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The Berry-phase mediated valley-selected skew scattering in α-T3 lattices is demonstrated. The interplay of
Lorentz and Berry forces in position and momentum spaces is revealed and analyzed. Many-body screening
of the electron-impurity interaction is taken into account to avoid overestimation of back and skew scattering
of electrons in the system. Triplet peak from skew interactions at two valleys is found in near-vertical and
near-horizontal forward- and backward-scattering directions for small Berry phases and low magnetic fields.
Magnetic-field dependence in both nonequilibrium and thermal-equilibrium currents is also presented for valley-
dependent longitudinal and transverse transports mediated by a Berry phase. Mathematically, two Boltzmann
moment equations are employed for computing scattering-angle distributions of nonequilibrium skew currents by
using microscopic inverse energy- and momentum-relaxation times. Meanwhile, a valley-dependent unbalanced
thermal-equilibrium anomalous Hall current induced by the Berry force in momentum space, due to different
mobilities for two valleys, is also computed for comparisons.
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I. INTRODUCTION

In electronics or spintronics [1], information is encoded
through either charge or spin. Valley quantum numbers, on
the other hand, become another way to distinguish and des-
ignate quantum states of a crystal lattice, which leads to
the so-called valleytronics [2,3] and has already attracted a
lot of interest [4–10] from both fundamental research and
application perspectives. Physically speaking, valleytronics
bases itself on controlling the valley degree-of-freedom of
certain semiconductors with multiple valleys inside their first
Brillouin zone, such as Γ , K, L, and M band-extreme points.
As a comparison, electron spins have already been used for
storing, manipulating, and reading out bits of information
[11]. Therefore, we expect valleytronics will also demonstrate
similar functionalities through multiple band extrema, where
the information of 0s and 1s could be stored as discrete crystal
momenta.

The valley electronic properties of solids have acquired
a long history back to the early days of silicon electronics.
As an example, the sixfold valley degeneracy was initially
observed in electron inversion layers on (111) surfaces of
silicon [12]. Later, intervalley gap anomaly was further found
in two-dimensional electron gases in silicon under a strong
tilted magnetic field [13]. Moreover, similar valley splitting
for two-dimensional electrons has also been studied in AlAs
semiconductor materials [14].

By taking graphene [15] as an example, its two nonequiv-
alent valleys can be described as an ideal two-state sys-
tem (similar to the isospin degree of freedom), and its two
nonequivalent Dirac points, K and K ′ in the first Brillouin

zone, are associated with distinct momenta or valley quantum
numbers. These two valleys are well separated by a very large
crystal momentum, and therefore become robust against usual
external perturbations at room temperature. Quantum manipu-
lation of valleys in semiconductors has just been demonstrated
recently [16], and electrons belonging to different valleys
are employed for quantum-information processing. Beyond
graphene, valley characteristics are also present in other two-
dimensional materials such as silicene, germanene, MoS2,
WSe2, etc.

By looking from a technical perspective, a key issue in
valleytronics turns out to be the separation of electrons with
different valley quantum numbers in either position or mo-
mentum space, i.e., the so-called valley filters [2]. One way
to obtain valley filtering is based on the valley Hall effect
(VHE) [16], where electrons from different valleys can be
separated spatially. There are other physical phenomena, e.g.,
the anomalous Hall effect (AHE) [17] and the spin Hall effect
(SHE) [18], which are closely related to VHE. In fact, SHE
has already been proven as a connection between the electrical
and spin currents and can be used for spin-current generation
and detection electrically in spintronics. In a similar way, we
expect VHE can also generate transverse valley currents in
position space like SHE.

The α-T3 physics model is recognized as the most recent
and promising candidate for novel two-dimensional materials.
Its low-energy dispersions. including a flat band, can be found
from a three-component generalization of the standard Dirac-
Weyl Hamiltonian [19–21] and acquires a close similarity
when compared with graphene [22–24]. The experimental
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FIG. 1. (a) α-T3 lattice with three atoms (A, B, C) per unit cell within the (x, y) plane, where the α = tan φ parameter characterizes the ratio
of the bonding strengths between A-C and A-B atoms. (b) Illustration for a band structure featuring three bands of α-T3 lattice, where the middle
one is flat. (c) Schematic diagram for a scattering angle βs of an incident electron with wave vector kin by different impurities at two valleys
characterized by τ = ±1 under an applied electric field Ex along the x direction, where an external nonquantizing magnetic field Bz, and the
internal Berry curvature �k as well, are along the z direction and the longitudinal (transverse) scattering is labeled by L (T ), respectively. Here
the Berry phases are calculated in Sec. I as �τ

s (φ) = τπ cos 2φ for s = ±1 and �τ
0 (φ) = −2�τ

s (φ). For the sake of clearness, we call the
geometry phase φ as the “Berry phase” in this paper.

observation for a dispersionless state was confirmed [25,26]
in a photonic Lieb lattice formed by a two-dimensional array
of optical waveguides. This photonic Lieb lattice can support
three energy bands, including a perfectly flat middle band
(i.e., an infinite effective mass). Meanwhile, even the presence
of topological-insulator behavior is predicted in Lieb and
kagome lattices [27]. Alternatively, the realization of the Lieb
lattice can be fulfilled with an optical lattice [28], which has
a flat energy band as the first excited state. Furthermore, by
employing accidental degeneracy, dielectric photonic crystals
with zero-refractive index can be designed and fabricated that
exhibit Dirac cone dispersion at the center of the Brillouin
zone at a finite frequency [29,30].

The idea of highly efficient valley filtering in α-T3 lat-
tices with variable Berry phase, as shown schematically in
Figs. 1(a) and 1(b), has been reported very recently [31] with
a Berry-phase-mediated VHE, which is termed as gVHE due
to the geometric nature of the underlying mechanism. In this
case, the Berry phase in momentum space can be fractionally
quantized, and charge-neutral valley currents occur through
skew scattering by the usual thermally ionized donor or
acceptor impurities. Furthermore, a physical understanding
is sought for resonant valley filtering [32] assisted by skew
scattering to ensure gVHE could be robust against both ther-
mal fluctuations and structural disorders as a result of large
intervalley momentum separation.

Since novel two-dimensional (2D) materials span the full
range of electronic properties, including insulators, semi-
conductors, semimetals, and metals, we hope to stack them
layer by layer through van der Waals forces so as to build
various compact planar electronic devices with high and mul-
tifunctional performance, lightweight, low-power consump-
tion, flexibility, and even transparency. The semiconducting
2D monolayer gives rise to excellent gate control in field-
effect transistors (FETs) with much shorter gate lengths (or
smaller and faster transistors). Furthermore, by aligning the
material’s low-effective-mass lattice direction with the FET’s
transport, the carrier mobility will be enhanced greatly along
with a high carrier density. Recent theoretical and experi-

mental endeavors on the charge transfer across a 2D material
interface lead to the successful fabrication of low-resistance
contacts, where the covalently bonded in-plane interfaces
between different 2D materials demonstrate hope for reducing
contact resistances, power consumption, and heat generation.

In this paper, our previous single-particle quantum-
mechanical theory [31] for α-T3 lattices with variable Berry
phases will be generalized into a many-body quantum-
statistical theory based on a generalized Boltzmann trans-
port formalism, which microscopically calculates the inverse
energy-relaxation time using the screened second-order Born
approximation, the inverse momentum-relaxation-time tensor
for electron elastic scattering by ionized donor and accep-
tor impurities, and the generalized mobility tensor based on
the force-balance equation. Moreover, the zeroth- and first-
order moment equations derived from the general Boltz-
mann transport equation will be employed for computing
both the forward- and backward-scattering (near-horizontal)
and skew-scattering (near-vertical) currents. Furthermore, the
interplay between Lorentz and Berry forces acting on elec-
trons in position and momentum space for both nonequi-
librium and thermal-equilibrium currents is analyzed and
explained.

The rest of this paper is organized as follows. In Sec. II
we derive the zeroth- and first-order Boltzmann moment
equations for calculating both nonequilibrium back- and
skew-scattering currents in α-T3 lattices as well as thermal-
equilibrium anomalous Hall current. Meanwhile, both energy-
and momentum-relaxation times are computed microscopi-
cally. In Sec. III we present numerical results for valley-
dependent distributions of longitudinal and transverse cur-
rents with respect to different scattering directions, and valley-
dependent 2D contour plots for partial back- and skew-
scattering currents as a function of both magnetic field and
Berry phase at several scattering angles. We also display in
this section the total back- and skew-scattering currents in
individual valleys as a function of magnetic field for different
Berry phases. Finally, a summary and some remarks are
presented in Sec. IV.
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II. MODEL AND THEORY

The single-particle Hamiltonian [19,31] for an α-T3 lat-

tice takes the form of
↔
H0 (k‖) = h̄vF

↔
α ·k‖, where vF and

k‖ = {kx, ky} are the Fermi velocity and wave vector of elec-

trons,
↔
α= {↔

τ3 ⊗ ↔
Sα

x ,
↔
τ0 ⊗ ↔

Sα
y }, ↔

τ 1,2,3 are three Pauli matri-

ces,
↔
τ 0=

↔
I 2×2 is the identity matrix corresponding to valley

degree of freedom

↔
Sα

x =
⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦,

↔
Sα

y =
⎡
⎣ 0 −i cos φ 0

i cos φ 0 −i sin φ

0 i sin φ 0

⎤
⎦, (1)

and α = tan φ (0 � α � 1) to parametrize the α-T3 lattice. For
this Hamiltonian, three eigenvalues are εs(k‖) = sh̄vF k‖ with
s = 0, ±1 as the band index, and the associated eigenstates
are

|s, τ, k‖〉φ = 1√
2

⎡
⎣τ cos φ e−iτθk‖

s
τ sin φ eiτθk‖

⎤
⎦|τ 〉 (2)

for valley-degenerate eigenvalues ε±(k‖) = ± h̄vF k‖
[recorded as (c) for s = +1 and (v) for s = −1], and

|0, τ, k‖〉φ =
⎡
⎣ τ sin φ e−iτθk‖

0
−τ cos φ eiτθk‖

⎤
⎦|τ 〉 (3)

for ε0(k‖) = 0, where θk‖ = tan−1(ky/kx ), and |τ = ±1〉 rep-
resent two different valley states. The Berry connection [33]
(field) of each band is defined as the quantum-mechanical
average of the position operator r̂‖ = i∇̂k‖ , i.e., Aτ,φ

s (k‖) =
φ〈s, τ, k‖|i∇̂k‖ |s, τ, k‖〉φ and we get from Eqs. (2) and (3) that

Aτ,φ

0 (k‖) = −τ
1 − α2

1 + α2
∇k‖θk‖ , Aτ,φ

s (k‖) = −1

2
Aτ,φ

0 (k‖).

(4)

Therefore, the Berry curvature �τ,φ
s (k‖) = ∇k‖ × Aτ,φ

s (k‖) is
calculated as

�τ,φ
s (k‖) = τ

(
1 − α2

1 + α2

)
π δ(k‖) êz, �

τ,φ

0 (k‖)=−2 �τ,φ
s (k‖),

(5)

where êz is the unit coordinate vector in the z direction
(perpendicular to α-T3 plane). Connecting to the Berry con-
nection presented in Eq. (4), the Berry phases are obtained
as �τ

s (φ) = ∮ dk‖ · Aτ,φ
s (k‖) = τπ cos 2φ for s = ±1 and

�τ
0 (φ) = −2�τ

s (φ). For clearness, we simply call the geome-
try phase φ as the “Berry phase” in this paper.

For linear transport of electrons in an n-doped two-
dimensional (2D) α-T3 lattice, we start with the semiclas-
sical Boltzmann transport equation for doped electrons in
a conduction band ε(k‖) = h̄vF k‖ of this 2D material. In
this case, the electron distribution function fτ (r‖, k‖; t ) in

position-momentum spaces satisfies [34]

∂ fτ (r‖, k‖; t )

∂t
+
〈

dr‖(t )

dt

〉
av

· ∇r‖ fτ (r‖, k‖; t )

+
〈

dk‖(t )

dt

〉
av

· ∇k‖ fτ (r‖, k‖; t ) = ∂ fτ (r‖, k‖; t )

∂t

∣∣∣∣
coll

,

(6)

where τ = ±1 characterize two inequivalent valleys K and
K ′, r‖ = {x, y} and k‖ = {kx, ky} are 2D position and wave
vector, respectively. The term on the right-hand side of Eq. (6)
corresponds to all collision contributions of electrons with
ionized impurities, phonons, other electrons, etc. Moreover,
for electrons, we get their group velocities through v(k‖) =
(1/h̄)∇k‖ε(k‖) = (k‖/k‖) vF . Meanwhile, we find semi-
classically that [35] 〈dr‖(t )/dt〉av = v(k‖) − dK̄0(t )/dt ×
�⊥(k‖) ≡ v∗(k‖, t ), where v∗(k‖, t ) contains the so-called
anomalous group velocity [33], K̄0(t ) is the center-of-mass
wave vector, �⊥(k‖) = ∇k‖ × R̄0(k‖) is called the Berry
curvature, and R̄0(k‖) = 〈k‖|r̂‖|k‖〉 = 〈k‖|i∇̂k‖ |k‖〉 is called
the Berry connection and related to the quantum-mechanical
average of the center-of-mass position operator with respect
to Bloch states |k‖〉 of a conduction band under the adia-
batic condition [33]. Furthermore, we introduce a semiclas-
sical Newton-type force equation [34] for the wave vector
of electrons, yielding 〈dk‖(t )/dt〉av = (1/h̄)〈Fem(k‖, t )〉av =
−(e/h̄)〈[E‖(t ) + v(k‖) × B⊥(t )]〉

av
, where E‖(t ) and B⊥(t )

are external time-dependent electric and magnetic fields, re-
spectively, and Fem(k‖, t ) is the electromagnetic force acting
on an electron in the k‖ state. Here B⊥(t ) is assumed as a
nonquantizing magnetic field with Landau-level separation
∼h̄ωc smaller than the level lifetime broadening h̄/τ̄ , where
ωc denotes the associated cyclotron frequency. On the other
hand, both the longitudinal and Hall conductivities for mag-
netoquantum transport of electrons in α-T3 lattice have been
calculated by using the Kubo formula [36].

Based on Eq. (6), the zeroth-order Boltzmann moment
equation [37–40] can be obtained simply by summing
over all k‖ states on both sides of this equation. Af-
ter ignoring the intervalley scattering at low temperatures
with a very large transition momentum, this gives rise to
the electron number conservation equation, i.e., ∂ρ/∂t +
∇r‖ · J = 0, where the number of electrons ρ(r‖, t ) per
area, as well as the particle-number current J(r‖, t ) per
length, are defined by ρ(r‖, t ) = 2

S
∑

τ,k‖ fτ (r‖, k‖; t ) and

J(r‖, t ) = 2
S
∑

τ,k‖ v∗(k‖, t ) fτ (r‖, k‖; t ) with S as the sheet
area.

For the first-order Boltzmann moment equation, on the
other hand, we have to employ the so-called Fermi kinetics
[37–40]. For this purpose, we first introduce the energy-
relaxation-time approximation for collisions, given explicitly
by

∂ fτ (r‖, k‖; t )

∂t

∣∣∣∣
coll

= − fτ (r‖, k‖; t ) − f (0)
T [ε(k‖)]

τφ (k‖, τ )
, (7)

which conserves the particle number, where f (0)
T (x) =

{1 + exp[(x − u0)/kBT ]}−1 is the Fermi function for
electrons in thermal-equilibrium states, T is the sample
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temperature, u0(T ) is the chemical potential for
doped electrons, and τφ (k‖, τ ) is the microscopic and
valley-dependent energy-relaxation time for electrons
in the k‖ state. The detailed quantum-statistical
calculation of τφ (k‖, τ ) can be found in Appendix C.
The chemical potential u0(T ) of a canonical system
should be determined self-consistently by the constraint:
4
∑

k‖ f (0)
T [ε(k‖)] = ∫ d2r‖ ρ(r‖, t ) ≡ 2

S
∑

τ,k‖

∫
d2r‖ fτ (r‖,

k‖; t ) = N0 = ρ0S , where N0 and ρ0 represent the fixed
total number of spin-degenerate electrons and the electron
areal density. Finally, applying this energy relaxation-time
approximation to Eq. (6), we arrive at

fτ (r‖, k‖; t ) + τ̄φ (T, τ )
∂ fτ (r‖, k‖; t )

∂t

≈ f (0)
T [ε(k‖)] − τ̄φ (T, τ )

h̄
〈Fem(k‖, t )〉 · ∇k‖ f (0)

T [ε(k‖)]

−τ̄φ (T, τ ) v∗(k‖) · ∇r‖ f (0)
T [ε(k‖)]

= f (0)
T [ε(k‖)] − τ̄φ (T, τ )

h̄
〈F(k‖, t )〉 · ∇k‖ f (0)

T [ε(k‖)], (8)

where we have assumed T and u0 are spatially uniform
within the sample, and the thermally averaged and valley-
dependent energy-relaxation time τ̄φ (T, τ ) is defined by

1
τ̄φ (T,τ ) = 2

N0

∑
k‖

f (0)
T [ε(k‖ )]

τφ (k‖,τ )
. By introducing another micro-

scopic inverse momentum-relaxation-time tensor
↔
T −1

p (τ, φ),
we can further rewrite the force-balance equation [41] for

the macroscopic center-of-mass wave vector Kτ,φ

0 (t ) in steady
states as

dKτ,φ

0 (t )

dt
= −

↔
T −1

p (τ, φ) · Kτ,φ

0 (t ) + 1

h̄
Fτ,φ (t )

= −
↔
T −1

p (τ, φ) · Kτ,φ

0 (t )

− e

h̄

{
E‖(t ) +

(
vF

kF

)
Kτ,φ

0 (t )×B⊥(t )

}
= 0, (9)

where Fτ,φ (t ) ≡ 〈Fem(k‖, t )〉av =−e{E‖(t ) + (vF /kF )Kτ,φ

0
(t ) × B⊥(t )} is the macroscopic electromagnetic force,
and kF = √

πρ0 is the Fermi wave number. The detailed
quantum-statistical calculation of the inverse momentum-

relaxation-time tensor
↔
T −1

p (τ, φ) is provided in Appendix D.
The solution of Eq. (9) can be formally expressed as

Kτ,φ

0 (t ) = (kF /vF )
↔
μτ,φ (B⊥(t ),

↔
T −1

p ) · E‖(t ), where
↔
μτ,φ (B⊥,

↔
T −1

p ) is the so-called mobility tensor of electrons.
The details for calculating the steady-state mobility tensor
↔
μτ,φ (B⊥,

↔
T −1

p ) are presented in Appendix E. Using this

mobility tensor, we can simply write Fτ,φ (t ) = (h̄kF /vF )
↔
T

−1
p (τ, φ) · {↔μτ,φ (B⊥(t ),

↔
T −1

p ) · E‖(t )}.
In a similar way in deriving the zeroth-order Boltzmann

moment equation, multiplying both sides of Eq. (8) by
v∗(k‖, t ) and summing over all electron k‖ states afterwards,

we are left with the following dynamical equation:

Jτ,φ (t ) + τ̄φ (T, τ )
∂Jτ,φ (t )

∂t
= 2

S
∑

k‖

v∗(k‖, t ) f (0)
T [ε(k‖)] − τ̄φ (T, τ )

2

S
∑

k‖

v∗(k‖, t )[Fτ,φ (t ) · v(k‖)]
∂ f (0)

T [ε(k‖)]

∂ε

= 2e

h̄S
∑

k‖

({
E‖(t ) + [ ↔

μτ,φ

(
B⊥(t ),

↔
T −1

p

) · E‖(t )
]
B⊥(t )

}× �⊥(k‖)
)

f (0)
T [ε(k‖)]

+ τ̄φ (T, τ )

(
h̄kF

vF

)
2

S
∑

k‖

v(k‖)
{ ↔
T −1

p (τ, φ) · [ ↔
μτ,φ

(
B⊥(t ),

↔
T −1

p

) · E‖(t )
]}

·v(k‖)

{
−∂ f (0)

T [ε(k‖)]

∂ε

}
, (10)

where the second term on the left-hand side of the equation results from the nonadiabatic correction to the macroscopic particle-
number current Jτ,φ (t ) per length. From Eq. (10) we know Jτ,φ is also independent of r‖ within our approximation. As a result,
from the electron number conservation equation, we find the number of electrons ρ per area must be a constant ρ0, determined
by ρ0 = 4

S
∑

k‖ f (0)
T [ε(k‖)], which determines the chemical potential u0(T ) of the sample at any given temperature T .

If T is low, i.e., − ∂ f (0)
T [ε(k‖ )]

∂ε
≈ δ[EF − ε(k‖)], and external fields are assumed static E‖

0 and B⊥
0 , we get from Eq. (10) the

total charge (−e) current j(τ, φ) = j1(τ, φ) + j2(τ, φ) per length for each valley, where EF = h̄vF kF is the Fermi energy of
electrons. Explicitly, we calculate the two current components j1(τ, φ) and j2(τ, φ) as

j1(τ, φ) = −ek2
F τ̄φ (kF , τ )

2π2v2
F

∫ 2π

0
dθk‖ v(θk‖ )

{
T −1

p (kF , τ, φ) · [ ↔
μτ,φ

(
B⊥

0 ,
↔
T −1

p

) · E‖
0

]} · v(θk‖ )

= −ek2
F τ̄φ (kF , τ )

2π

∫ π

−π

dβs[êxCx(kF , τ, φ, βs) + êyCy(kF , τ, φ, βs)] ≡
∫ π

−π

dβs j̃1(τ, φ, βs), (11)
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which is mediated by the Lorentz force in position space, and

j2(τ, φ) = − e2

2π2h̄

∫
d2k‖ �(kF − k‖)

{[
E‖

0 + ( ↔
μτ,φ

(
B⊥

0 ,
↔
T −1

p

) · E‖
0

)× B⊥
0

]× �⊥(k‖)
}

= − e2

2π2h̄

∫
d2k‖ �(kF − k‖) {êx[Ey − Bz(μxx(kF , τ, φ) Ex + μxy(kF , τ, φ) Ey )] �τ,φ (k‖)

− êy[Ex + Bz(μyx(kF , τ, φ) Ex + μyy(kF , τ, φ) Ey )] �τ,φ (k‖)}

= − e2

2π2h̄

{
τ (1 − α2)π

1 + α2

}
{êx[Ey − Bz(μxx(kF , τ, φ) Ex + μxy(kF , τ, φ) Ey )]

− êy[Ex + Bz(μyx(kF , τ, φ) Ex + μyy(kF , τ, φ) Ey )]} ≡ j2x(τ, φ) êx + j2y(τ, φ) êy, (12)

which is mediated by the Berry curvature (or Berry force) in momentum space. Here �(x) is a unit-step function, μi j (kF , τ, φ)

for i, j = x, y are four elements of the mobility tensor
↔
μ (kF , τ, φ) given by Eq. (18), �⊥(k‖) = �τ,φ (k‖) êz, �τ,φ (k‖) = [τ (1 −

α2)π/(1 + α2)]δ(k‖), α = tan φ, θk‖ = tan−1(ky/kx ), v(θk‖ ) = vF (cos θk‖ , sin θk‖ ), and êx, êy, êz are three unit coordinate
vectors. In addition, j̃1(τ, φ, βs) in Eq. (11) represents the extrinsic nonequilibrium scattering current along the direction of
a scattering angle βs, which is different for τ = 1 and −1, while j2(τ, φ) in Eq. (12) is the anomalous thermal-equilibrium
(extrinsic) current under doping (EF > 0) due to Berry curvature and independent of βs. Furthermore, we have denoted

Cx,y(kF , τ, φ, βs) as two spatial components of the vector C(kF , τ, φ, βs) =
↔
T −1

p (kF , τ, φ, βs) · {↔μ (kF , τ, φ) · E‖
0} in Eq. (11).

The elements of a conductivity tensor
↔
σ (τ, φ, βs) can be obtained from σi j (τ, φ, βs) = j̃1(τ, φ, βs) · êi/(E‖

0 · ê j ). Therefore,
from Eq. (11) we know that the conductivity tensor depends not only on the mobility tensor, but also on the conduction-band
energy dispersion and on how electrons are distributed within the conduction band. To elucidate scattering dynamics more
clearly, we study the longitudinal jL(τ, φ) and transverse jT (τ, φ) currents which flow along and perpendicular to the direction
of βs, yielding

[
jL(τ, φ)
jT (τ, φ)

]
≡
∫ π

−π

dβs

[
jL(τ, φ, βs)
jT (τ, φ, βs)

]
= −ek2

F τ̄φ (kF , τ )

2π

∫ π

−π

dβs Cx(kF , τ, φ, βs)

[
cos βs

sin βs

]

− ek2
F τ̄φ (kF , τ )

2π

∫ π

−π

dβs Cy(kF , τ, φ, βs)

[
sin βs

− cos βs

]
, (13)

where the terms containing cos βs select out the diagonal elements of
↔
T −1

p (kF , τ, φ, βs) in Eq. (16) below, while those containing

sin βs keep only the off-diagonal elements of
↔
T −1

p (kF , τ, φ, βs).
At low temperatures, from Eq. (C14) the thermally averaged energy-relaxation time τ̄φ (kF , τ ) introduced in Eq. (11) is given

by

1

τ̄φ (kF , τ )
= 4

ρ0S
∑

k‖

Wτ,φ

in (k‖)�(kF − |k‖|)

= 4ni

π2h̄2vF ρ0

∫ π

−π

dβs | cos θ |
∫ kF

0
dk‖ k2

‖

∣∣∣∣U τ
0 (2k‖| cos θ |)

εφ (2k‖| cos θ |)
∣∣∣∣
2

|Fτ,φ (k‖, βs)|2, (14)

which depends on both τ = ±1 and 0 � φ < π/4, where | cos θ | = | sin(βs/2)|, βs is the scattering angle, ni = Ni/S is the
areal density of ionized impurities, and εφ (q‖) is the static dielectric function obtained from Eqs. (B6) and (B7). Meanwhile, the
scattering form factor in Eq. (14) is calculated as

Fτ,φ (k‖, βs) = 1

2

∑
�

{(−i)−τ τ cos φ χτ
1,�(k‖) + χτ

2,�(k‖) + (−i)τ τ sin φ χτ
3,�(k‖)}

× {(−i)τ τ cos φ χτ
1,�(k‖) e

iτβs
k‖ ,q‖ − χτ

2,�(k‖) + (−i)−τ τ sin φ χτ
3,�(k‖) e

−iτβs
k‖ ,q‖
}

≡ κ0(k‖, φ, τ ) + κ1(k‖, φ, τ ) eiτβs + κ2(k‖, φ, τ ) e−iτβs + κ3(k‖, φ, τ )(1 + eiτβs )

+ κ4(k‖, φ, τ )(1 + e−iτβs ) + κ5(k‖, φ, τ ) cos(τβs), (15)

where χτ
1,�(k‖), χτ

2,�(k‖), and χτ
3,�(k‖) are the scattering factors defined in Eq. (C12), and six real scattering coefficients κ j with

j = 0, 1, . . . , 5 can be obtained from Eq. (C13).
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In addition, from Eq. (D3) the inverse momentum-relaxation-time tensor employed in Eq. (11) is microscopically calculated
at low temperatures as

↔
T −1

p (kF , τ, φ) = 2πni

ρ0

(
vF

kF

)∑
k‖,q‖

∣∣U τ,φ

im (q‖, k‖)
∣∣2 δ(εk‖ − EF ) δ(εk‖+q‖ − εk‖ ) [q‖ ⊗ qT

‖ ]

= 2nik3
F

π2h̄2vF ρ0

∫ π

−π

dβs | sin(βs/2)| sin2(βs/2)

∣∣∣∣U τ
0 [2kF | sin(βs/2)|]

εφ[2kF | sin(βs/2)|]
∣∣∣∣
2

|Fτ,φ (kF , βs)|2

×
[

sin2(βs/2) − sin(βs)/2

− sin(βs)/2 cos2(βs/2)

]
≡
∫ π

−π

dβs

↔
T −1

p (kF , τ, φ, βs), (16)

where |Fτ,φ (kF , βs)|2 has already been given by Eq. (15). It is evident from Eq. (16) that the off-diagonal elements of
↔
T −1

p (kF , τ, φ) become zero after the integral has been performed with respect to βs from −π to π , while the diagonal

elements of
↔
T −1

p (kF , τ, φ) are nonzero and different simultaneously. Physically, the diagonal elements of
↔
T −1

p (kF , τ, φ, βs)
correspond to the case in which directions of the scattering force and center-of-mass momentum are parallel to each other. The

off-diagonal elements of
↔
T −1

p (kF , τ, φ, βs), on the other hand, are related to a situation where the direction of the scattering
force is perpendicular to that of the center-of-mass momentum.

Formally, by denoting the results in Eq. (16) as

↔
T −1

p (kF , τ, φ) =
[

bxx(kF , τ, φ) 0
0 byy(kF , τ, φ)

]
, (17)

from Eqs. (E3) and (E5)–(E7) and μi j (kF , τ, φ) = (vF /kF ) ∂Kτ,φ
i /∂Ej , the mobility-tensor

↔
μ (kF , τ, φ) introduced in Eq. (11)

can easily be found as

↔
μ (kF , τ, φ) =

− evF

h̄kF

bxx(kF , τ, φ) byy(kF , τ, φ) +
(

evF Bz

h̄kF

)2

⎡
⎢⎣byy(kF , τ, φ) −evF Bz

h̄kF
evF Bz

h̄kF
bxx(kF , τ, φ)

⎤
⎥⎦, (18)

which depends on τ = ±1 and φ, where B⊥
0 = (0, 0, Bz ) introduces a normal Hall mobility (off-diagonal elements) due to

broken time-reversal symmetry. We would like to point out that the off-diagonal elements of
↔
T −1

p (kF , τ, φ, βs) in Eq. (16) can
be nonzero in principle if an anisotropic energy dispersion ε(k‖) contains a kx and ky crossing term, e.g., ε(k‖) ∝ kxky.

Finally, by using Eq. (18), we obtain two components of the vector C(kF , τ, φ, βs) = [Cx(kF , τ, φ, βs), Cy(kF , τ, φ, βs)] =
↔
T

−1
p (kF , τ, φ, βs) · [

↔
μ (kF , τ, φ) · E‖

0] introduced in Eq. (11) as

Cx(kF , τ, φ, βs) = −
(

evF

h̄kF

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

byy(kF , τ, φ)Ex −
(

evF Bz

h̄kF

)
Ey

bxx(kF , τ, φ) byy(kF , τ, φ) +
(

evF Bz

h̄kF

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dxx(kF , τ, φ, βs)

−
(

evF

h̄kF

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
evF Bz

h̄kF

)
Ex + bxx(kF , τ, φ)Ey

bxx(kF , τ, φ) byy(kF , τ, φ) +
(

evF Bz

h̄kF

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dxy(kF , τ, φ, βs) , (19)

Cy(kF , τ, φ, βs) = −
(

evF

h̄kF

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
evF Bz

h̄kF

)
Ex + bxx(kF , τ, φ)Ey

bxx(kF , τ, φ) byy(kF , τ, φ) +
(

evF Bz

h̄kF

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dyy(kF , τ, φ, βs)

−
(

evF

h̄kF

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

byy(kF , τ, φ)Ex −
(

evF Bz

h̄kF

)
Ey

bxx(kF , τ, φ) byy(kF , τ, φ) +
(

evF Bz

h̄kF

)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dxy(kF , τ, φ, βs), (20)
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FIG. 2. Calculated real part of the polarization function Re[Qφ (q‖, ω)] from Eq. (B2) with φ = π/4 (dice, green), π/6 (black), π/8 (blue),
and 0 (graphene, red) as a function of q‖ at h̄ω = 0 (a) and h̄ω/EF = 0.5 (b), as well as a function of h̄ω at q‖/kF = 0.3 (c) and q‖/kF = 0.7
(d). Here the unit of (k2

F /EF ) has been used for scaling Qφ (q‖, ω) in Eq. (B2).

which depend on Bz, τ = ±1, geometry phase φ, as well as on βs, where E‖
0 = (Ex, Ey, 0) is assumed. In addition,

dxx(kF , τ, φ, βs), dyy(kF , τ, φ, βs), and dxy(kF , τ, φ, βs) in Eq. (20) are given explicitly by

dxx(kF , τ, φ, βs) = Gs(kF , τ, φ, βs)(1 − cos βs), dyy(kF , τ, φ, βs) = Gs(kF , τ, φ, βs)(1 + cos βs),

dxy(kF , τ, φ, βs) = −Gs(kF , τ, φ, βs) sin βs, (21)

where the scattering function Gs(kF , τ, φ, βs), which depends on τ , φ, and βs, is defined as

Gs(kF , τ, φ, βs) = nik3
F

4π2h̄2vF ρ0
| sin3(βs/2)|

∣∣∣∣U τ
0 [2kF | sin(βs/2)|]

εφ[2kF | sin(βs/2)|]
∣∣∣∣
2

|Fτ,φ (kF , βs)|2. (22)

In Eqs. (19) and (20), the terms containing dxy(kF , τ, φ, βs) represent the contributions to skew scattering.

III. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical calculations, vF = 108 cm/s is the
graphene Fermi velocity, ρ0 = 5 × 1011 cm−2 the electron
areal density, kF = √

πρ0 = 1.25 × 106 cm−1 the Fermi
wave number of electrons, EF = h̄vF kF = 130 meV the elec-
tron Fermi energy, and ni = 2.5 × 1011 cm−2 the impurity
areal density. In addition, εr = 13 stands for the average
dielectric constant of a host for embedding α-T3 lattices,
V0/EF = 1.4 gives rise to the step height V0 for an impurity
potential, kF r0 = 7 decides the radius r0 of the step potential.
Finally, Ex = 0.5 kV/cm is the applied longitudinal electric
field, and Ey = 0 is the external transverse electric field.
The other parameters, such as φ (geometry phase), τ (valley
index), and Bz (perpendicular magnetic field), will be directly
given in figure captions.

Using Eq. (B2), we have shown in Fig. 2 the real part
of the polarization function Re[Qφ (q‖, ω)] as a function of
q‖ at h̄ω/EF = 0 [Fig. 2(a)] and 0.5 [Fig. 2(b)] and as a
function of h̄ω at q‖/kF = 0.3 [Fig. 2(c)] and 0.7 [Fig. 2(d)].
We know from Fig. 2(a) that all results with different φ

approach a finite constant as q‖ → 0 in the static limit (ω =
0), including graphene with φ = 0 within the whole region
of q‖/kF � 2. However, they increase significantly with q‖ as
q‖/kF > 2 and become strongly φ dependent. These features
in Fig. 2(a) change completely for h̄ω/EF = 0.5, as shown
in Fig. 2(b), where Re[Qφ (q‖, ω)] = 0 (i.e., no screening)
at q‖ = 0 for all values of φ. Figures 2(c) and 2(d) display
Re[Qφ (q‖, ω)] as a function of h̄ω at q‖/kF = 0.3 [Fig. 2(c)]
and 0.7 [Fig. 2(d)], where a sharp and nearly φ-independent
negative peak shifts up rapidly in frequency as q‖ increases.
Moreover, a series of intersections with the thin dashed line
(i.e., Re[Qφ (q‖, ω)] = 0) is seen in the two insets in Figs. 2(c)
and 2(d). This highlights a sign switch of Re[Qφ (q‖, ω)]
and implies the existence of a set of φ-dependent plasmon
resonances determined from Re[Qφ (q‖, ω)] = −αq‖/kF with
α = 2ε0εr h̄vF /e2 on the right-hand-side shoulder of this nega-
tive peak. As seen from the dielectric function in Eq. (B1), the
nonzero flat-band part in Eq. (B2) can be obtained separately
by using Eq. (B4), which represents the flat-band contribution
to the screening of impurity scattering.
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FIG. 3. Calculated square of the dimensionless form factor |Fτ,φ (k‖, βs )|2 from Eq. (15) with φ = π/6 and π/8 as a function of βs at
k‖/kF = 0.8 (a) and as a function of k‖ at βs = π/8 (b) for τ = 1 (black) and τ = −1 (red); as well as thermally averaged energy-relaxation
time τ̄φ (kF , τ ) calculated from Eq. (14) as a function of φ for τ = 1 (black) and τ = −1 (green) under both unscreened (c) and screened
(d) conditions. Here the unit of (π 2 h̄/4EF ) has been used for scaling τ̄φ (kF , τ ).

The form factor |Fτ,φ (k‖, βs)| defined in Eq. (15) intro-
duces different effects from various geometry phases (φ) on
scattering-angle (βs) dependence for both energy-relaxation
time in Eq. (14) and momentum-relaxation time in Eqs. (16)
and (22) compared with special cases of graphene (φ = 0)
and dice lattice φ = π/4. We present the calculated square of
the form factor |Fτ,φ (k‖, βs)|2 in Fig. 3 for τ = ±1 by using
Eq. (15) as a function of the scattering angle βs at k‖/kF = 0.8
[Fig. 3(a)] and as a function of the wave number k‖/kF at βs =
π/8 [Fig. 3(b)] with φ = π/8 and π/6. From Fig. 3(a) we find
either a single peak or double peaks with respect to βs for τ =
1 (black, left scale) or τ = −1 (red, right scale), respectively.
This valley-dependent behavior of |Fτ,φ (k‖, βs)|2 is attributed
to different barrierlike (traplike) impurity scattering for τ =
1 (τ = −1), and the latter only acquires a weak strength.
Moreover, we find from Fig. 3(b) that significant difference
in |Fτ,φ (k‖, βs)|2 for τ = ±1 exists only for large k‖ values
(k‖/kF � 0.5). This valley dependence of |Fτ,φ (k‖, βs)|2 has
a profound influence on the energy-relaxation time τ̄φ (kF , τ ),
as demonstrated by Figs. 3(c) and 3(d), where τ̄φ (kF , τ )
calculated from Eq. (14) is displayed as a function of Berry
phase φ for τ = 1 and −1 under both unscreened [Fig. 3(c)]
with εφ (q‖, ω) ≡ 1 and screened [Fig. 3(d)] conditions. By
comparing Fig. 3(c) with Fig. 3(d), it is apparent that the
strength of impurity scattering can be overestimated by almost
two orders of magnitude if the many-body screening effect has
been neglected. Meanwhile, τ̄φ (kF , τ ) increases monotoni-
cally with φ, and it becomes larger for τ = −1, in comparison
with that for τ = 1, due to a weaker traplike impurity scat-
tering of electrons. Furthermore, the difference in τ̄φ (kF , τ )

under screening for two valleys remains unchanged for all
values of φ.

The same form factor |Fτ,φ (k‖, βs)| also leads to a unique
φ dependence for two diagonal elements of an inverse
momentum-relaxation-time tensor in Eq. (17). The calculated
two diagonal elements, bxx(kF , τ, φ) and byy(kF , τ, φ), of the

inverse momentum-relaxation-time tensor
↔
T −1

p (kF , τ, φ) in
Eq. (17) are presented in Figs. 4(a) and 4(b) as a function
of φ for τ = 1 and −1, respectively. We first notice from
Fig. 4(b) that bxx(kF , τ, φ) is lower than byy(kF , τ, φ), but
both of them decrease monotonically with φ in a similar
way. Also, we would like to point out that the rate difference
δb ≡ bxx(kF , τ, φ) − byy(kF , τ, φ), as shown by the inset in
Fig. 4(a), decreases with φ initially but switches to negative
and saturates afterwards for large φ values. Contrary to the
result in Fig. 4(b), we find bxx(kF , τ, φ) > byy(kF , τ, φ) in
Fig. 4(a) before the sign switch of δb. Moreover, bxx(kF , τ, φ)
and byy(kF , τ, φ) in Fig. 4(a) are more than two orders of mag-
nitude higher than those in Fig. 4(b), implying an enhanced
momentum-dissipation rate for electrons at the τ = 1 valley
due to much larger |Fτ,φ (k‖, βs)|2 for τ = 1 and k‖ = kF in
Fig. 3(b).

In Fig. 5 we exhibit two diagonal elements, μxx(kF , τ, φ)
[Figs. 5(a) and 5(b)] and μyy(kF , τ, φ) [Figs. 5(e) and 5(f)],
as well as the off-diagonal element, μxy(kF , τ, φ) [Figs. 5(c)

and 5(d)], of the mobility tensor
↔
μ (kF , τ, φ) in Eq. (18)

as a function of magnetic field Bz for four different Berry
phases and τ = ±1. By comparing Figs. 5(a), 5(c), and
5(e) for τ = 1 with Figs. 5(b), 5(d), and 5(f) for τ = −1,
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FIG. 4. Calculated diagonal elements bxx (kF , τ, φ) for τ = 1 (a) and both bxx (kF , τ, φ) and byy(kF , τ, φ) for τ = −1 (b) of the inverse

momentum-relaxation-time tensor
↔
T −1

p (kF , τ, φ) in Eq. (17) as functions of φ, where the difference δb ≡ bxx (kF , τ, φ) − byy(kF , τ, φ) for τ =
1 is also presented in the inset (i1) and the dashed line corresponds to δb = 0 to highlight its sign switching. Here the unit of 1/τ0 = 4EF /π 2 h̄
has been used for scaling bxx (kF , τ, φ) and byy(kF , τ, φ).

we discover significant difference between their dependence
and magnitudes due to two orders of magnitude change in
bxx(kF , τ, φ) and byy(kF , τ, φ) in Fig. 4 for τ = 1 and −1.
The longitudinal mobilities μxx(kF , τ, φ) and μyy(kF , τ, φ),
related to back scattering of electrons, are somewhat sup-

pressed not only by increasing the Lorentz force (or increasing
Bz) in position space due to cyclotron motion, but also by
decreasing the Berry force [or decreasing Berry curvature
�τ,φ

s (k‖)] in momentum space. For high Bz, we arrive at
μxx, μyy ∼ 1/B2

z , corresponding to a classical limit. In ad-

FIG. 5. Calculated diagonal elements μxx (kF , τ, φ) (a) and (b) and μyy(kF , τ, φ) (e) and (f), as well as off-diagonal element μxy(kF , τ, φ)

in logarithm scale (c) and (d), of the mobility tensor
↔
μ (kF , τ, φ) given by Eq. (18) as a function of Bz with φ = π/4 (green), φ = π/6 (blue),

φ = π/8 (red), and φ = 0 (black) for τ = 1 (a), (c), and (e) and τ = −1 (b), (d), and (f). Here μ0 = 4e/π 2 h̄k2
F has been used for scaling all

elements of
↔
μ (kF , τ, φ) and B0 = h̄k2

F /e.
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FIG. 6. Calculated integrands of longitudinal jL (τ, φ) (a) and (b) and transverse jT (τ, φ) (c) and (d) scattering currents from Eq. (13) as a
function of βs ∈ [−π, π ] with φ = π/4, Bz/B0 = 0.01 (blue), φ = π/6, Bz/B0 = 0.01 (red), and φ = π/6, Bz/B0 = 0.005 (black) for τ = 1
(a) and (c) and τ = −1 (b) and (d). Here the unit of j0 = nievF has been used for scaling both jL (τ, φ) and jT (τ, φ) and B0 is given in Fig. 5.

dition, the transverse mobility μxy(kF , τ, φ), connected to
skew scattering of electrons, also decreases with reduced
Berry force in momentum space at low Bz, where an initial
sharp increase [logarithm scale in Figs. 5(c) and 5(d)] of
μxy(kF , τ, φ) is found slightly above Bz = 0 but it quickly
changes to decreasing with Bz until a classical limit, i.e.,
μxy ∼ 1/Bz, is reached in the strong-field limit. The calculated
magnetic-field dependence in both diagonal and off-diagonal
elements of a mobility tensor defined in Eq. (18) can be
verified experimentally by using the so-called time-of-flight
technique [42].

After presenting a full calculation of physical parameters
of α-T3 lattices in Figs. 2–5, we turn to discussions on
valley-dependent electrical responses, i.e., gVHE on directly
measurable sheet current density. To clearly reveal valley
scattering dynamics, we show in Fig. 6 the scattering-angle
(βs) distributions of longitudinal jL(τ, φ, βs) [Figs. 6(a) and
6(b)] and transverse jT (τ, φ, βs) [Figs. 6(c) and 6(d)] cur-
rents given by Eq. (13) with various Berry phases φ and
Bz for τ = 1 [Figs. 6(a) and 6(c)] and τ = −1 [Figs. 6(b)
and 6(d)]. From Figs. 6(a) and 6(b) we see a triplet peak in
jL(τ, φ) with opposite signs for βs > 0 and βs < 0. Much
more interestingly, we always find one backward plus one
forward near-vertical (near-horizontal) scattering of electrons
from two different valley impurities, characterized by τ =
1 (τ = −1) here. As expected, jL(τ, φ) for τ = 1 is one
order of magnitude higher than that for τ = −1 because of a
larger mobility for the former. The increase of Bz significantly
reduces jL(τ, φ) at φ = π/6 for both τ = ±1 (black and
red) due to cyclotron motion. Meanwhile, the increase of
Berry phase φ further reduces jL(τ, φ) at Bz/B0 = 0.01 for
both τ = ±1 (red and blue) due to decreasing Berry force.
Furthermore, the negative triplet peak is always present for
jT (τ, φ) in both βs > 0 and βs < 0 regions, as shown in

Figs. 6(c) and 6(d). Here jT (τ, φ) exhibits the same depen-
dence as for the triplet peak in jL(τ, φ) on Bz and φ. In this
case, however, one always finds a counterclockwise tangential
current jT (τ, φ) for dominant near-horizontal forward and
backward scattering of electrons with an impurity at both
valleys.

In order to gain a better physics picture about the valley-
dependent triplet peak of the longitudinal scattering currents
in Figs. 6(a) and 6(b), we present in Fig. 7 the back-scattering
current-distribution component Cx(kF , τ, φ, βs) from Eq. (19)
as a function of either Bz or βs, as well as 2D contour plots
of Cx(kF , τ, φ, βs) as a function of both φ and Bz for τ = 1
(τ = −1) and βs = −5π/8 (βs = −9π/40), respectively. We
find from Figs. 7(a) and 7(b) that for all cases Cx(kF , τ, φ, βs)
is initially increased but subsequently reduced by a magnetic
field for both τ = ±1. Increasing φ from π/6 (black) to π/4
(green) at fixed βs = π/6 can switch the sign of (reduce)
Cx(kF , τ, φ, βs) for τ = 1 (τ = −1) at low Bz. An oppo-
site situation occurs at βs = π/3, but experiences a smaller
change for τ = 1. On the other hand, from Figs. 7(c) and 7(d)
we see one backward plus one forward weak near-vertical
(very strong near-horizontal) scattering for τ = 1 (τ = −1),
respectively, with similar features as those found in Figs. 6(a)
and 6(b) for their dependence on Bz and φ. The contour plot
at βs = −5π/8 and τ = 1 in Fig. 7(e) displays an “island”
in Cx(kF , τ, φ, βs) at the left side of this panel associated
with low φ and intermediate Bz values. For τ = −1 and βs =
−9π/40 in Fig. 7(f), however, only a negative peak at bottom
is found for very low Bz. Such distinctive features in Figs. 7(e)
and 7(f) present a clear proof to the existence of gVHE in the
current system.

We also plot in Fig. 8 the skew-scattering current-
distribution component Cy(kF , τ, φ, βs) from Eq. (20) as a
function of Bz and βs, as well as 2D contour plots of
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FIG. 7. (a)–(d) Back-scattering current-distribution component Cx (kF , τ, φ, βs ) from Eq. (19) as a function of Bz (a) and (b) with φ =
π/4, βs = π/6 (green), φ = π/6, βs = π/6 (black), φ = π/4, βs = π/3 (blue), and φ = π/6, βs = π/3 (red) for τ = 1 (a) and τ = −1
(b), as well as a function of βs with φ = π/6, Bz/B0 = 0.05 (black), φ = π/6, Bz/B0 = 0.1 (red), and φ = π/4, Bz/B0 = 0.1 (blue) for
τ = 1 (c) and τ = −1 (d). 2D contour plots of Cx (kF , τ, φ, βs ) (e) and (f) as a function of both φ and Bz for βs = −5π/8 and τ = 1 (e) and for
βs = −9π/40 and τ = −1 (f). Here two green circles in (c) and (d) indicate large back-scattering current peaks at βs ≈ −5π/8 (βs ≈ −9π/40)
for τ = 1 (τ = −1), respectively. In addition, the unit of C0 = 4kF v2

F /π 2 has been used for scaling Cx (kF , τ, φ, βs ) and B0 is given in Fig. 5.

Cy(kF , τ, φ, βs) as a function of both φ and Bz for τ =
1 (τ = −1) and βs = −3π/10 (βs = −π/4), respectively.
We observe from Figs. 8(a) and 8(b) that for all cases
Cy(kF , τ, φ, βs) initially switches sign slow (fast) but sub-
sequently decreases with Bz for τ = 1 (τ = −1), different
from the results in Figs. 7(a) and 7(b). Increasing φ from
π/6 (red) to π/4 (blue) at βs = π/3 will reduce (enhance)
Cy(kF , τ, φ, βs) for τ = 1 (τ = −1) at very low Bz. How-
ever, Cy(kF , τ, φ, βs) is always enhanced with φ for another
scattering angle at βs = π/6 with a bigger variation for τ =

−1. From Figs. 8(c) and 8(d) we only see a strong (weak)
sharp negative triplet skew-scattering peak in the full region
of βs with similar features as those found in Figs. 6(c) and
6(d) for their dependence on Bz and φ at τ = 1 (τ = −1).
This leads to upward currents for both near-vertical (near-
horizontal) forward and backward scattering at τ = 1 (τ =
−1), respectively. The contour plot with βs = −3π/10 and
τ = 1 in Fig. 8(e) again reveals a unique strong negative peak
in Cy(kF , τ, φ, βs) at the lower-right corner of this panel. For
τ = −1 and βs = −π/4 in Fig. 8(f), on the other hand, only
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FIG. 8. (a)–(d) Skew-scattering current-distribution component Cy(kF , τ, φ, βs ) from Eq. (20) as a function of Bz (a) and (b) with φ =
π/4, βs = π/6 (green), φ = π/6, βs = π/6 (black), φ = π/4, βs = π/3 (blue), and φ = π/6, βs = π/3 (red) for τ = 1 (a) and τ = −1
(b), as well as a function of βs with φ = π/6, Bz/B0 = 0.05 (black), φ = π/6, Bz/B0 = 0.1 (red), and φ = π/4, Bz/B0 = 0.1 (blue) for
τ = 1 (c) and τ = −1 (d). (e) and (f) 2D contour plots of Cy(kF , τ, φ, βs ) as a function of both φ and Bz for βs = −3π/10 and τ = 1 (e)
and for βs = −π/4 and τ = −1 (f). Here two green circles in (c) and (d) indicate large skew-current peaks at βs ≈ −3π/10 (βs = −π/4) for
τ = 1 (τ = −1), respectively. In addition, C0 and B0 are given in Figs. 7 and 5, respectively.

one negative peak at bottom is seen for very small Bz, similar
to that in Fig. 7(f).

For a comparison with experimentally measurable cur-
rents, we display in Fig. 9 the calculated total back-scattering
current j1x(τ, φ) in Figs. 9(a) and 9(b), as well as total
skew-scattering current j1y(τ, φ) in Figs. 9(c) and 9(d), from
Eq. (11) as a function of Bz with various phases φ for τ =
1 [Figs. 9(a) and 9(c)] and τ = −1 [Figs. 9(b) and 9(d)].
From Figs. 9(a) and 9(b) we see a slow (fast) monotonic
decrease of j1x(τ, φ) with increasing Bz in the scale of ∼1/B2

z
for τ = 1 (τ = −1) due to cyclotron motion. Such different
behaviors are attributed to lower (higher) mobility at the τ = 1
(τ = −1) valley. However, increasing φ reduces j1x(τ, φ) for

both τ = ±1, similar to the observed behaviors in Figs. 5(a)
and 5(b). For j1y(τ, φ) in Figs. 9(c) and 9(d), on the other
hand, the same Lorentz force initially strengthens j1y(τ, φ)
dramatically for all values of φ and τ = ±1 at very low Bz but
eventually weakens j1y(τ, φ) slowly (quickly) for τ = 1 (τ =
−1) in the strong-field limit (in the scale of ∼1/Bz) due to
cyclotron motion of electrons. Such a huge initial increase in
j1y(τ, φ) at very low Bz is greatly suppressed in graphene with
the maximum Berry force at φ = 0 (black). Consequently, a
Berry-phase dependent asymmetry in suppressing the skew
currents by electron cyclotron motion can be seen by directly
comparing Fig. 9(c) with Fig. 9(d). For a gVHE, the Berry
phase can be used for mediating the VHE. In our case, an
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FIG. 9. Calculated nonequilibrium total back-scattering current j1x (τ, φ) (a) and (b) and total skew-scattering current j1y(τ, φ) (c) and
(d) from Eq. (11) as a function of Bz with φ = π/4 (green), φ = π/6 (blue), φ = π/8 (red), and φ = 0 (black) for τ = 1 (a) and (c) and
τ = −1 (b) and (d). Here B0 and j0 are given in Figs. 5 and 6, respectively.

external magnetic field can be employed further to control
this gVHE. Experimentally, one can directly measure both the
back-scatter and the skew-scattering nonequilibrium electrical
currents calculated by Eq. (11) as a function of perpendicular
magnetic field Bz using the standard van der Pauw method
[43] so as to verify unique features associated with different
geometry phases φ at low Bz, including graphene and dice lat-

tice. In this case, however, the contributions from equilibrium
longitudinal and Hall currents in Fig. 10 (see discussions of
Fig. 10 below) should be deducted from the corresponding
total current measured.

Finally, from Eq. (12) we know there exists another
conduction current j2(τ, φ) even in the thermal-equilibrium
state due to Berry curvature �⊥(k‖), leading to the

FIG. 10. Calculated thermal-equilibrium Berry-curvature induced longitudinal current j2x (τ, φ) (a) and (b) and Hall current j2y(τ, φ)
(c) and (d) from Eq. (12) as a function of Bz with φ = π/4 (green), φ = π/6 (blue), φ = π/8 (red), and φ = 0 (black) for τ = 1 (a) and
(c) and τ = −1 (b) and (d). Here B0 and j0 are given in Figs. 5 and 6, respectively.
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so-called anomalous Hall effect (AHE) if φ �= π/4. Figure 10
presents the calculated AHE current components j2x(τ, φ) in
Figs. 10(a) and 10(b) and j2y(τ, φ) in Figs. 10(c) and 10(d).
Since j2(τ, φ) is proportional to τ (i.e., valley dependent), we
expect the opposite signs in Figs. 10(a) and 10(b) for j2x(τ, φ)
and in Figs. 10(c) and 10(d) for j2y(τ, φ). As an indication of
gVHE, the increase of the Berry force (or reducing φ) in mo-
mentum space will slowly (quickly) enlarge j2x(τ, φ) at small
Bz and j2y(τ, φ) at Bz = 0 simultaneously due to large (small)
mobility at τ = 1 (τ = −1). However, this AHE current is
always weakened by the Lorentz force (or increasing Bz) in
position space for large Bz, where j2x(τ, φ) is induced only by
one term ∼BzμxxEx, while j2y(τ, φ) is generated by two terms
∼(1 + Bzμyx )Ex. Therefore, j2x(τ, φ) decreases like ∼1/Bz

in the high-field limit. Meanwhile, j2y(τ, φ) also approaches
zero in the same strong-field limit but it scales as ∼1/B2

z .
Since there are two orders of magnitude difference in μxx and
μyx for τ = 1 and −1, we expect the decrease in j2x(τ, φ)
and j2y(τ, φ) to become much faster at the τ = −1 valley,
and therefore a net AHE current (sum of currents from both
valleys) exists and will be dominated by the τ = 1 valley for
large Bz. We can make use of the experimentally measured
mobility tensor and Eq. (12) to independently quantify the
Berry-curvature induced longitudinal and Hall currents as a
function of perpendicular magnetic field Bz.

IV. CONCLUSIONS AND REMARKS

In conclusion, we have demonstrated the Berry-phase me-
diation to valley-dependent Hall transport in α-T3 lattices.
We analyze and explain the found interplay between the
Lorentz force in position space and the Berry force in mo-
mentum space for the total sheet current density including
both normal conduction and Hall currents as well as anoma-
lous Hall current. We also include many-body screening ef-
fects on electron-impurity interactions, which is crucial for
avoiding overestimation of elastic scattering. We further find

triplet peak at two distinct valleys and in near-horizontal and
near-vertical scattering directions for forward- and back-
scattering current, which favor small Berry phases and low
magnetic fields. We also show a magnetic-field dependence
of both nonequilibrium and thermal-equilibrium conduction
currents from Berry-phase-mediated and valley-dependent
longitudinal and transverse transport.

In our theory we have employed the first two Boltzmann
moment equations in calculations of scattering-angle dis-
tributions for extrinsic skew-scattering currents due to the
presence of random impurities in α-T3 lattices, where both
energy- and momentum-relaxation times are computed mi-
croscopically. We attribute this scattering-angle dependence
to an anisotropic inverse momentum-relaxation-time tensor
calculated within the screened second-order Born approx-
imation and using a static dielectric function within the
random-phase approximation. Meanwhile, we also include the
isotropic intrinsic current due to Berry curvature for electrons
in thermal-equilibrium states. Under a perpendicular non-
quantizing magnetic field, we find an interplay by Lorentz and
valley-dependent resistive forces acting on electrons, leading
to field-dependent skew currents. We further find these skew
currents can be mediated by Berry phases of α-T3 lattices
and depend on barrier- or trap-type impurity potentials at two
inequivalent valleys.
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APPENDIX A: IMPURITY SCATTERING MATRIX

For impurity scattering of electrons in an α-T3 lattice, the initial |i〉 and final | f 〉 states for Bloch electrons with wave vectors

k‖ and k′
‖ can be written as |i〉 = eik‖·r‖√

S |s, τ, k‖〉φ and | f 〉 = e
ik′‖ ·r‖√
S |s, τ, k′

‖〉φ , where |s, τ, k‖〉φ is given by Eq. (2) and S is the
sheet area. We assume an isotropic sublattice-selected steplike impurity-scattering potential, i.e., uτ

0 (r‖) = τV0 �(r0 − r‖), for
electrons, where V0 is the step height, r0 represents the interaction range, and τ = +1 (or τ = −1) corresponds to a barrierlike
(or traplike) impurity potential. As a result, the screened impurity scattering matrix is found to be [44]

U τ,φ

im (k′
‖, k‖) =

∑
q′

‖

U τ
0 (q′

‖)

εφ (q′
‖)

〈 f |eiq′
‖·r‖ |i〉 =

∑
q′

‖

U τ
0 (q′

‖)

εφ (q′
‖)

×
∑

�

〈 f |�〉τ,φ τ,φ〈� |eiq′
‖·r‖ |i〉 = 1

2S
∑

q′
‖

U τ
0 (q′

‖)

εφ (q′
‖)

∑
�

∫
r′
‖�r0

d2r′
‖ e−ik′

‖·r′
‖

e
i��r′‖

√
2π

× {τ cos φ e
−iτ (�r′‖

−θk′‖
)R1(r′

‖) + sR2(r′
‖) + τ sin φ e

iτ (�r′‖
−θk′‖

)R3(r′
‖)
} ∫

r‖�r0

d2r‖ ei(q′
‖+k‖ )·r‖

× e−i��r‖
√

2π

{
τ cos φ eiτ (�r‖ −θk‖ )R∗

1(r‖) + sR∗
2(r‖) + τ sin φ e−iτ (�r‖ −θk‖ )R∗

3(r‖)
}
, (A1)
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where U0(q′
‖)/εφ (q′

‖) is the 2D Fourier transform of the screened impurity potential, and

|�〉τ,φ = ei��r‖
√

2π

⎡
⎢⎣
R1(r‖) e−iτ�r‖

R2(r‖)

R3(r‖) eiτ�r‖

⎤
⎥⎦

are the intermediate quantum states for scattered electrons by an ionized impurity atom with a locally spherical symmetry [see
Eq. (C7) below] at the valley |τ 〉. Moreover, the first integral with respect to r′

‖ in Eq. (A1) can be evaluated analytically and
gives rise to

Integral-r′
‖ =

∫ r0

0
dr′

‖ r′
‖

∫ 2π

0
d�r′

‖
e

i��r′‖
√

2π

∑
m

Jm(k′
‖r′

‖) e
−im(θk′‖

−�r′‖
)
(−i)m

× {τ cos φ e
−iτ (�r′‖

−θk′‖
)R1(r′

‖) + sR2(r′
‖) + τ sin φ e

iτ (�r′‖
−θk′‖

)R3(r′
‖)
}

=
√

2π (−i)� e
i�θk′‖

∫ r0

0
dr′

‖ r′
‖[(−i)−τ τ cos φ J�−τ (k′

‖r′
‖)R1(r′

‖)

+ sJ�(k′
‖r′

‖)R2(r′
‖) + (−i)τ τ sin φ J�+τ (k′

‖r′
‖)R3(r′

‖)].

Similarly, for the second integral with respect to r‖ in Eq. (A1), we have

Integral-r‖ =
∫ r0

0
dr‖ r‖

∫ 2π

0
d�r‖

e−i��r‖
√

2π

∑
m

Jm(|k‖ + q′
‖|r‖) e

im(θk‖+q′‖
−�r‖ )

(i)m

× {τ cos φ eiτ (�r‖ −θk‖ )R∗
1(r‖) + sR∗

2(r‖) + τ sin φ e−iτ (�r‖ −θk‖ )R∗
3(r‖)

}
=

√
2π (i)� e

−i�θk‖+q′‖

∫ r0

0
dr‖ r‖

{
(−i)τ τ cos φ J�−τ (|k‖ + q′

‖|r‖)R∗
1(r‖) e

iτβs
k‖ ,q′‖

+ sJ�(|k‖ + q′
‖|r‖)R∗

2(r‖) + (−i)−τ τ sin φ J�+τ (|k‖ + q′
‖|r‖)R∗

3(r‖) e
−iτβs

k‖ ,q′‖
}
,

where βs
k‖,q′

‖
= θk‖+q′

‖ − θk‖ is the scattering angle. Finally, by combining the results for these two integrals and inserting them

into Eq. (A1) we obtain a simple expression

U τ,φ

im (k‖ + q‖, k‖) = U τ
0 (q‖)

εφ (q‖)S Fτ,φ (k‖, q‖), (A2)

where the form factor Fτ,φ (k‖, q‖) is defined as

Fτ,φ (k‖, q‖) = 1

2

∑
�

{(−i)−τ τ cos φ χ1(|k‖ + q‖|) + sχ2(|k‖ + q‖|) + (−i)τ τ sin φ χ3(|k‖ + q‖|)}

× {(−i)τ τ cos φ χ∗
1 (|k‖ + q‖|) e

iτβs
k‖ ,q‖ + sχ∗

2 (|k‖ + q‖|) + (−i)−τ τ sin φ χ∗
3 (|k‖ + q‖|) e

−iτβs
k‖ ,q‖
}
. (A3)

Furthermore, we have introduced the notations in Eq. (A3), given by⎧⎨
⎩

χ1(|k‖ + q‖|)
χ2(|k‖ + q‖|)
χ3(|k‖ + q‖|)

⎫⎬
⎭ =

√
2π

∫ r0

0
dr‖ r‖

⎧⎨
⎩

J�−τ (|k‖ + q‖|r‖)R1(r‖)
J�(|k‖ + q‖|r‖)R2(r‖)
J�+τ (|k‖ + q‖|r‖)R3(r‖)

⎫⎬
⎭, (A4)

where a wave-function normalization factor should be included as shown in Eq. (C6).

APPENDIX B: DIELECTRIC FUNCTION

Under the random-phase approximation [45], the dielectric function εφ (q‖, ω) for α-T3 lattices is calculated as

εφ (q‖, ω) = 1 +
(

e2

2ε0εrq‖

)
Qφ (q‖, ω), (B1)

where the polarization function Qφ (q‖, ω) is given by

Qφ (q‖, ω) = 2

S
∑

τ,k‖,s,s′
Gτ,φ

s,s′ (k‖, q‖)

{
f (0)
T [εs′ (|k‖ + q‖|)] − f (0)

T [εs(k‖)]

h̄(ω + i0+) − εs′ (|k‖ + q‖|) + εs(k‖)

}
. (B2)
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Here the prefactor 2 comes from the spin degeneracy, S is the sheet area, εs(k‖) = sh̄vF k‖ for s = 0, ±1, ω is the angular
frequency of a probe field, f (0)

T (x) = {1 + exp[(x − u0)/kBT ]}−1 is the Fermi function for electrons in thermal-equilibrium
states, u0(T ) is the chemical potential for doped electrons, and T is the temperature. In addition, the overlap integral Gτ,φ

s,s′ (k‖, q‖)
introduced in Eq. (B2) is defined by

Gτ,φ

s,s′ (k‖, q‖) = Gτ,φ

s′,s (q‖, k‖) = |φ〈s, τ, k‖|s′, τ, k‖ + q‖〉φ|2, (B3)

and the wave functions |s, τ, k‖〉φ for s = 0, ±1 and τ = ±1 are given by Eqs. (2) and (3). At low T , the remaining nonzero
terms in Eq. (B2) in the summation over s and s′ correspond to s′ = +1, s = 0, ±1, or vice versa. Therefore, we get three finite
terms [20] from Eq. (B3):

Gτ,φ

0,+1(k‖, q‖) = 1
2 sin2(2φ) sin2

(
βs

k‖,q‖

)
, (B4)

Gτ,φ

±1,+1(k‖, q‖) = 1
4

{
1 ± cos

(
βs

k‖,q‖

)}2 + 1
4 cos2(2φ) sin2

(
βs

k‖,q‖

)
, (B5)

which are independent of τ = ±1, where βs
k‖,q‖ = θk‖+q‖ − θk‖ is the angle between two wave vectors k‖ and k‖ + q‖, and

θk‖ = tan−1(ky/kx ) is the angle between k‖ and x axis.
After setting ω = 0, we obtain the static dielectric function εφ (q‖) from Eq. (B1) using

Qφ (q‖, ω = 0) = aφ (q‖) + �(q‖ − 2kF ) bφ (q‖), (B6)

where kF = √
πρ0, and ρ0 is the areal density of doped electrons. If q‖ < 2kF is further assumed, we find qφ =

(e2/2ε0εr ) aφ (q‖) ≈ (e2kF )/(πε0εr h̄vF ) for εφ (q‖) = 1 + qφ/q‖. As q‖ � kF , aφ (q‖) becomes independent of φ and is given
by [20]

aφ (q‖) = 1

2π h̄vF

(
4kF + q2

‖
kF

)
≈ 2kF

π h̄vF
. (B7)

APPENDIX C: ENERGY-RELAXATION TIME

By using the detailed-balance condition, the microscopic energy-relaxation time τφ (k‖, τ ) introduced in Eq. (7) can be
calculated according to [41]

1

τφ (k‖, τ )
= Wτ,φ

in (k‖) + Wτ,φ
out (k‖), (C1)

where the scattering-in rate for electrons in the final k‖ state is

Wτ,φ

in (k‖) = πNi

h̄

∑
q‖

∣∣U τ,φ

im (q‖, k‖)
∣∣2 { fk‖−q‖ δ(εk‖ − εk‖−q‖ ) + fk‖+q‖ δ(εk‖ − εk‖+q‖ )}, (C2)

and the scattering-out rate for electrons in the initial k‖ state is

Wτ,φ
out (k‖) = πNi

h̄

∑
q‖

∣∣U τ,φ

im (q‖, k‖)
∣∣2 {(1 − fk‖+q‖ ) δ(εk‖+q‖ − εk‖ ) + (1 − fk‖−q‖ ) δ(εk‖−q‖ − εk‖ )}. (C3)

Here, for simplicity, we have introduced the notations fk‖ ≡ f (0)
T [ε(k‖)] and εk‖ ≡ ε+(k‖). We have also assumed low T and ρ0 so

that both phonon and pair scattering can be neglected in comparison with dominant impurity scattering. In addition, Ni represents

the number of randomly distributed ionized impurities in the system, and |U τ,φ

im (q‖, k‖)|2 comes from the random-impurity
scattering within the second-order Born approximation.

Explicitly, using the results in Appendix A, we write down the expression for the screened impurity scattering interaction as

∣∣U τ,φ

im (q‖, k‖)
∣∣2 =

∣∣∣∣ U τ
0 (q‖)

εφ (q‖)S

∣∣∣∣
2

|Fτ,φ (k‖, q‖)|2, (C4)

where S is the sheet area, and εφ (q‖) is a static dielectric function [see Eqs. (B1) and (B6)]. In addition, the scattering form
factor Fτ,φ (k‖, q‖) in Eq. (C4) is given by

Fτ,φ (k‖, q‖) = 1

2

∑
�

{(−i)−τ τ cos φ χ1(|k‖ + q‖|) + sχ2(|k‖ + q‖|) + (−i)τ τ sin φ χ3(|k‖ + q‖|)}

× {(−i)τ τ cos φ χ∗
1 (|k‖ + q‖|) e

iτβs
k‖ ,q‖ + sχ∗

2 (|k‖ + q‖|) + (−i)−τ τ sin φ χ∗
3 (|k‖ + q‖|) e

−iτβs
k‖ ,q‖ }. (C5)
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where s = +1 is selected for doped electrons, τ = ±1 for two inequivalent valleys, α = tan φ is the parameter identifying
nonequivalent crystalline sublattices, βs

k‖,q‖ ≡ θk‖+q‖ − θk‖ is the scattering angle, θk‖ = tan−1(ky/kx ), and θk‖+q‖ = tan−1[(ky +
qy)/(kx + qx )]. Furthermore, we define the scattering factors in Eq. (C5) by

1√
2π

⎧⎨
⎩

χ1(|k‖ + q‖|)
χ2(|k‖ + q‖|)
χ3(|k‖ + q‖|)

⎫⎬
⎭ =

{∫ 1

0
dξ ξ (|R1(ξ )|2 + |R2(ξ )|2 + |R3(ξ )|2)

}−1/2 ∫ 1

0
dξ ξ

⎧⎨
⎩

J�−τ (|k‖ + q‖|r0ξ )R1(ξ )
J�(|k‖ + q‖|r0ξ )R2(ξ )
J�+τ (|k‖ + q‖|r0ξ )R3(ξ )

⎫⎬
⎭, (C6)

where J�(x) is the Bessel function of the first kind, � is the angular-momentum quantum number, and r0 is the range of impurity
interaction. In addition, the radial parts of the wave function R1(ξ ), R2(ξ ), and R3(ξ ), introduced in Eq. (C6), satisfy the
following matrix-form Dirac equation for massless three-component generalization of Dirac-Weyl particles [31]⎡
⎢⎢⎢⎣

uτ
0 (ξ ) − iτ h̄vF cos φ

r0

(
d

dξ
+ τ�

ξ

)
0

− iτ h̄vF cos φ

r0

(
d

dξ
− τ (�−τ )

ξ

)
uτ

0 (ξ ) − iτ h̄vF sin φ

r0

(
d

dξ
+ τ (�+τ )

ξ

)
0 − iτ h̄vF sin φ

r0

(
d

dξ
− τ�

ξ

)
uτ

0 (ξ )

⎤
⎥⎥⎥⎦
⊗⎡

⎣R1(ξ )
R2(ξ )
R3(ξ )

⎤
⎦ = E0(k‖)

⎡
⎣R1(ξ )
R2(ξ )
R3(ξ )

⎤
⎦, (C7)

where E0(k‖) represents the given kinetic energy of incident electrons, uτ
0 (ξ ) = τV0 �(1 − ξ ) for a barrierlike (τ = +1) or a

traplike (τ = −1) impurity potential, V0 is a potential-step height in the region of 0 � ξ = r/r0 � 1, and

U τ
0 (q‖) = τV0(2πr2

0 )
∫ 1

0
dξ ξJ0(ξr0q‖) (C8)

is the Fourier transform of the scattering potential uτ
0 (ξ ). It is clear from Eqs. (C5)–(C7) that Fτ,φ (k‖, q‖) �= F−τ,φ (k‖, q‖) and

χ1(|k‖ + q‖|) �= χ3(|k‖ + q‖|) if φ �= π/4, which gives rise to valley-dependent impurity scattering. This can be attributed to the
change from the translational symmetry in a crystal to locally rotational symmetry around an impurity atom., as well as to the
valley-dependent barrierlike or traplike impurity potential.

The matrix-form Dirac equation in Eq. (C7) can be solved analytically [31], yielding the solutions for ξ � 1,⎡
⎣R

τ
1,�(ξ )

Rτ
2,�(ξ )

Rτ
3,�(ξ )

⎤
⎦ =

⎡
⎣ cos φ J�−τ

(
ξητ

0

)
iSτ

0 J�

(
ξητ

0

)
− sin φ J�+τ

(
ξητ

0

)
⎤
⎦, (C9)

where ητ
0 (k‖) = |E0(k‖) − τV0|r0/h̄vF , and Sτ

0 = sgn[E0(k‖) − τV0] with (Sτ
0 )2 = 1.

Now we turn to the calculation of τ̄φ (kF , τ ). From Eq. (C2) we get

Wτ,φ

in (k‖) = ni

2π h̄2vF
k‖ fk‖

∑
±

∫ π

−π

dβs | cos θ |
∣∣∣∣U τ

0 (2k‖| cos θ |)
εφ (2k‖| cos θ |)

∣∣∣∣
2

|Fτ,φ (k‖, βs)|2, (C10)

where | cos θ | = | sin(|βs|/2)|, ni = Ni/S is the areal density of ionized impurities, and the summation
∑

± corresponds to
conditions εk‖ = εk‖±q‖ for two delta functions in Eq. (C2). Additionally, from Eq. (C5) we find for s = +1 that

Fτ,φ (k‖, βs) = 1

2

∑
�

{
(−i)−τ τ cos φ χτ

1,�(k‖) + χτ
2,�(k‖) + (−i)τ τ sin φ χτ

3,�(k‖)
}

×{(−i)τ τ cos φ χτ
1,�(k‖) e

iτβs
k‖ ,q‖ − χτ

2,�(k‖) + (−i)−τ τ sin φ χτ
3,�(k‖) e

−iτβs
k‖ ,q‖
}

≡ κ0(k‖, φ, τ ) + κ1(k‖, φ, τ ) eiτβs + κ2(k‖, φ, τ ) e−iτβs + κ3(k‖, φ, τ )(1 + eiτβs )

+ κ4(k‖, φ, τ )(1 + e−iτβs ) + κ5(k‖, φ, τ ) cos(τβs), (C11)

where ⎧⎨
⎩

χτ
1,�(k‖)

χτ
2,�(k‖)

χτ
3,�(k‖)

⎫⎬
⎭ =

√
2π

{∫ 1

0
dξ ξ

[
cos2 φJ2

�−τ

(
ξητ

0

)+ J2
�

(
ξητ

0

)+ sin2 φJ2
�+τ

(
ξητ

0

)]}−1/2

×
⎧⎨
⎩

cos φ

iSτ
0

− sin φ

⎫⎬
⎭
∫ 1

0
dξ ξ

⎧⎨
⎩

J�−τ (k‖r0ξ )J�−τ

(
ξητ

0

)
J�(k‖r0ξ )J�

(
ξητ

0

)
J�+τ (k‖r0ξ )J�+τ

(
ξητ

0

)
⎫⎬
⎭, (C12)
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and six real coefficients κi for i = 0, 1, . . . , 5 are given by

κ0(k‖, φ, τ ) = 1

2

∞∑
�=−∞

∣∣χτ
2,�(k‖)|2, κ1(k‖, φ, τ ) = 1

2
cos2 φ

∞∑
�=−∞

[
χτ

1,�(k‖)
]2

,

κ2(k‖, φ, τ ) = 1

2
sin2 φ

∞∑
�=−∞

[
χτ

3,�(k‖)
]2

, κ3(k‖, φ, τ ) = − i

2
cos φ

∞∑
�=−∞

χτ
1,�(k‖)χτ

2,�(k‖),

κ4(k‖, φ, τ ) = + i

2
sin φ

∞∑
�=−∞

χτ
2,�(k‖)χτ

3,�(k‖), κ5(k‖, φ, τ ) = −1

2
sin 2φ

∞∑
�=−∞

χτ
1,�(k‖)χτ

3,�(k‖). (C13)

Then, at low T , from the detailed-balance condition and Eq. (C10) we finally arrive at

1

τ̄φ (kF , τ )
= 4

ρ0S
∑

k‖

f (0)
T [ε(k‖)]

τφ (k‖, τ )
= 4

ρ0S
∑

k‖

Wτ,φ

in (k‖) �(kF − k‖)

= 4ni

π2h̄2vF ρ0

∫ π

−π

dβs | cos θ |
∫ kF

0
dk‖ k2

‖

∣∣∣∣U τ
0 (2k‖| cos θ |)

εφ (2k‖| cos θ |)
∣∣∣∣
2

|Fτ,φ (k‖, βs)|2. (C14)

APPENDIX D: INVERSE MOMENTUM-RELAXATION-TIME TENSOR

The inverse momentum-relaxation-time tensor
↔
T −1

p (τ, φ) introduced in Eq. (9) comes from the statistically averaged resistive
forces f i(τ, φ) due to scattering of electrons by ionized impurities (i) at low temperatures [37,38].

For electrons moving with a center-of-mass momentum h̄Kτ,φ

0 , the resistive force f i(τ, φ) from impurity scattering is
calculated as [41]

f i(τ, φ) = −Ni

(
2π

h̄

)
vF

kF

∑
k‖,q‖

h̄q‖
(
h̄q‖ · Kτ,φ

0

) ∣∣U τ,φ

im (q‖, k‖)
∣∣2 (−∂ fk‖

∂εk‖

)
δ(εk‖+q‖ − εk‖ ), (D1)

and we have
↔
T

−1

i (τ, φ) · Kτ,φ

0 = − f i(τ, φ)/N0 h̄ by definition. This leads to

↔
T

−1

i (τ, φ) = 2πNivF

N0kF

∑
k‖,q‖

∣∣U τ,φ

im (q‖, k‖)
∣∣2 (−∂ fk‖

∂εk‖

)
δ(εk‖+q‖ − εk‖ ) [q‖ ⊗ qT

‖ ], (D2)

where [q‖ ⊗ qT
‖ ] ≡ [ q2

x qxqy

qyqx q2
y
.] Finally, the inverse momentum-relaxation-time tensor is simply given by

↔
T −1

p (τ, φ) =
↔
T

−1

i

(τ, φ) after neglecting phonon scattering at low T .
Furthermore, at low T , from Eqs. (D1) and (D2) we find

↔
T −1

p (kF , τ, φ) = 2πni

ρ0

(
vF

kF

)∑
k‖,q‖

∣∣∣U τ,φ

im (q‖, k‖)
∣∣∣2 δ(εk‖ − EF ) δ(εk‖+q‖ − εk‖ )

[
q‖ ⊗ qT

‖
]

= 4nik3
F

π2h̄2vF ρ0

∫ π

−π

dβs | cos θ | cos2 θ

∣∣∣∣∣U
τ
0 (2kF | cos θ |)

ε2
φ (2kF | cos θ |)

∣∣∣∣∣
2

|Fτ,φ (kF , βs)|2
[

cos2 θ cos θ sin θ

sin θ cos θ sin2 θ

]
, (D3)

where εφ (q‖) is the static dielectric function, |Fτ,φ (kF , βs)|2 is given by Eq. (C11), cos θ = − sin(|βs|/2), sin θ =
sgn(βs) cos(|βs|/2) for −π � βs � π , and sgn(x) is a sign function.

APPENDIX E: MOBILITY TENSOR

From the force-balance equation in Eq. (9), we get the following set of linear equations [38] for center-of-mass wave vector
Kτ,φ

0 = {Kτ,φ
x , Kτ,φ

y }, i.e.,

bxx(τ, φ)Kτ,φ
x +

[
bxy(τ, φ) − q0vF Bz

h̄kF

]
Kτ,φ

y = q0

h̄
Ex, (E1)

[
byx(τ, φ) + q0vF Bz

h̄kF

]
Kτ,φ

x + byy(τ, φ)Kτ,φ
y = q0

h̄
Ey, (E2)
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where we have used the notations B⊥ = {0, 0, Bz}, E‖ = {Ex, Ey, 0}, q0 = −e, and have written the matrix
↔
T −1

p (τ, φ) ≡
{bi j (τ, φ)} for i, j = x, y. By defining the determinant of the coefficient matrix in Eqs. (E1) and (E2) as Det{

↔
Cτ,φ}, i.e.,

Det{
↔
Cτ,φ} = bxx(τ, φ) byy(τ, φ) −

[
bxy(τ, φ) − q0vF Bz

h̄kF

][
byx(τ, φ) + q0vF Bz

h̄kF

]
, (E3)

as well as the source vector s, given by

s =
⎡
⎣

q0

h̄
Ex

q0

h̄
Ey

⎤
⎦, (E4)

we can reduce this linear equations to a matrix form
↔
Cτ,φ ·Kτ,φ

0 = s with the formal solution Kτ,φ

0 =
↔
C

−1

τ,φ ·s. Explicitly, we find

the solution Kτ,φ

0 = {Kτ,φ
x , Kτ,φ

y } for j = x, y from

Kτ,φ
j = Det

{ ↔
�

τ,φ

j

}
Det
{ ↔
Cτ,φ

} , (E5)

where

Det
{ ↔

�
τ,φ

1

} = q0

h̄
Ex byy(τ, φ) − q0

h̄
Ey

[
bxy(τ, φ) − q0vF Bz

h̄kF

]
, (E6)

Det
{ ↔

�
τ,φ

2

} = q0

h̄
Ey bxx(τ, φ) − q0

h̄
Ex

[
byx(τ, φ) + q0vF Bz

h̄kF

]
. (E7)

Even in the case of Ey = 0, the transverse center-of-mass wave number Kτ,φ
y can still be nonzero due to an external magnetic field

Bz or by nonzero off-diagonal element byx of the inverse momentum-relaxation-time tensor. The mobility tensor
↔
μτ,φ= {μτ,φ

i j }
can be simply obtained from μ

τ,φ
i j = (vF /kF ) (∂Kτ,φ

i /∂Ej ).
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