kIIR2)

) − sIIsIIIH
(1)
l (kIIR2)(Jl−1(kIIIR2) − Jl+1(kIIIR2)).

(B5)

Making use of the Graf’s addition theorem for Bessel functions,

H (1,2)
l (kr′)eilθ ′ =

∑
n

Jn(kξ )Hl+n(kr)ei(l+n)θ ,

we can rewrite Eq. (B3) as

�̃ (II)(r′) =
∞∑

m=−∞

∞∑
l=−∞

mãII
l

[∑
n

Jn(kIIξ ) kII h(2)
l+n + Scd

l

∑
n

Jn(kIIξ ) kII h(1)
l+n

]
. (B6)

With the convention l + n ≡ μ, we further have

�̃ (II)(r′) =
∞∑

m=−∞

∞∑
l=−∞

mãII
l

[∑
μ

Jμ−l (kIIξ ) kII h(2)
μ + Scd

l

∑
μ

Jμ−l (kIIξ ) kII h(1)
μ

]
,

=
∑

m

∑
μ

[(∑
l

mãII
l Jμ−l (kIIξ )

)
kII h(2)

μ +
(∑

l

mãII
l Scd

l Jμ−l (kIIξ )

)
kII h(1)

μ

]
.

(B7)

Redefining

mãII
l ≡

∑
l ′

maII
l ′ Jl ′−l (kIIξ ), (B8)

we finally obtain the wave function expressed in unprimed coordinates r = (r, θ ) as

� (II)(r) =
∑

m

∑
l ′

maII
l ′ ×

∑
μ

[(∑
l

Jl ′−l (kIIξ )Jμ−l (kIIξ )

)
kII h(2)

μ +
(∑

l

Jl ′−l (kIIξ )Scd
l Jμ−l (kIIξ )

)
kII h(1)

μ

]
,

=
∑

m

∑
l ′

maII
l ′

∑
μ

[
δl ′μ

kII h(2)
μ + Sod

l ′μ
kII h(1)

μ

] =
∑

m

∑
l ′

maII
l ′

[
kII h(2)

l ′ +
∑

μ

Sod
l ′μ

kII h(1)
μ

]
,

(B9)
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where maII
l ′ are interpreted as the expansion coefficients in the unprimed coordinates. The resulting matrix Sod ≡ [Sod

l ′μ]
characterizes the scattering from the off-centered small inner disk expressed in the unprimed coordinates and is nondiagonal,

Sod = U −1ScdU, (B10)

with the transformation matrices U = [Ulμ] = [Jμ−l (kIIξ )], U −1 = [U −1
l ′l ] = [Jl ′−l (kIIξ )] is responsible for the eccentric

displacement/deformation and Scd = [Scd
l δll ′ ] is the diagonal scattering matrix for the centered inner disk scatterer in the primed

coordinates with elements Scd
l given by Eqs. (B4) and (B5).

The S−matrix of the whole scatterer can thus be determined by the matching conditions at the outer boundary |r| = R1. In
particular, for a given incident spin-1 wave with angular momentum m, wave-function matching imposing on each momentum
state j yields

sIH
(2)
m (kIR1)δm j + sISm jH

(1)
j (kIR1) = sII

maII
j H (2)

m (kIIR1) + sII

∑
l

maII
l Sod

l j H (1)
j (kIIR1), (B11a)

[
H (2)

m−1(kIR1)δm j + Sm jH
(1)
j−1(kIR1)

] − [
H (2)

m+1(kIR1)δm j + Sm jH
(1)
j+1(kIR1)

]
=

[
maII

j H (2)
j−1(kIIR1) +

∑
l

maII
l Sod

l j H (1)
j−1(kIIR1)

]
−

[
maII

j H (2)
j+1(kIIR1) +

∑
l

maII
l Sod

l j H (1)
j+1(kIIR1)

]
. (B11b)

Defining matrices

⎧⎪⎪⎨⎪⎪⎩
X(1,2) = [

H (1,2)
m (k0R1)δm j

]
,

Y(1,2) = [
H (1,2)

m+1 (k0R1)δm j
]
,

Z(1,2) = [
H (1,2)

m−1 (k0R1)δm j
]
,

(B12)

⎧⎪⎪⎨⎪⎪⎩
x(1,2) = [

H (1,2)
m (k1R1)δm j

]
,

y(1,2) = [
H (1,2)

m+1 (k1R1)δm j
]
,

z(1,2) = [
H (1,2)

m−1 (k1R1)δm j
]
,

(B13)

we can rewrite the equations above in the following compact
form:

sIX
(2) + sISX

(1) = sIIAx(2) + sIIASod x(1),

(B14a)

(Z(2) − Y(2) ) + S(Z(1) − Y(1) ) = A(z(2) + Sod z(1) )

−A(y(2) + Sod y(1) ),

(B14b)

with the definition of the coefficient matrix A = [ maII
j ].

Solving the equations, we finally arrive at the resulting S
matrix:

S = −Z(2) − Y(2) − sIsIIX(2)T

Z(1) − Y(1) − sIsIIX(1)T
, (B15)

and

A = sI

sII

[
X(2) + SX(1)

]
F−1, (B16)

where sI,II denote the band indices in the corresponding
regions, T = F−1(H − G) with the conventions F = x(2) +
Sod x(1),G = y(2) + Sod y(1),H = z(2) + Sod z(1).

Inside the inner disk region, i.e., |r′| < R2, the wavefunc-
tion in the primed polar coordinates r′ = (r′, θ ′) (with origin
at the small disk center O′) is

�̃ (III)(r′, θ ′) =
∑

m

∑
l

mb̃l

2

⎛⎜⎜⎝
Jl−1(kIIIr′)e−iθ ′

i
√

2sIIIJl (kIIIr′)

−Jl+1(kIIIr′)eiθ ′

⎞⎟⎟⎠eilθ ′
. (B17)

The expansion coefficients mb̃l can be determined by the
matching condition at the inner boundary r′ = |r − ξ | = R2

between �̃ (III) and �̃ (I) [c.f. Eq. (B3)] as

mb̃l = sII

∑
l ′

maII
l ′ Jl ′−l (kIIξ )

H (2)
l (kIIR2) + Scd

l H (1)
l (kIIR2)

sIIIJl (kIIIR2)
.

(B18)

With these expansion coefficients maII
l , mb̃l and the scat-

tering matrices S, Sod , Scd obtained in the related regions
via Eqs. (B16) and (B18) and Eqs. (B15), (B10), and (B4),
respectively, the resulting wave functions in different regions
can be calculated correspondingly. Together, they give the full
wave function in the entire space.
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