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Chaos-based Berry phase detector
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The geometric or Berry phase, a characteristic of quasiparticles, is fundamental to the underlying quantum
materials. The discoveries of new materials at a rapid pace nowadays call for efficient detection of the Berry
phase. Utilizing the α-T3 lattice as a paradigm, we find that, in the Dirac electron optics regime, the semiclassical
decay of the quasiparticles from a chaotic cavity can be effectively exploited for detecting the Berry phase. In
particular, we demonstrate a one-to-one correspondence between the exponential decay rate and the geometric
phase for the entire family of α-T3 materials. This chaos-based detection scheme represents an experimentally
feasible way to assess the Berry phase and to distinguish the quasiparticles.
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I. INTRODUCTION

The geometric phase, commonly referred to as the
Pancharatnam-Berry phase or simply the Berry phase, is a
fundamental characteristic of the quasiparticles of the under-
lying quantum material. When a system is subject to a cyclic
adiabatic process, after the cycle is completed, the quantum
state returns to its initial state except for a phase difference—
the Berry phase [1–3]. In general, the exact value of the Berry
phase depends on the nature of the quasiparticles and hence
the underlying material. For example, the Berry phases in
monolayer graphene [4,5] and graphite bilayers [6] are ±π

and 2π , respectively. In α-T3 lattices, for different values of
α, the Berry phases associated with the quasiparticles are
distinct [7].

Advances in physics, chemistry, materials science, and
engineering have led to the discoveries of new materials at an
extremely rapid pace, e.g., the various two-dimensional Dirac
materials [8–10]. These materials host a variety of quasiparti-
cles with distinct physical characteristics, including the Berry
phase. The ability to detect the Berry phase for a new ma-
terial would generate insights into its physical properties for
potential applications. Conventionally, this can be done using
the principle of Aharonov-Bohm interference. For example,
an atomic interferometer was realized in an optical lattice
to directly measure the Berry flux in momentum space [11].
Graphene resonators subject to an external magnetic field
can be used to detect the Berry phase [12,13]. Specifically,
for a circular graphene p-n junction resonator, as a result
of the emergence of the π Berry phase of the quasiparticles
(Dirac fermions) when the strength of the magnetic field has
reached a small critical value, a sudden and large increase
in the energy associated with the angular momentum states
can be detected. In photonic crystals, a method was proposed
to detect the pseudospin-1/2 Berry phase associated with the
Dirac spectrum [14]. In such a system, the geometric Berry
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phase acquired upon rotation of the pseudospin is typically
obscured by a large and unspecified dynamical phase. It was
demonstrated [14] that the analogy between a photonic crystal
and graphene can be exploited to eliminate the dynamical
phase, where a minimum in the transmission arises as a direct
consequence of the Berry phase shift of π acquired by a
complete rotation of the pseudospin about a perpendicular
axis.

In this paper, we report a striking phenomenon in two-
dimensional Dirac materials, which leads to the principle of
chaos-based detection of the Berry phase. To be concrete, we
consider the entire α-T3 material family. An α-T3 material can
be synthesized by altering the honeycomb lattice of graphene
to include an additional atom at the center of each hexagon,
which, for α = 1, leads to a T3 or a dice lattice that hosts
pseudospin-1 quasiparticles with a conical intersection of
triple degeneracy in the underlying energy band [15–41].
An α-T3 lattice is essentially an interpolation between the
honeycomb lattice of graphene and a dice lattice, where the
normalized coupling strength α between the hexagon and
the central site varies between 0 and 1 [7,42–46], as shown
in Fig. 1(a). Theoretically, pseudospin-1 quasiparticles are
described by the Dirac-Weyl equation [16,17,34]. Suppose
we apply an appropriate gate voltage to generate an external
electrostatic potential confinement or cavity of an α-T3 lat-
tice. The mechanism for Berry phase detection arises in the
short wavelength or semiclassical regime, where the classical
dynamics are relevant and can be treated according to ray
optics with reflection and transmission laws determined by
Klein tunneling, the theme of the emergent field of Dirac
electron optics (DEO) [13,47–75]. If the shape of the cavity is
highly symmetric, e.g., a circle, the classical dynamics of the
quasiparticles are integrable. However, if the cavity bound-
aries are deformed from the integrable shape, chaos can arise.
We focus on the energy regime V0/2 < E < V0 in which Klein
tunneling is enabled, where V0 is the height of the potential
[Fig. 1(b)], so that the relative effective refractive index n
inside the cavity falls in the range [−∞,−1]. As a result, there
exists a critical angle for total internal reflections. For different
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FIG. 1. Schematic illustration of an α-T3 cavity and the energy
dispersion relation. (a) α-T3 lattice structure. (b) The electron and
hole energy dispersion relations in different spatial regions. (c) A
possible scheme of experimental realization of the cavity through
an applied gate voltage. The amount of the voltage is such that the
quasiparticles are in the Klein tunneling regime.

values of the material parameter α, the physical characteristics
of the quasiparticles, in particular the values of the Berry
phase, are different. Our central idea is then that, for a fixed
cavity shape, the semiclassical decay laws for quasiparticles
corresponding to different values of α would be distinct. If
the classical cavity dynamics contain a regular component,
the decay laws will be algebraic [76–80], but we find that
the differences among them will not be statistically significant
enough to allow lattices of different values of α to be distin-
guished. However, when the cavity is deformed so that the
classical dynamics are fully chaotic, the decay law becomes
exponential [81]. The striking phenomenon is that the expo-
nential decay rate for different values of α can be statistically
distinguished to allow the Berry phase of the quasiparticles to
be unequivocally detected, leading to the birth of chaos-based
Berry phase detectors. We note that in microcavity optics,
classical chaos can be exploited to generate lasing with a high
quality factor and good emission directionality at the same
time [82–92].

II. HAMILTONIAN AND DIRAC ELECTRON OPTICS

The α-T3 lattice system has the advantage of generating
a continuous spectrum of quasiparticles with systematically
varying Berry phase through the tuning of the value of the
parameter α in the unit interval. At the two opposite ends of
the spectrum, i.e., α = 0, 1, the quasiparticles are pseudospin-
1/2 Dirac fermions and pseudospin-1 Dirac-Weyl particles,
respectively. As illustrated in Fig. 1, the lattice has three
nonequivalent atoms in one unit cell, and the interaction
strength is t between A and B atoms and αt between B and C
atoms, where t is the nearest-neighbor hopping energy of the
graphene lattice. A cavity of arbitrary shape can be realized
by applying an appropriate gate voltage through the STM
technique [13,60,93], as shown in Fig. 1(c). We consider cir-
cular and stadium-shaped cavities that exhibit integrable and
chaotic dynamics, respectively, in the classical limit [94]. The
low-energy Hamiltonian for the α-T3 system about a K point
in the hexagonal Brillouin zone is [42,45] Ĥ = Ĥkin + V (x)Î ,
where Ĥkin is the kinetic energy, V (x) is the applied potential

that forms the cavity, and I is the 3 × 3 identity matrix. The
coupling strength α can be conveniently parameterized as
α = tan ψ . The kinetic part of the rescaled Hamiltonian (by
cos ψ) is

Ĥkin =
⎡
⎣ 0 fk cos ψ 0

f ∗
k cos ψ 0 fk sin ψ

0 f ∗
k sin ψ 0

⎤
⎦, (1)

where fk = vF (ξkx − iky), vF is the Fermi velocity, k =
(kx, ky) is the wave vector, and ξ = ± are the valley quan-
tum numbers associated with K and K ′, respectively. In the
semiclassical regime where the particle wavelength is much
smaller than the size of the cavity so that the classical dynam-
ics are directly relevant, the DEO paradigm can be instated
to treat the particle escape problem, which is analogous to
the decay of light rays from a dielectric cavity. In DEO, the
essential quantity is the transmission coefficient of a particle
through a potential step, which can be obtained by wave
function matching as [45]

T = 4ss′ cos θ cos φ

2 + 2ss′ cos (θ + φ) − sin2 2ψ (s sin θ − s′ sin φ)2
,

(2)

where s = ± and s′ = ±, with the plus and minus signs
denoting the conduction and valence bands, respectively, and
incident and transmitted angles are φ and θ , respectively.
Imposing conservation of the component of the momentum
tangent to the interface, we get

sin θ = (E/|E − V0|) sin φ.

(More details about electron transmission through a potential
step can be found in Appendix A.) Our focus is on the survival
probability of the quasiparticles from an α-T3 cavity for the
entire material spectrum: 0 � α � 1.

We set the amount of the applied voltage such that the en-
ergy range of the quasiparticles is V0/2 < E < V0 (the Klein
tunneling regime). In the optical analog, the corresponding
relative effective refractive index inside the cavity is n =
E/(E − V0), and that outside of the cavity is n = 1. Due to
Klein tunneling, the range of relative refractive index in the
cavity is negative: −∞ < n < −1. As a result, a critical angle
exists for the tunneling of electrons through a simple static
electrical potential step, which is sin φc = (V0 − E )/E and is
independent of the α value [45]. This behavior is exemplified
in the polar representation of the transmission in Fig. 2(a),
which shows that the value of the transmission increases with
α. As the value of α is varied in the unit interval, the critical
angle remains unchanged.

III. RESULTS

A. Algebraic decay of α-T3 quasiparticles from a circular
(integrable) cavity

The classical phase space contains Kolmogorov-Arnold-
Moser tori and an open area through which particles (rays)
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FIG. 2. Semiclassical decay of quasiparticles from a cavity in
an α-T3 lattice. For particle energy E = 0.53V0 (within the Klein
tunneling regime) and relative refractive index n = −1.1277 inside
of the cavity, (a) transmission T across a potential step as a function
of incident angle φ for a number of equally spaced α values.
(b) SPTD for the circular (integrable) cavity on a double-logarithmic
plot, where the blue circles, red squares, orange diamonds, purple
upward triangles, and green downward triangles are numerical results
for the five α values in (a) and the solid lines are the theoretical
predictions. The decay is algebraic, but the decay exponent is a
constant independent of the value of α. (c) SPTD for a stadium-
shaped (chaotic) cavity of semicircle radius 1 and straight edge of
length 2 on a semilogarithmic plot. The color legends are the same
as in (b). In this case, the decay is exponential, and its rate depends
on the value of α. Measuring the exponential decay rate then gives
the value of α and the corresponding Berry phase of the underlying
material lattice system.

escape. Initializing an ensemble of particles (e.g., 107) in the
open area, the survival probability time distribution (SPTD) is

given by

Psv (t ) =
∫ L

0
ds

∫ pc

−pc

d pI (s, p)R(p)N (t ), (3)

where L is the boundary length, pc = sin φc = 1/|n|, with φc

being the critical angle for total internal reflection, R(p) =
1 − T is the reflection coefficient for the α-T3 quasiparticles
with transmission T defined in Eq. (2), N (t ) = t/(2 cos φ) is
the number of bounces off the boundary, and I (s, p) = |n|/2L
is the uniform initial distribution.

Consider a circle of unit radius. Using the length of the ray
trajectory as the timescale, we can rewrite Eq. (3) as

Psv (t ) = |n|
∫ φc

0
dφ cos φ exp

[
− t

2 cos φ
ln

(
1

R

)]
, (4)

with

R−1 = 1 + −4 cos θ cos φ

2 + 2 cos (θ − φ) − sin2 2ψ (sin θ + sin φ)2
.

(5)

The behavior of the particle transmission coefficient shown
in Fig. 2(a) indicates that particles near the critical angle φc

can survive for a longer period of time in the cavity. We can
then expand the ln( 1

R ) term about the critical angle φc by
defining a new variable χ with φ = φc − χ and exploiting the
approximation χ → 0. We have

ln

(
1

R

)
≈ 4

√
2|n| cos φc cos φc

2 + [2|n| − sin2 2ψ (|n| + 1)2 sin2 φc]
χ1/2. (6)

Substituting Eq. (6) into Eq. (4), we obtain the SPTD as

Psv = 1

4
t−2

{
2 + [2|n| − sin2 2ψ (|n| + 1)2]

1

|n|2
}2

= C(n, ψ )t−2. (7)

This indicates that the quasiparticles decay algebraically from
the cavity and the value of the decay exponent is 2, regardless
of the value of α. For certain values of |n|, as the value of α

changes from 0 to 1, the decay coefficient C(n, ψ ) decreases,
as shown in Fig. 2(b). Here, SPTD for the circular cavity is
calculated with 107 random initial points in the open region of
the phase space. The trajectory from each point is traced with
the reflection coefficient R(p) at the boundary. The survival
probability between t and t + 	 with 	 = 1 is calculated with
an initial probability of 1 at t = 0. From Fig. 2(b), we see
that both theoretical and numerical results show an algebraic
behavior in the long-time regime with an exponent of 2.

Experimentally, to distinguish the nature of the quasipar-
ticles and to detect the Berry phase, the decay coefficient is
not a desired quantity to measure as it reflects the short-time
behavior of the decay process. In fact, it depends not only on
the nature of the material (as determined by the value of α) but
also on the detailed system design. The long-time behavior of
the decay is characterized by the algebraic decay exponent,
which does not depend on the details of the experimental
design, and hence, it can possibly be exploited for Berry phase
detection. However, for an integrable cavity, the algebraic
decay exponent remains constant as the value of α is changed,
as shown in Fig. 2(b). It is thus not feasible to distinguish

144302-3



WANG, HAN, XU, AND LAI PHYSICAL REVIEW B 99, 144302 (2019)

the quasiparticles by their long-time behavior, ruling out
integrable cavities as a potential candidate for detecting the
Berry phase.

B. Exponential decay of α-T3 quasiparticles
from a chaotic cavity

For the stadium cavity, the classical dynamics are chaotic,
leading to random changes in the direction of the propagating
ray. In this case, the survival probability of the quasiparticles
in the cavity decays exponentially with time, as shown in
Fig. 2(c), where the long-time behavior is determined by
the exponential decay rate. The striking phenomenon is that
the decay rate increases monotonically as the value of the
material parameter α is increased from 0 to 1, suggesting the
possibility of using the exponential decay rate to distinguish
the α-T3 materials and to detect the intrinsic Berry phase.
The difference in the decay rate can be further demonstrated
by calculating its dependence on the absolute value |n| for
different values of α, as shown in Fig. 3(a). For small values
of |n|, the difference in the decay rate is relatively large,
indicating a stronger ability to discern the α-T3 quasiparticles.
For large values of |n|, the difference in the decay rate is
somewhat reduced. This is expected because, as the value of
|n| is increased from 1, the transmission for the materials at
the two ends of the α-T3 spectrum, namely, graphene and a
pseudospin-1 lattice, decreases continuously. For |n| → ∞,
the transmission tends to zero. This result indicates that the
optimal regime to discern the quasiparticles for α-T3 occurs
for |n| above 1 but not much larger, corresponding to the
regime where the particle energy is slightly above half of the
potential height.

In general, for a given value of α, the exponential decay
rate is inversely proportional to n, which can be argued as fol-
lows [95,96]. For Psv (t ) ∼ exp (−γ t ), we have dPsv (t )/dt ∼
−γ Psv (t ) ∼ −[〈T (p)〉/〈d〉]Psv (t ), where 〈T (p)〉 and 〈d〉 are
the average transmission and the distance between two con-
secutive collisions in the chaotic cavity, respectively. The de-
cay rate can then be obtained in terms of the steady probability
distribution Ps(s, p) as

γ = 〈T (p)〉/〈d〉 = 〈d〉−1
∫ L

0
ds

∫ 1

−1
d pPs(s, p)T (p). (8)

In the Klein tunneling regime V0/2 < E < V0 (−∞ < n <

−1), we can derive an analytical expression for the expo-
nential decay rate based on a simple model of the steady
probability distribution (SPD) for the stadium-shaped cavity
that generates fully developed chaos in the classical limit [95].
Specifically, we assume that the SPD is a uniform distribution
over the whole phase space except the open regions related
to the linear segments of the stadium boundary. The decay
rate can then be expressed in terms of the steady probability
distribution:

γ = 2πR

2(πA/L)(L − 2l/|n|)
∫ 1/|n|

−1/|n|
d pT (p), (9)

where T (p) is the transmission coefficient defined in
Eq. (2) and the average path length of ray trajectory seg-
ments between two successive bounces is 〈d〉 = πA/L,
with A = πR2 + 2Rl and L = 2πR + 2l being the area

FIG. 3. Dependence of the semiclassical exponential decay rate
from a chaotic cavity on the effective refractive index and the
detection of the Berry phase. (a) For α = 0, 0.25, 0.5, 0.75, 1, the
decay rate versus the refractive index, where the blue circles, red
squares, orange diamonds, purple upward triangles, and green down-
ward triangles are the respective numerical results and the dashed
curves are theoretical predictions. (b) For E/V0 = 0.53, detection of
Berry phase (red squares) based on the decay rate (blue circles).
As the value of α is changed from 0 to 1, there is a one-to-one
correspondence between the exponential decay rate and the Berry
phase.

and boundary length of the stadium, respectively. Substi-
tuting the expressions sin θ = |n|p, cos θ = −

√
1 − sin2 θ =

−
√

1 − n2 p2, sin φ = p, and cos φ =
√

1 − p2 into the ex-
pression of T (p), we get

T = 4
√

1 − p2
√

1 − n2 p2/[2 + 2
√

1 − p2
√

1 − n2 p2

+ 2|n|p2 − sin2 2ψ (n2 p2 + p2 + 2|n|p2)]. (10)

In the limit |n| ≈ 1, imposing a change of variable x = n2 p2

to get d p = dx/(2|n|√x), we can write the decay rate in terms
of variable x as

γ = 2πR

2(πA/L)(L − 2l/|n|)
∫ 1

0

dx√
x

T (x)

= 2πR

2(πA/L)(L − 2l/|n|)
∫ 1

0

dx√
x

(1−x)[1−(sin2 2ψ )x]−1
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= 2πR

2(πA/L)(L − 2l/|n|)B(1/2, 2)F (1, 1/2; 5/2; sin2 2ψ )

≈ 2πR

2(πA/L)(L − 2l/|n|)
4

3

(
1 + 1

5
sin2 2ψ + · · ·

)
, (11)

where B(x, y) = �(x)�(y)/�(x + y) is the beta function and
F (α, β; γ ; z) is the Gauss hypergeometric function.

In the |n| � 1 regime, we use the change in variable x =
np to simplify the decay rate integral. The decay rate becomes

γ = 4πR

2(πA/L)L|n|
∫ 1

0

4
√

1 − x2

2 + 2
√

1 − x2 − sin2(2ψ )x2
, (12)

which is inversely proportional to the absolute value of the
refractive index |n|. More importantly, the decay rate depends
on the material parameter α monotonically (α = tan ψ , with
α increasing from 0 to 1). We note that the theoretical results
in Fig. 2(c) are obtained by using the integration formula (9)
directly. The approximation used to derive Eqs. (11) and (12)
is to facilitate an analytic demonstration of the scaling of the
decay rate with n. The formulas also reveal that the decay rate
increases monotonically with α.

Numerically, we choose the stadium shape with the semi-
circle radius to be 1 and the length of the straight long edge
to be 2. In the calculation, we use a random ensemble of 107

initial points spread over the whole phase space and trace the
survival probability with time, which is scaled by the length
of trajectory as in the case of a circular cavity. The numerical
results are consistent with the theoretical cases based on SPD
approximation, as shown in Fig. 2(c).

C. Detection of Berry phase

The Berry phase associated with an orbit in the conical
bands is given by [7]

φB
ξ = πξ cos (2ψ ) = πξ

(
1 − α2

1 + α2

)
. (13)

For the flat band, the Berry phase is

φB
0,ξ = −2πξ cos (2ψ ) = −2πξ

(
1 − α2

1 + α2

)
. (14)

We take ξ = ±1 for the K and K ′ valleys, respectively. For
ξ = 1, the dependence of the Berry phase on α is shown in
Fig. 3(b). As the value of α is increased from 0 to 1, the Berry
phase decreases monotonically from π to 0. At the same time,
the exponential decay rate increases monotonically. There is
then a one-to-one correspondence between the decay rate and
the Berry phase for the entire spectrum of α-T3 materials,
justifying a semiclassical chaotic cavity as an effective Berry
phase detector.

IV. DISCUSSION

To summarize, we uncovered a phenomenon in relativistic
quantum chaos that can be exploited to detect the Berry
phase of two-dimensional Dirac materials. In particular, for
the spectrum of α-T3 materials, in the semiclassical regime,
the decay of the quasiparticles from a chaotic cavity depends
on the intrinsic material parameter. Experimentally, the cavity
can be realized through a gate voltage, where, locally, the

boundary of the cavity is effectively a potential step. When the
Fermi energy of the quasiparticles is above half but below the
potential height, the system is in the Klein tunneling regime,
rendering applicable Dirac electron optics. In this case, the
relative effective refractive index inside the cavity is between
−∞ and −1, so a critical angle exists for the semiclassical
ray dynamics. Because of the close interplay between Klein
tunneling and the value of the Berry phase, measuring the
quasiparticle escape rate leads to direct information about the
Berry phase and for differentiating the α-T3 materials. Our
analysis and calculation have validated this idea: we have
indeed found a one-to-one correspondence between the expo-
nential decay rate and the value of the Berry phase. In terms
of basic physics, our finding builds up a connection between
classical chaos and Berry phase. From an applied standpoint,
because of the fundamental importance of the Berry phase in
determining the quantum behaviors and properties of mate-
rials, our work, relative simplicity notwithstanding, provides
an effective and experimentally feasible way to assess the
Berry phase for accurate characterization of the underlying
material. This may find broad applications in materials sci-
ence and engineering, where new nanomaterials are being
discovered at a rapid pace, demanding effective techniques of
characterization.

A possible experimental scheme to detect the Berry phase
for the family of α-T3 materials is as follows. For each type of
material, one first makes a chaotic cavity (e.g., a stadium- or
a heart-shaped domain). One then measures the quasiparticle
decay rate for the graphene cavity (corresponding to α = 0).
Since the Berry phase of graphene is known, one can use the
measurement as a baseline for calibrating the results from
other materials in the family. Finally, making use of the
one-to-one correspondence between the curves of the decay
rate and the Berry phase versus the material parameter α as
theorized in this paper, one can detect the actual Berry phase
for the material with any value of α for 0 < α � 1.
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APPENDIX A: BAND STRUCTURE AND WAVE VECTORS
ACROSS A POTENTIAL STEP

To better understand the optical-like decay behavior of
quasiparticles from a cavity formed by an electrostatic gate
potential, we illustrate the electron band structure and the
wave vectors across a potential step associated with a trans-
mission process, as shown in Fig. 4. We also indicate a
classification scheme of the regimes with different values
of the refractive index, which are determined by different
values of the applied potential relative to the Fermi energy. In
particular, there are regimes of positive and negative values of
the refractive index with respect to cases where a critical angle
exists or is absent. For convenience, the incident electron is
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FIG. 4. Schematic illustration of the band structures and wave vectors across a potential step with different values of the refractive index.
(a)–(d) Band structures across the potential step with different values of the gate potential (corresponding to different values of the refractive
index) at fixed Fermi energy. The black arrows denote the wave vector directions (only the cases with the wave vector in the x direction are
shown). In the regime of negative refractive index, the wave vector directions are reversed. (e)–(h) Electron wave vectors with the incident and
transmitted angles φ and θ , respectively.

assumed to be in the conduction band, i.e., with a positive
Fermi energy, and we vary the potential height V0. When
V0 is larger than the Fermi energy, the transmitted electron
is in the valence band. In this case, the wave vector has a
negative x and a positive y component, but the direction of
the velocity remains unchanged, leading to a negative value
of the refractive index.

More specifically, for gate potential height in the range
V0/2 < E < V0, the value of the refractive index n = E/(E −
V0) falls in the range −∞ < n < −1. There is a critical angle
in this case, which is determined by sin θ = 1 = (E/|E −
V0|) sin φc. The transmission angle can be obtained in terms
of incident angle φ as

θ = π − tan−1 (sin φ)(E/V0)√
(1 − E/V0)2 − [(sin φ)(E/V0)]2

= π + tan−1 n sin φ√
1 − (n sin φ)2

, (A1)

where the relations sin θ = (E/|E − V0|) sin φ and cos θ =
−

√
1 − sin2 θ have been used. The band structure and angles

corresponding to the wave vectors are shown in Figs. 4(a)
and 4(e), respectively.

In the regime where the potential height satisfies 0 < E <

V0/2, the value of the refractive index is in the range −1 <

n < 0. As a result, there is no critical angle. The transmission
angle can be obtained in the same form as Eq. (A1). A
schematic illustration of the band structure and the wave
vector angles for this case are shown in Figs. 4(b) and 4(f),
respectively.

For V0 < 0 < E , the value of the refractive index is in
the positive range, 0 < n < 1, because both the incident and
transmitted electrons are in the conduction band. There is
no critical angle in this case. The transmission angle can be

obtained as

θ = tan−1 (sin φ)(E/V0)√
(1 − E/V0)2 − [(sin φ)(E/V0)]2

= tan−1 n sin φ

1 − (n sin φ)2
. (A2)

where the relations sin θ = [E/(E − V0)] sin φ and cos θ =√
1 − sin2 θ are used. The band structure and wave vectors’

related angles are depicted in Figs. 4(c) and 4(g), respectively.
In the regime 0 < V0 < E , the refractive index is in the

range 1 < n < ∞ with both the incident and transmitted
electrons in the conduction band. There is a critical angle in
this case determined by sin θ = 1 = [E/(E − V0)] sin φc. The
transmission angle can be obtained in the same form as in
Eq. (A2). The band structures and wave vectors are illustrated
in Figs. 4(d) and 4(h), respectively.

APPENDIX B: SURVIVAL PROBABILITY DISTRIBUTION
OF α-T3 QUASIPARTICLES IN DIFFERENT

ENERGY REGIMES

For completeness, we derive the decay law of the survival
probability of α-T3 quasiparticles and obtain the decay rate
in other energy regimes. We argue that the decay law in
these regimes is practically infeasible for detecting the Berry
phase. For example, in the regimes where there is no critical
angle, the decay can be too fast for it to be useful. In the
regimes where there is a critical angle, the decay for distinct
quasiparticles from the material family follows a similar law,
making it difficult to distinguish the different quasiparticles.

1. The 0 < E < V0/2 regime

In this energy regime, the refractive index n = E/(E − V0)
of the cavity is in the range −1 < n < 0. In this regime, there
exists no critical angle for rays inside the cavity. Figure 5(a)
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FIG. 5. Survival probabilities from integrable and chaotic cavities for 0 < E < V0/2. For E/V0 = 1/3 and n = −0.5, (a) transmission
versus the incident angle on a polar plot, (b) decay of the survival probability from a circular (integrable) cavity with time, and (c) decay of the
survival probability from a stadium-shaped (chaotic) cavity.

shows that the transmission is nonzero for all angles and it
increases with decreasing α values. In this case, the decay of
quasiparticles is exponential, and it does not depend on the
nature of the classical dynamics, i.e., integrable or chaotic, as
shown in Fig. 5.

A theoretical explanation of the features in Fig. 5 is as
follows. Due to the absence of a critical angle for Dirac
electron optical rays in the energy range 0 < E < V0/2, the
survival probability from a circular (integrable) cavity is
mainly determined by the ray behavior about φ = π/2. Let-
ting φ = π/2 − x, where x is a small angle deviation from
π/2, and using the approximations

sin φ ≈ sin φc − (cos φc)x,

cos φ ≈ cos φc + (sin φc)x,

sin θ ≈ |n|[sin φc − (cos φc)x],

cos θ ≈ −
√

1 − n2[sin φc − (cos φc)x]2,

we get

ln R−1 = 4x
√

1 − n2

2 + 2|n| − sin2 (2ψ )(1 + |n|)2
, (B1)

where R = 1 − T , with T being the transmission coefficient
defined in Eq. (2) in the main text. The survival probability
can be expressed as

Psv = exp

{
− 2

√
1 − n2

2 + 2|n| − sin2 (2ψ )(1 + |n|)2
t

}
(B2)

For a chaotic cavity, the angle distribution is random,
leading to an exponential behavior of the survival probability.
We can obtain the expression for the decay rate γ by approxi-
mating Psv as

Psv (t ) ≈ 〈1 − T (p)〉t/〈d〉 = exp {ln [1 − 〈T (p)〉](t/〈d〉)}.
(B3)

The decay rate can be expressed as

γ = − 1

〈d〉 ln [1 − 〈T (p)〉]. (B4)

For either the integrable or the chaotic cavity, the exponential
decay rate depends on the material parameter α, which, in
principle, can be used to detect the Berry phase. However, due

to the lack of a critical angle in this energy range, experimen-
tally, it would be difficult to confine the quasiparticles. Indeed,
compared with the exponential decay from a chaotic cavity in
the Klein tunneling regime (V0/2 < E < V0) as treated in the
main text, here, the decay is much faster.

2. The 0 < V0 < E regime

For the energy range 0 < V0 < E with the refractive index
n = E/(E − V0) of the cavity in the range 1 < n < ∞, the
survival probability with time exhibits an algebraic decay
from an integrable cavity and an exponential decay from a
chaotic cavity, which is characteristically similar to the decay
behaviors in the Klein tunneling regime (V0/2 < E < V0)
treated in the main text. A difference is that, for 0 < V0 < E ,
the dependence of the transmission on the material parameter
α is much weaker in the sense that, as the value of α is
increased from 0 to 1, the transmission barely changes. It
is thus practically difficult to distinguish the quasiparticles
for different materials. These behaviors are shown in Fig. 6,
where the analytical fitting is calculated in the same way as in
the main text.

3. The V0 < 0 < E regime

In the energy regime V0 < 0 < E with the refractive index
n = E/(E − V0) of the cavity in the range 0 < n < 1, the
decay of the survival probability is similar to that in the
0 < E < V0/2 regime. In particular, regardless of the nature
of the classical dynamics (integrable or chaotic), the survival
probability exhibits an exponential decay with time, as shown
in Fig. 7. Again, compared with the energy regime of Klein
tunneling, the decay is much faster here, making experimental
detection of the Berry phase difficult.

APPENDIX C: COMPARISON BETWEEN THE DECAY
BEHAVIORS FOR PSEUDOSPIN-1/2 and PSEUDOSPIN-1

QUASIPARTICLES

The best-studied material in the α-T3 family is graphene,
corresponding to α = 0 [97]. There is also growing interest
in the material at the other end of the spectrum: α = 1, for
which the quasiparticles are of the pseudospin-1 nature. We
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FIG. 6. Survival probabilities from integrable and chaotic cavities for 0 < V0 < E . For E/V0 = 8.8309 (n = 1.1277), (a) polar representa-
tion of the transmission with respect to the incident angle, (b) decay with time of the survival probability from a circular (integrable) cavity,
and (c) decay of survival probability from a stadium-shaped (chaotic) cavity.

offer a comparison of the decay behaviors of the quasiparticles
at these two extreme cases.

In the energy range 0 < E < V0/2 with Klein tunneling
[corresponding to the negative refractive index: −1 < n =
E/(E − V0) < 0], there is no critical angle for total inter-
nal reflection. For both integrable and chaotic cavities, the
survival probability decays exponentially with time, with no
qualitative difference. As the absolute value of the refractive
index is increased, the range of angle for transmission is
large for pseudospin-1 quasiparticles, but the range is smaller
for pseudospin-1/2 quasiparticles. For integrable cavities, the
difference is somewhat larger.

In the energy range for Klein tunneling: V0/2 < E < V0

(−∞ < n < −1), a critical angle arises, above which there
are total internal reflections. For an integrable cavity, the sur-
vival probability decays algebraically with time, but the decay
is exponential for a chaotic cavity. In the integrable case,
the algebraic decay exponents have approximately identical
values for the pseudospin-1 and pseudospin-1/2 particles.
However, for a chaotic cavity, the decay of pseudospin-1
quasiparticles is much faster than that of pseudospin-1/2
quasiparticles. Chaos can thus be effective in detecting the
Berry phase to distinguish the two types of quasiparticles.
In fact, as demonstrated in the main text, chaos in the

Klein tunneling regime can be effective for detecting the
Berry phase across the entire material spectrum of the α-T3

family.
In the energy range of V0 < E (1 < n < ∞), a critical

angle exists. The decay behavior of the survival probability is
algebraic for an integral cavity and exponential for a chaotic
cavity. The difference in the transmission versus the incident
angle is small for pseudospin-1 and pseudospin-1/2 quasi-
particles, leading to a similar value of the algebraic decay
coefficient in the integrable case and a similar exponential
decay law in the chaotic case. In this energy range, using
the decay behavior to discern the quasiparticles would be
practically difficult.

In the energy range V0 < 0 < E (0 < n < 1), there is no
critical angle, and the decay behavior is exponential for both
integrable and chaotic cavities. As the energy is increased,
the difference in the decay behaviors of pseudospin-1 and
pseudospin-1/2 quasiparticles diminishes, ruling out the pos-
sibility of exploiting the decay for detection of Berry phase.

Finally, we note a symmetry-related phenomenon: for spin-
1 quasiparticles the behaviors of the survival probability are
identical for positive and negative refractive index regimes
as a result of symmetry in the expression of the transmission
coefficient.

FIG. 7. Survival probability from integrable and chaotic cavities in the V0 < 0 < E energy regime. For E/V0 = −1 (n = 0.5), (a) polar
representation of the transmission versus the incident angle, (b) decay of survival probability from a circular (integrable) cavity, and (c) decay
of survival probability from a stadium-shaped (chaotic) cavity.
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