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Decay of semiclassical massless Dirac fermions from integrable and chaotic cavities
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Conventional microlasing of electromagnetic waves requires (1) a high-Q cavity and (2) a mechanism for
directional emission. Previous theoretical and experimental work demonstrated that the two requirements can be
met with deformed dielectric cavities that generate chaotic ray dynamics. Is it possible for a massless Dirac spinor
wave in graphene or its photonic counterpart to exhibit a similar behavior? Intuitively, because of the absence
of backscattering of associated massless spin-1/2 particles and Klein tunneling, confining the wave in a cavity
for a long time seems not feasible. Deforming the cavity to generate classical chaos would make confinement
even more difficult. Investigating the decay of a spin-1/2 wave from a scalar potential barrier-defined cavity
characterized by an effective refractive index n that depends on the applied potential and the particle energy,
we uncover the striking existence of an interval of the refractive index in which the average lifetime of the
massless spin-1/2 wave in the cavity can be as high as that of the electromagnetic wave for both integrable
and chaotic cavities. We also find scaling laws for the ratio between the mean escape time associated with
electromagnetic waves and that with massless spin-1/2 particles versus the index outside of this interval. The
scaling laws hold regardless of the nature of the classical dynamics. All the results are verified numerically.
The findings provide insight into the emergent field of Dirac electron optics and have potential applications in

developing unconventional electronics using two-dimensional Dirac materials.
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I. INTRODUCTION

Recent years have witnessed vast development of two-
dimensional (2D) Dirac materials, such as graphene [1-3],
silicene, and germanene [4,5]. In these solid-state materials,
the energy-momentum relation (dispersion relation) of low-
energy excitations is typically that of a relativistic quantum
particle governed by the Dirac equation. For a massless spin-
1/2 Dirac particle, the dispersion relation is linear which,
for the positive energy band, is exactly that of a photon. It
is natural to exploit principles in optics to articulate strate-
gies to control Dirac electron flows. In this regard, various
optically analogous phenomena, such as Fabry-Pérot reso-
nances [6,7], the Talbot effect [8], and a waveguide [9,10]
in ballistic graphene and similar Dirac materials, have been
demonstrated. Due to the negative energy band that has no
counterpart for photons, the nontrivial & Berry phase associ-
ated with conical band degeneracy and uniquely relativistic
quantum behaviors, such as Klein tunneling [11-13], can
arise, leading to unusual physics, such as the absence of
backscattering [14,15], high carrier mobility [16], and electri-
cally controllable negative refractive index [17]. As a result,
Dirac particles in ballistic graphene or other electronic honey-
comb lattice crystals can exhibit a number of unconventional
optical-like behaviors, such as the negative Goos-Hinchen
effect [18], chirality-assisted electronic cloaking [19], gate-
controlled caustics [20], electron Mie scattering [21-24],

“ying-cheng.lai@asu.edu

2469-9950/2018/98(10)/104308(12)

104308-1

and whispering gallery modes [25-28]. Optical-like devices
for Dirac particles have also been realized, such as Klein-
tunneling beam splitters and collimators [29-31] as well as
microscopes [32]. In addition, the emergent internal degrees
of freedom, i.e., sublattice and valley pseudospins as well as
the electron spin, provide new possibilities for optics-based
electronic devices, such as valley-resolved waveguides [33],
beam splitters [34], electronic birefringent superlenses [35],
and spin (current) lenses [36,37]. Quite recently, a Dirac
quantum chimera state has been uncovered based on the
electronic analog of the chiroptical effect [38]. Dirac electron
optics [6-10,17-32,34-42] have thus become an active field
of research.

Although optical principles have been exploited in elec-
tronics, conventional optics, and photonics have also greatly
benefited from the development of Dirac electronics. For
example, the photonic counterparts of Dirac materials, such
as graphene, topological insulators, and Dirac semimetals
have been extensively studied, where light is structured in
specific ways to mimic the Dirac particles through the ren-
dering of photonic Dirac cone band structures. This has
led to novel ways to control light with striking phenomena,
such as pseudospin-based vortex generation [43] and robust
light transport [44]. Quite recently, inspired by the emergent
topological properties uncovered in gapped Dirac electronic
systems [45], researchers have made breakthroughs in topo-
logical insulator lasers implemented by topological photonic
cavities [46,47].

Uncovering, understanding, and exploiting the fundamen-
tal dynamics of Dirac particles are thus relevant to both
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Dirac electronics and photonics. In this paper, we investigate
the trapping of massless Dirac particles in a scalar potential
confinement and the escape from it to address the following
question: Is it possible for spin-1/2 Dirac spinor waves in
graphene or photonic graphene systems to exhibit properties
similar to those of photons in a microlasing cavity? To gain
insight, we recall the conventional microlasing systems of
electromagnetic waves in a dielectric cavity [48—51] where
the geometric shape of the cavity plays an important role in
the wave decay. The dielectric constant of the cavity is higher
than that of the surroundings, so total internal reflections are
responsible for optical ray trapping. For a circular domain, the
classical ray dynamics are integrable, leading to permanent
ray trapping and, in principle, to an infinite Q value. However,
in microlasing applications, emission of light is necessary,
and one thus wishes to generate two seemingly contradictory
behaviors at the same time: high Q and good emission di-
rectionality. It was theoretically proposed [48—51] and experi-
mentally realized [52] that classical chaos can be exploited to
realize both behaviors at the same time, leading to high-Q and
highly efficient microcavity lasing. In nonlinear dynamics, the
cavity problem is closely related to transient chaos [53,54]
and leaking [55] with the underlying physics being non-
Hermitian [56]. The main advantage that classical chaos can
bring about is that with simple deformation of the domain
boundary, the phase space is “mixed” with the coexistence of
Kolmogorov-Arnold-Moser (KAM) tori and chaotic regions,
leading to algebraic decay of light rays. The “long-tail” na-
ture of the decay gives rise to a high-Q value, whereas the
eventual escape from the chaotic component generates highly
directional emission. In nonlinear dynamics, the exact form
of the particle decay law depends on the relative “portion”
of the phase space regions whose dynamics are quasiperiodic
(KAM tori) or chaotic. Although a mixed phase space gives
rise to algebraic decay with the exponent depending on the
amount of domain deformation, a fully chaotic phase space
leads to exponential decay of light rays. Semiclassically, the
cavity problem can be treated by using plane waves following
Fresnel’s law, leading to the development of a periodic theory
of diffraction [57], understanding of emission properties in
wave chaotic resonant cavities [58,59], uncovering of wave
scars [60—62], analyses of the survival probability [63], direc-
tional emission [50,51,64], and the Goos-Hénchen effect [65].
For conventional optics in microlasing cavities, a general
principle is then that the nature of classical dynamics plays
an important role in the decay law.

In order to realize microlasinglike behavior, two require-
ments must be met: high Q or long lifetime of the wave in the
cavity and deformed geometry to ensure directional emission
through classical chaos. Trapping of massless fermions has
recently been experimentally realized in a graphene confine-
ment [23,24,26,28]. The geometric shape of the confinement
can be chosen to yield classically integrable, mixed, or chaotic
dynamics. We note that the system is essentially open with
relativistic tunneling-defined escape dynamics and thus gen-
erally support trapping modes with finite lifetimes [66—72].
The problem is also different from that of scattering of Dirac
particles from a potential barrier [25,73]. We focus on the
semiclassical regime in which the plane-wave approximation
is valid and Fresnel’s law is applicable. Intuitively, due to

the total absence of backscattering of massless spin-1/2 parti-
cles [14,15] and the purely relativistic quantum phenomenon
of Klein tunneling [11-13], the decay of the spinor wave
would be enhanced when comparing with that of classical
electromagnetic waves from the same cavity, so trapping
of the former would seem impossible. Indeed, a detailed
scaling analysis of the ratio of the mean escape time of
an electromagnetic wave to that of a spin-1/2 wave reveals
that for both integrable and chaotic cavities in the regime
of large effective refractive index values (n > 1) the ratio
is proportional to n but in the regime of n < 1 the ratio
is inversely proportional to n. This means that in these two
asymptotic regimes the averaging lifetime of the spin-1/2
wave is indeed much smaller than that of the electromagnetic
wave. The surprising phenomenon is that, in between the two
asymptotic regimes, an interval in n emerges in which the ratio
is about one, indicating that the spin-1/2 wave can live as long
as the electromagnetic counterpart. This means that high O
can be achieved for spin-1/2 particles. Since the constant ratio
also holds for classical chaotic cavities, nonisotropic coherent
emission can be expected. The finding suggests strongly that
the two microlasing conditions for photons can be fulfilled for
spin-1/2 particles. Our analysis provides insight into Dirac
electronics and photonics and has potential applications in de-
veloping unconventional cavity laser designs based on Dirac
photonic crystals and optical-like electronics with 2D Dirac
materials.

We remark that for photonic graphene systems [74-76]
the concept of lasing can be defined since the underlying
particles are actually photons. For Dirac fermions, an analog
is an atom laser [77] that emits a beam of atoms (not light).
Rigorously, the concept of lasing does not hold for an atom
laser. In fact, traditional atom lasers require Bose-Einstein
condensates (BECs), although there was an attempt to gener-
ate an atom laser without BEC [78]. In this paper, the term
lasing is loosely used for photonic graphene systems. For
Dirac fermions, we use the term coherent emission.

II. RAY DYNAMICS FOR SPIN-1/2 FERMIONS

We focus on the semiclassical regime where the wave-
length of the particle is relatively small in comparison with the
size of the system but is non-negligible. In the semiclassical
regime, both quantum and classical behaviors are relevant, and
it is the ideal regime to study the quantum manifestations of
distinct types of classical dynamics including chaos. In fact,
most previous work in the traditional field of (nonrelativistic)
quantum chaos [79,80] emphasizes the importance of the
semiclassical regime.

Trapping of a spin-1/2 fermion can be realized through a
confinement (cavity) of the electrical potential given by [23]

v={" TP (1)
r)=
Vo, T¢D,

where D represents the geometrical domain of the cavity and
Vo is the uniform potential applied to the domain. Classically,
the cavity is equivalent to a billiard where the ray behavior
is identical to that of a point particle bouncing back and
forth in the billiard with the difference that an optical ray is
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FIG. 1. Approach of Dirac electron optics to solving the fermion decay problem: four distinct intervals of the effective refractive index in
the domain of electrical potential confinement. (a)-(d) The transmission coefficient versus the incident angle in the polar representation for
ne(—oo,—1], n € [—1,0], n € [0, 1], and n € [1, 00), respectively. (e)—(h) The corresponding Dirac cone structures outside and inside of
the confinement region. Note that, for (a) and (b) [or (e) and (f)], inside the potential region, the directions of the wave vector and the velocity
are opposite to each other because of the negative refractive index in these two cases.

subject to reflection and refraction. The geometry shape of
D can then be chosen to generate characteristically distinct
types of classical dynamics: from integrable to fully chaotic.
To be concrete, in this paper, we focus on two types of
geometrical shapes for the cavity: A circle or a square that
generates classically integrable dynamics and a stadium in
which the classical dynamics are chaotic. Experimentally, for
a 2D solid-state material (e.g., graphene), the domain D can
be realized through the technique of a scanning tunneling
microscope [23,24,26,28].

The traditional theoretical approach consists of writing
down the non-Hermitian Hamiltonian and solving the Dirac
equation subject to proper boundary conditions [66]. If the
domain shape is simple and highly symmetric, e.g., a cir-
cle, which yields classically integrable dynamics, then the
solutions of the Dirac equation can be readily obtained.
When the boundaries of the domain are deformed from the
circular shape to generate chaotic dynamics if the bound-
ary conditions are of the infinite mass confinement type,
numerical solutions of the Dirac equation can be obtained
using the boundary integral method [81] or the standard
finite element algorithm [82]. In our problem of particle
trapping and decay, the boundary condition is not of the
infinite mass confinement type. In this case, for a domain
of an arbitrary shape, even numerical solutions of the Dirac
equation are extremely difficult. Since our focus is on the
semiclassical regime, we take advantage of the field of Dirac
electron optics to solve the Dirac equation by using the
approach of ray tracing associated with conventional wave
optics.

When an electromagnetic wave encounters a boundary,
reflection and refraction occur as governed by Fresnel’s law.
In the underlying ray picture, there will be energy loss asso-
ciated with each encounter with the domain boundary. For a
spin-1/2 fermion, Klein tunneling must be taken into account
to derive the corresponding Fresnel law. Depending on the
particle energy E relative to the potential height Vj, there are
two distinct cases [83,84]: 1) 0 < E < Vp, and (i1)) V) < E.
In the first case (0 < E < Vj), the transmission and reflection
coefficients T and R, respectively, at each encounter with the

boundary are given by [83,84]
_ 2 cos 6 cos 6;
T 1—cos(@+6,)
14 cos(8 — 6;)
T 1—cos@+6)

where 6 is the incident angle with respect to the normal and
the transmitted angle is given by

@)

E
9, = sin~! (E v sin 9) +7 =sin"! (nsin0)+7x, (3)
-V

with the effective refractive index n defined as n = E/(E —
Vo), which is negative in this case: n € (—oo, 0].
For the second case of Vy < E, the transmission and
reflection coefficients are given by
_ 2 cos 6 cos 6;
" 14cos(0+6,)
1 —cos(60 —6,)

= ——" “)
1 + cos(0 +6,)
where the refracted angle is
6, = sin™! (n sin 0), ®)

and the effective refractive index is positive: n € [0, 00).

The energy band structure associated with a spin-1/2
fermion is that of a pair of Dirac cones. Depending on the
relative positions of the Dirac cone structures outside and in-
side of the potential domain, there are four distinct intervals of
the refractive index: (—oo, —1], [—1, 0], [0, 1], and [1, c0).
Figures 1(a)-1(d) show the transmission coefficient versus
the incident angle in the polar representation for the four
parameter intervals, respectively. The corresponding energy
band structures are shown in Figs. 1(e)—1(h), respectively.

The survival probability of a spin-1/2 fermion inside the
potential region can be calculated using the formulas for the
transmission and reflection coefficients. In general, the coef-
ficients in the Klein-tunneling regime depend on the incident
energy E and the potential height V) (which together define
the effective refractive index n [83]) as well as the angle of
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incidence 6. There is a symmetry in the coefficients in that
they do not depend on the sign of n, which can be seen by
substituting the expression of 6, into Eq. (2) or Eq. (4). It thus
suffices to focus on the two distinct intervals of the values of
the refractive index: |n| < 1 and |n| > 1. For |n| > 1, total
internal reflection can occur with the critical incident angle of
6, where the transmission coefficient is zero for 6 > 6,.

III. RESULTS

Say we distribute an ensemble of rays of spin-1/2 waves
with different initial conditions in the cavity. As a ray evolves
following Fresnel’s law, its intensity will decrease due to
refraction. Let Iy be the initial intensity (or energy) of any
ray in the ensemble. After n encounters with the boundary,
the intensity becomes

1, = I ]_[ R; = Iyexp (Z In R;). (6)

The survival probability P(¢) is the fraction of the remaining
intensity at time 7. Depending on the nature of the classical
ray dynamics (integrable or chaotic) and on the value of
the effective refractive index n with time P(¢) decays either
exponentially,

P (1) = exp(—y1), (N
where y is the exponential decay rate or algebraically,
P@t)~177, (®)

with z being the algebraic decay exponent.

In numerical simulations, we initialize a large number
of rays (between 10° and 107) randomly distributed on the
boundary. For each ray, the initial angle 6, is chosen according
to p = sin 6y, where p is a uniform random variable in the
unit interval and the velocity is chosen to be one. The final
distribution of the rays is independent of the initial random
conditions [54]. In the following, we treat integrable and
chaotic cavities separately.

A. Integrable cavity

We consider a circular cavity with integrable ray dynamics
in which the incident angle 6 is constant and the time interval
between two successive encounters with the boundary is
At =2 cos(f). For [n] < 1, the ray intensity decays exponen-
tially. As indicated in Fig. 1, the transmission coefficient T
takes on the minimum value at § = /2. A ray with 0 = /2
can thus survive in the cavity for a long time.

For 0 < n < 1, the survival probability is given by

) R{/Ar 1— 0—0 t/(2 cos 0)
P(t) = Zl—l — lim M .9
1+ cos(0 + 6;)

N o 0—m/2
Letting x = 7 — 6, we expand P () at x = 0 to obtain

)
)

P(t) =~ exp (—

The survival probability for —1 < n < 0 has the same expo-
nential form but with different values of the decay exponent.
Figure 2(a) shows the decay of the survival probability P ()

(@ 10° |
n=-—0.5
—n = 0.5
N 108
10-10 . . .
0 5 10 15 20
t
(b) 5 ‘ ‘
Analytical
4 t [==Numerical

FIG. 2. Exponential decay of the survival probability for the
integrable (circular) cavity for —1 < n < 1. (a) Two examples of ex-
ponential decay of P(¢) (n = —0.5and n = 0.5). (b) The exponential
decay exponent y versus n. Insofar as the value of n is not close to
one, the whispering gallery mode decays most slowly. For n — 1,
the cavity becomes transparent, so y — 00.

with time for n = —0.5 and n = 0.5 on a semilogarithmic
scale. Each set of data can be well fitted by a straight line,
indicating that the decay is exponential. In both cases, the
mode that survives the longest possible time in the cavity is the
whispering gallery mode with 6 < 7r/2 and this holds insofar
as the value of #n is not too close to one. Figure 2(b) shows, for
—1 < n < 1, the exponential decay exponent y versus n. For
n — 1, the electrical potential vanishes, so the cavity becomes
transparent, resulting in infinitely fast decay, i.e., y — oo.

For »n > 1, total internal reflections occur for
0 > 6. =sin"! (1/n). In this case, the modes that can
survive for a long time are those with incident angles near 6,
and P(t) is given by

i cos 6 exp[—G(6)11do

P(t) = - : (11)
fol/ dp
where
G(6) = m(1+ 2 cos 6 cos 6; (12)
~ 2cos 6 1 —cos(®—6))

Letting x = 6, — 0, we have

G(O) ~ a/x + O(x). (13)
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FIG. 3. Algebraic decay of the survival probability for the inte-
grable (circular) cavity for |n| > 1. Shown are decay behaviors of
P(t) for (a) n = —2 and n = —10 and (b) n = 2 and n = 10. The
solid and dashed lines represent numerical and theoretical results,
respectively.

where
21
o= % (14)
P

Substituting Eq. (13) into Eq. (11), we get

24/n% —1
#[1 -1+ 0[\/971‘)6_0“/@]

2/ =1
~ YT (15)

o2

P(t) ~

We thus see that the decay of P(¢) for n > 1 is algebraic.
A similar analysis gives that Eq. (15) holds for the n < —1
region. Numerical validation of Eq. (15) is given in Fig. 3.
The special parameter point n = 1 is one at which the
decay law changes characteristically from being exponential
to being algebraic. This is not surprising because of the
emergence of total internal reflections for n > 1. Another
special parameter value is n = —1, which occurs when the
particle energy is one-half of the potential height: £ = V /2.
In this case, the transmission coefficient at a single encounter
with the cavity boundary is T = cos? 8, so the critical incident
angle is 6, = w /2. Near 6., the quantity n sin 6, can no longer
be treated as a small number, so the expansion used in deriving

Eq. (15) is not valid. However, we can rewrite G () as

GO)=— In(1 — cos® 6). (16)
2 cos 6
For 6 — /2, we have cos 6 ~ x and obtain
P(1) /n/z g = 2 (17)
o ex _— = —,
0 *exp 2 12

which is valid in the large-t regime.

B. Effect of Klein tunneling on the decay of the spin-1/2 wave

In terms of the cavity decay dynamics, what is the key
difference between an electromagnetic wave and a Dirac
spinor wave? For a Dirac particle, there is a fundamental
phenomenon that has no counterpart for a photon: Klein tun-
neling [11,12], a uniquely relativistic quantum phenomenon
by which a particle of energy less than the height of a potential
barrier can tunnel through it with absolute certainty. For a
Dirac electron optical system, Klein tunneling occurs in the
|n| <1 regime for & = 0 because, from Eq. (2), we have
T(@ =0)=1. In this regime, the decay of both spin-1/2
and electromagnetic waves is exponential (see Table I below).
However, the slowest decaying modes are quite different
for the two types of waves. In particular, for the spin-1/2
wave they are the whispering gallery modes (corresponding to
0 ~ m/2) as it is difficult for the modes with 6 ~ 0 to stay
in the cavity for a long time because of Klein tunneling. For
the electromagnetic wave, the situation is nearly opposite:
The longest survival modes are those with 6 near zero, i.e.,
modes with propagation along the diameter of the cavity as the
transmission coefficients are minimum for them by Fresnel’s
law.

To further appreciate the difference between the decay
dynamics of spin-1/2 and electromagnetic waves, we study
the ring cavity with a kind of a small “forbidden” region
at the center of the circular cavity (r < r; < 1). The basic
idea is that the presence of the forbidden region should not
have a significant impact on the decay of a spin-1/2 wave as
the dominant surviving modes are of the whispering gallery
type, which do not pass through the central region of the
cavity. However, the forbidden region would affect the decay
of the electromagnetic wave as the modes that shape the decay
behavior are diametrical, which have a significant presence in
the central region. The ring cavity is defined as

00, r<ry,
nr)=1{00,1), r<r<l, (18)
1, r>1,

which is integrable. In terms of the ray dynamics, the cen-
tral circular region blocks most orbits along the diameter.
Figure 4(a) shows for the spin-1/2 wave and n = 0.9 the
exponential decay of the survival probability P(¢) for four
different ring configurations (corresponding to different val-
ues of r;) on a semilogarithmic scale. The decay curves can
be fitted approximately by lines with nearly identical slopes,
indicating that introducing a central forbidden region has little
effect on the decay. Figure 4(b) displays the curves of the
exponential decay exponent y versus n (for 0 < n < 1) for the
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TABLEI. Complete results of the survival probabilities for spin-1/2, TE, and TM electromagnetic waves for integrable and chaotic cavities.
For algebraic decay, the exact form of P(¢) is listed. For exponential decay, only the decay exponent y is given.

Circular cavity

Stadium cavity

n] <1 n] > 1 n] <1 |n] > 1

H _ 1-n2 _ (=% 2 _ Waiti n _ 8=2mmry
Spln 1/2 J/ - 1—n P(t) - n2 t 7/ - Zi (d)i + m V - (d)|n|L
_ L4n _ m*-D% .2 _nm _ 27

™ y =In() P(1) = "5 Y= V= Wil
_ 14n _ n+l __ 2nmw _ 4rrzr0

TE y =In (%) y =In(i5 Y=gy V=

four different ring configurations, which are nearly identical.
Figures 4(c) and 4(d) present the corresponding results for a
TM electromagnetic wave (Appendix A), revealing a signifi-
cant effect of the central forbidden region on the wave decay
behavior. In particular, the decay rates for the three cases of

a b
( )100 ( )4
= =2
= 10710
0
0 0.5 T 1
t n
©. o (d)
107y 4
N )
= 10710
0
0 5 10 0 0.5 T 1
(e 100 t () 6 n
. 4
= -
oo 2
0
0 5 10 0 0.5 R
t n

FIG. 4. Decay of spin-1/2 and electromagnetic waves from a
ring cavity. (a) For four different ring configurations (r; = 0—the
original circular cavity, r; = 0.5, 0.75, and 0.9), exponential decay
behavior of the survival probability P(z) and (b) the correspond-
ing decay exponent y versus n for 0 <n < 1. As the long-time
decay behavior is dominated by the whispering gallery modes that
concentrate on the larger circumstance, the central forbidden region
has little effect on the overall exponential decaying behavior. (c)
and (d) The corresponding results for a TM electromagnetic wave
where the decay rates for the three actual ring configurations are
larger than that of the original circular cavity due to the blockage of
the slowest decaying modes along the diameter. (e) and (f) Results for
a TE electromagnetic wave where the inaccessibility of the central
region has an even more significant impact on the decay.

r1 # 0 (orange, green, and red curves) are greater than that of
the circular cavity (r; = 0, the blue curve) because the central
forbidden region blocks the slowest decaying modes so as to
expedite the overall decay. The results for a TE electromag-
netic wave are shown in Figs. 4(c) and 4(d), revealing an even
more significant effect of the blockage of the central region on
wave decay.

Experimentally, for a spin-1/2 wave system, e.g.,
graphene, the central circular region can be created by apply-
ing an electrical potential corresponding exactly to the Fermi
energy E. For the electromagnetic wave, the ring configura-
tion can be realized by depositing metal in the central region
of a circular dielectric cavity, which induces total internal
reflections.

C. Chaotic cavity

To be concrete, we consider the chaotic stadium cavity
characterized by parameters r (the radius of each semicircle)
and L (the perimeter of the whole domain). It is useful to
define [85] the “average path length” (d) = wA/L, where A
is the area of the stadium. The survival probability is given by

P(t) =[] R = exp [(;—> Sn R,}, (19)

1

where R; is the reflection coefficient at each encounter with
the boundary. The summation can be approximated by a
double integral in both distance and angle. Due to chaos,
the distance between two successive encounters with the
boundary is roughly constant ({d)), so the double integral can
be reduced to a single integral with respect to the angle. The
summation in Eq. (19) can then be evaluated as

f”/zcos 6 In RdO

0
fon/z cos 0 do

(20)

In general, the integral cannot be evaluated analytically. How-
ever, in the limiting cases (jn| — 0 and |n| — 00), we can
use Taylor expansion to evaluate the integral. The end result
is an exponential decay of P(¢) (Appendix B) with explicit
formulas for the decay exponent y. In particular, for n — 0,
y is given by

1 o Waiy1
y_@<z l, +En), 1)

i=1
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FIG. 5. Exponential decay of a spin-1/2 fermion from a chaotic
stadium cavity. (a) The survival probability P(¢) for n =0 and
n = 0.5 (on a semilogarithmic scale) where the dashed lines are
theoretical predictions. (b) Exponential decay of P(¢) for n = —10
and n = 10. (c) The exponential decay exponent y versus n for
—1 < n < 1. (d) The exponent yv versus |n| for 1 < |n| < 100. In
(c) and (d), the dashed line is the analytic prediction. The parameters
of the chaotic stadium are A = 7, ro/l = 1/2, and L = 2mwry + 21,
where [ is the length of the straight segment.

where W is Walli’s integral (Appendix B). For n — oo, we
have

_ (8 —2m)mry

(d)inlL

Numerical verification is presented in Fig. 5. These results

suggest that the decay of a spin-1/2 fermion from a chaotic

cavity is generally exponential, implying the difficulty in
confining the relativistic quantum particle.

(22)

D. Are high Q and nonisotropic coherent emission
achievable for a spin-1/2 wave?

Two conditions must be met in order for a microcav-
ity to generate effective lasing: (1) a high-Q value and
(2) directional emission. Previous work on conventional elec-
tromagnetic microlasing [48-52] established that deformed
chaotic cavities are suited for microlasing applications. To
realize microlasing of a spin-1/2 wave, it is necessary that
(1) the (graphene) cavity has an average lifetime comparable
to that of the dielectric electromagnetic cavity, and (2) the
lifetime can be maintained in a deformed chaotic cavity. In the
following, we establish the existence of a range of the effective
refractive index value for a spin-1/2 particle cavity in which
the two requirements can be met.

To compare the decay of the spin-1/2 wave with that of
the electromagnetic wave in the same cavity, it is necessary to
have a complete picture of the decay of the electromagnetic
wave from a cavity for comparison. Especially, for spin-1/2
particles, in principle, the relative refractive index n can take
on values ranging from —oo to +o0o. For electromagnetic
waves, previous work [63] treated this problem but for the

case where the absolute value |n| of the relative refractive
index of the dielectric cavity is greater than one with the result
that the decay law is algebraic (exponential) for integrable
(chaotic) cavities. As a necessary step, we extend the result
to the |n| < 1 regime (Appendix A). Table I lists the formulas
of P(t) for both spin-1/2 and electromagnetic waves (TE and
TM) for both integrable and chaotic cavities.

For the cavity decay problem, a basic characterizing quan-
tity is the quality factor Q, which qualitatively measures the
stability of the wave (temporarily) “trapped” in the cavity. To
calculate the Q value, we resort to the fact that because the
system is fundamentally open the underlying Hamiltonian is
non-Hermitian with complex eigenvalues and Q is nothing
but the ratio between the real and the imaginary parts of the
complex eigenwave vector. Alternatively, Q can be defined
as Q = w,t, where w is the frequency of the dominantly
surviving mode, 7 is the associated (finite) lifetime, and its
inverse is the spectral width [56]. In the ray picture, it is
convenient to calculate the mean escape time (or lifetime) 7,
which is the time for P () to reduce to the value of, e.g., e L.

Intuitively, because of Klein tunneling, it would be “eas-
ier” for a spin-1/2 wave to leak out of the cavity than an
electromagnetic wave. Let ts, Trg, and 1y denote the mean
escape time for spin-1/2, TE, and TM electromagnetic waves,
respectively. We analyze the ratios tpg/ts and 7ry/ts, which
can be calculated based on the results in Table I.

For the |n| <« 1 regime, all three systems exhibit exponen-
tial decay, so we have t = 1/y. For electromagnetic waves,
the average lifetime is proportional to 1/n but for the spin-1,/2
system the time tends to a constant. We thus have

1
TEM/TS ~ ; >1 forn—0 23)

for the integrable cavity, where tgy stands for either g or
7rMm. The same result holds for the chaotic cavity. In this case,
comparing with the electromagnetic wave, a spin-1/2 wave
will leak out of the cavity more quickly, i.e., it is less “stable”
when being compared with the electromagnetic wave.

In the |n| > 1 regime, for the integrable cavity, we
have P(t) ~n’t=2 for the TM electromagnetic wave, so
the mean escape time try is proportional to n. For the TE
wave, the decay is exponential with the exponent given by
y =In(n+1)/(n — 1). We thus have y ~ 2/n and, hence,
7rg ~ n as for the TM wave. For the chaotic cavity for both
TM and TE waves, we have y ~ n~2, whereas y ~ n~! for
a spin-1/2 wave. We thus have tgy/ts ~ n, which means
that in the |n| > 1 regime the Q value of the electromagnetic
cavity is also higher than that of the spin-1/2 Dirac cavity.

The analytic results can be summarized as

1

TeM/Ts = on” forn « 1, 24)

TeM/Ts = opn forn > 1, 25)

where «; and o, are constants that depend on the geometric
shape of the cavity. We see that the integrable and chaotic
cavities share the same scaling law of the lifetime ratios with
the refractive index. Figures 6(a) and 6(b) show the numeri-
cally obtained ratios try/7s and g /Ts versus n, respectively.
There is good agreement between the numerical results and
those in Eq. (24). The remarkable result is that, although
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FIG. 6. Scaling with the relative refractive index of the ratio
between the mean escape time for an electromagnetic wave and that
of a spin-1/2 wave: (a) the ratio tpm/ts and (b) the ratio Trg/ts
for three different types of cavity shapes (two with integrable and
one with chaotic ray dynamics). For n < 1, the ratio is proportional
to n~!, whereas it is proportional to n for n > 1, regardless of
whether the electromagnetic wave in comparison is TM or TE. The
scaling laws hold regardless of whether the classical ray dynamics
are integrable or chaotic. The surprising result is the existence of an
interval in n in which the spin-1/2 wave can have a high-Q value and
chaos-enabled directional emission as for the electromagnetic wave.

the decay of the spin-1/2 wave is significantly faster than
that of the electromagnetic wave in both the n < 1 and the
n > 1 regimes, there exists a sizable interval about n = 1
in which the decay rates of the two types of systems are
comparable as shown in Figs. 6(a) and 6(b). In this interval,
high-Q values can be achieved for spin-1/2 particles. The
striking phenomenon is that the ratios in this interval can be
maintained at values close to one, regardless of the nature
of the classical ray dynamics. That is, high-Q values can
be achieved for spin-1/2 particles in a chaotic cavity to the
same extent as for electromagnetic waves so as to ensure
nonisotropic emission.

IV. DISCUSSION

To summarize, motivated by the question of whether high
QO and directional coherent emission are achievable for spin-
1/2 particles, we investigated the cavity decay problem with
classically distinct dynamics in the semiclassical regime. Pre-
vious work on microlasing of electromagnetic waves [48—52]
established that deformed chaotic cavities can meet the two
key requirements for microlasing: a high-Q value and effec-
tive directional emission. For spin-1/2 particles, confinement

can be realized through an external electric field. Our anal-
ysis and numerical results indicate that for a spin-1/2 wave
cavity (e.g., made of graphene) there exists an experimentally
reasonable range of the applied electric potential in which
the two requirements can be met. For example, a chaotic
graphene cavity can simultaneously have a high-Q value and
good emission directionality.

More specifically, we have analyzed the survival probabil-
ity in both integrable and chaotic cavities. For the integrable
cavity, the decay is exponential in the |n| < 1 regime. Signif-
icantly better confinement in the sense of algebraic decay of
the survival probability can be achieved for the integrable cav-
ity in the |n| > 1 regime. For larger-n values (when the Fermi
energy is close to the potential), confinement is more robust.
This result is consistent with that obtained from wave scatter-
ing theory [71] and agrees with the experimental measurement
on a closed, circular potential system [26] where high quality
confinement is achieved for high angular momentum modes.
For the chaotic cavity, the survival probability decays expo-
nentially with time for all possible n values. We note, however,
that the quantum regime in which the scattering theory is
applicable is not the semiclassical regime treated in our paper.
In fact, in previous work on the confinement of spin-1/2
fermions in graphene [13,67,70-72], the relevant wave regime
is not close to being semiclassical. To search for regimes
where high Q and nonisotropic coherent emission are possible
for spin-1/2 particles, we obtain analytic formulas to compare
the average lifetime with that of an electromagnetic wave in
the same cavity. A striking result is that the behavior of the
ratio of the average lifetimes of the two types of waves versus
|| is independent of the nature of the underlying classical ray
dynamics. For both |n| <« 1 and |n| > 1 regimes, there are
scaling laws governing the ratio, which indicates that the aver-
age trapping time of the electromagnetic wave is significantly
longer than that of the spin-1/2 wave, in accordance with
intuition. However, counterintuitively, there exists a regime of
[n] values centered about one in which the average lifetimes
for the two types of waves are approximately the same, which
is valid for both integrable and chaotic cavities, generating re-
markable decaying behavior of a spin-1/2 wave in this regime.

We provide a brief discussion about the issue of directional
emission. In optical microcavities, directional emission is typ-
ically shape dependent. For example, in Sec. VII of Ref. [56],
numbers of high-Q cavities were described, which are able
to emit light in certain directions. For some specific cavity
shape, it is possible to determine the probability of directional
emission through ray tracing. For example, in Ref. [64], a
heart-shaped cavity was studied where the emission direction
depends on some long lasting orbits with initial incident
angle | sin 6| < 1/n. As ray trajectories associated with these
orbits escape, radiation is generated but is concentrated in
some special direction. In general, ray tracing is insufficient
for determining if the underlying cavity can have directional
emission. Instead, a wave approach based on scattering and
solutions of the Dirac equation is necessary. Since a spin-
1/2 system exhibits similar characteristics in the dependence
of the transmission on the angle to those of light (e.g., the
transmission reaches a maximum for § = 0 and a minimum
for & = 6,), it is possible for the high-Q operation in spin-1/2
systems to possess directional emission.
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We would also like to explain the difference between
the results from a relevant recent work [38] and those in
the current paper. Specifically, Ref. [38] treated a scattering
problem in graphene systems where the spin degeneracy of
the electrons is lifted through an exchange field from induced
ferromagnetism. The scattering region has a nonconcentric
type of ring geometry where a different gate potential is
applied to the inner circle and to the region outside the inner
circle but within the outer circle, respectively. As a result,
the scattering dynamics for spin-up and spin-down electrons
are characteristically different, both classically and quantum
mechanically. For example, for proper values of the gate po-
tentials and eccentricity, the classical dynamics of spin-down
electrons are completely integrable, whereas spin-up elec-
trons exhibit fully developed chaotic scattering. Not only are
the classical dynamics distinct, the corresponding quantum
scattering also exhibits drastically different characteristics in
terms of experimentally accessible quantities, such as the
cross sections, resonances, and the Wigner-Smith delay time.
In Ref. [38], the simultaneous coexistence of two different
types of scattering behaviors is coined by the term “relativistic
quantum chimera.”

The focus of the current paper is on optical-like decay
behaviors of Dirac fermions in the semiclassical regime in
the absence of any induced ferromagnetism. There is then no
splitting of the Dirac cone structure, i.e., the energy bands of
spin-up and spin-down electrons are completely degenerate,
ruling out the possibility for any relativistic quantum chimera
state. The results reported here on the decay of semiclassical
massless Dirac fermions from integrable or chaotic cavities
thus do not depend on the electron spin. Also note that,
in Ref. [38], although the classical dynamics were obtained
using the same approach of Dirac electron optics as in the
current paper, the quantum scattering dynamics were calcu-
lated and analyzed based on solutions of the Dirac equation
for two-component spinor waves.
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APPENDIX A: SURVIVAL PROBABILITY
OF ELECTROMAGNETIC WAVES

For TM electromagnetic waves, the reflection coefficient is
given by [86]
n cos 6 — cos 6, 2
— (AD)
n cos 6 + cos 6,

Rtm(0) = (

where 0 and 6, are the incident and refractive angles, respec-
tively, and n is the relative refractive index. The formula for

TE waves is

cos 0 — n cos 6’,)2 (A2)

cos 6 + n cos 6,

Rre(0) = (

The law of refraction is 6, = sin~! (n sin 6). For conventional
dielectric materials, we have n > 0.

1. Integrable cavity withn < 1

In contrast to spin-1/2 waves where whispering gallery
modes survive in the cavity for the longest time [Eq. (9)] for
TM and TE electromagnetic waves, such modes are along the
diameter with 6 = 0. Substituting & = 0 into Egs. (A1) and
(A2), from Eq. (9), we obtain the orbit length as 2 cos 6 and
the exponential decay exponent y as

14+n
yM = y1E = In .
1—n

(A3)

2. Integrable cavity withn > 1
We expand Eq. (13) near 6. to obtain

GO) ~ax'? + 0(x), (A4)

where

2nv/2+/n? — 1
n2—1
The survival probability for a TM wave is
2v/n% — 1
pity=""" "2

2
oM

(A5)

at™M =

(A6)

Similarly, we have, for a TE wave,

(A7)

2
OTE = N 0TM-

3. Chaetic stadium cavity withn < 1

Using R(n =0) =1 for all 8’s, we expand In (1 — T') in
the small-n regime to obtain

T =4n cos 0 + O(n?). (A8)

The integral in Eq. (20) can be evaluated as
/2 /2
—/ In R cos 6d6 = / 4n cos’0do = nm. (A9)
0 0
For a TE wave, the integral is

/2 /2
—/ In R cos 0d6 = / 4nd6 = 2nm. (A10)
0 0

4. Chaotic stadium cavity with n > 1

The result can be found in Ref. [63]. For a TM wave, the
integral in Eq. (20) is

sin~! (1/n)
—/ cos 0 In(1 — R) ~ wn™2. (A11)
0
For a TE wave, the integral is
sin~! (1/n)
—/ cos 6 In(1 — R) ~ 27n~>. (A12)
0
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The exponential decay exponents y for the two cases are given
by

27‘[21'0
= , Al3
VM= T (A13)
and
47%r,
= . Al4
VIE = I (Al4)

APPENDIX B: SURVIVAL PROBABILITY OF SPIN-1/2
WAVES IN A CHAOTIC STADIUM CAVITY

1. The case of |n]| < 1

For n = 0, the reflection coefficient R is

1 —cos @
= . (B1)
14+ cos @
‘We thus have
20 40
—lnR=2<C0; +°°Z +> (B2)

The ray density is given approximately by cos 6. Using Wal-
lis” integral [87],

/2 r(=Er(t
Wn:/ cos" xdx = ( 2 ) (2) (B3)
0 2r(%+1)
we can evaluate the integral in Eq. (20) as
=W,
- / In(R)cos §.df =y  ——+1, (B4)
n

n=1

where lim,_, o, W, = 0, so the series converges. For small-n
values, we have

N 1 —cos 6 —n sin%0
14+cosf —nsin?6’

(BS)

Rewriting this as R = Ry[1 + nf(6)], we have the reflection
coefficient for n = 0 as

In R=1n Ry +nf(6), (B6)
where

n sin®@ n sin®@

0) = — .
F©) 1+ cos 6 1—-cos 6

(B7)

The decay exponent y can be determined through

W, T
—/cos 6InR=)Y — 4 S (BS)
l
i=1

2. The case of [n| > 1

For |n| > 1, rays with an incident angle near the critical
value for the total internal reflection dominate the long-time
behavior of the survival probability. Near the critical angle
where T is about zero, we can expand Eq. (20) as

/2 sin~! (1/n)
—/ cos 6 In(1 — T)do = / T cos 6dB. (B9)
0 0

For n — oo, we let p = n sin 6 and expand the integrand in
terms of 1/n to obtain

1f1 21 5yT=p? 4-7
o4

dp ~ (B10)
J1-E/T—p -2 "
The result at the n — —oo limit is the same. We obtain
(8 —2m)TR
= (B11)
(d)|n|L

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. L.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[3] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[4] T. Wehling, A. Black-Schaffer, and A. Balatsky, Adv. Phys. 63,
1(2014).

[5] J. Wang, S. Deng, Z. Liu, and Z. Liu, Nat. Sci. Rev. 2, 22 (2015).

[6] A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett.
101, 156804 (2008).

[7] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and
C. Schonenberger, Nat. Commun. 4, 2342 (2013).

[8] J. D. Walls and D. Hadad, Sci. Rep. 6, 26698 (2016).

[9] J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus,
Nat. Nanotechnol. 6, 222 (2011).

[10] P. Rickhaus, M.-H. Liu, P. Makk, R. Maurand, S. Hess,
S. Zihlmann, M. Weiss, K. Richter, and C. Schonenberger,
Nano Lett. 15, 5819 (2015).

[11] O.Klein, Z. Phys. 53, 157 (1929).

[12] P. Strange, Relativistic Quantum Mechanics: With Applications
in Condensed Matter and Atomic Physics (Cambridge Univer-
sity Press, Cambridge, UK, 1998).

[13] M. Katsnelson, K. Novoselov, and A. Geim, Nat. Phys. 2, 620
(2006).

[14] T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857
(1998).

[15] D. S. Novikov, Phys. Rev. B 76, 245435 (2007).

[16] A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183
(2007).

[17] V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, Science 315,
1252 (2007).

[18] C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and
J. Tworzydto, Phys. Rev. Lett. 102, 146804 (2009).

[19] N. Gu, M. Rudner, and L. Levitov, Phys. Rev. Lett. 107, 156603
(2011).

[20] J. Cserti, A. Palyi, and C. Péterfalvi, Phys. Rev. Lett. 99, 246801
(2007).

[21] R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 87,
155409 (2013).

104308-10


https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1103/PhysRevLett.101.156804
https://doi.org/10.1103/PhysRevLett.101.156804
https://doi.org/10.1103/PhysRevLett.101.156804
https://doi.org/10.1103/PhysRevLett.101.156804
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/srep26698
https://doi.org/10.1038/srep26698
https://doi.org/10.1038/srep26698
https://doi.org/10.1038/srep26698
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1007/BF01339716
https://doi.org/10.1007/BF01339716
https://doi.org/10.1007/BF01339716
https://doi.org/10.1007/BF01339716
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1038/nphys384
https://doi.org/10.1143/JPSJ.67.2857
https://doi.org/10.1143/JPSJ.67.2857
https://doi.org/10.1143/JPSJ.67.2857
https://doi.org/10.1143/JPSJ.67.2857
https://doi.org/10.1103/PhysRevB.76.245435
https://doi.org/10.1103/PhysRevB.76.245435
https://doi.org/10.1103/PhysRevB.76.245435
https://doi.org/10.1103/PhysRevB.76.245435
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849
https://doi.org/10.1038/nmat1849
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1103/PhysRevLett.102.146804
https://doi.org/10.1103/PhysRevLett.102.146804
https://doi.org/10.1103/PhysRevLett.102.146804
https://doi.org/10.1103/PhysRevLett.102.146804
https://doi.org/10.1103/PhysRevLett.107.156603
https://doi.org/10.1103/PhysRevLett.107.156603
https://doi.org/10.1103/PhysRevLett.107.156603
https://doi.org/10.1103/PhysRevLett.107.156603
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1103/PhysRevLett.99.246801
https://doi.org/10.1103/PhysRevB.87.155409
https://doi.org/10.1103/PhysRevB.87.155409
https://doi.org/10.1103/PhysRevB.87.155409
https://doi.org/10.1103/PhysRevB.87.155409

DECAY OF SEMICLASSICAL MASSLESS DIRAC ...

PHYSICAL REVIEW B 98, 104308 (2018)

[22] J. Caridad, S. Connaughton, C. Ott, H. B. Weber, and V. Krstic,
Nat. Commun. 7, 12894 (2016).

[23] C. Gutiérrez, L. Brown, C.-J. Kim, J. Park, and A. N. Pasupathy,
Nat. Phys. 12, 1069 (2016).

[24] J. Lee, D. Wong, J. Velasco, Jr., J. F. Rodriguez-Nieva, S. Kahn,
H.-Z. Tsai, T. Taniguchi, K. Watanabe, A. Zettl, F. Wang, L. S.
Levitov, and M. F. Crommie, Nat. Phys. 12, 1032 (2016).

[25] J.-S. Wu and M. M. Fogler, Phys. Rev. B 90, 235402 (2014).

[26] Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C.
Lewandowski, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B.
Zhitenev, and J. A. Stroscio, Science 348, 672 (2015).

[27] Y. Jiang, J. Mao, D. Moldovan, M. R. Masir, G. Li, K.
Watanabe, T. Taniguchi, F. M. Peeters, and E. Y. Andrei,
Nat. Nanotechnol. 12, 1045 (2017).

[28] F. Ghahari, D. Walkup, C. Gutiérrez, J. F. Rodriguez-Nieva, Y.
Zhao, J. Wyrick, F. D. Natterer, W. G. Cullen, K. Watanabe,
T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio,
Science 356, 845 (2017).

[29] P. Rickhaus, P. Makk, K. Richter, and C. Schonenberger,
Appl. Phys. Lett. 107, 251901 (2015).

[30] M.-H. Liu, C. Gorini, and K. Richter, Phys. Rev. Lett. 118,
066801 (2017).

[31] A. W. Barnard, A. Hughes, A. L. Sharpe, K. Watanabe, T.
Taniguchi, and D. Goldhaber-Gordon, Nat. Commun. 8, 15418
(2017).

[32] P. Baggild, J. M. Caridad, C. Stampfer, G. Calogero, N. R.
Papior, and M. Brandbyge, Nat. Commun. 8, 15783 (2017).

[33] Z. Wu, E Zhai, F. M. Peeters, H. Q. Xu, and K. Chang,
Phys. Rev. Lett. 106, 176802 (2011).

[34] M. Settnes, S. R. Power, M. Brandbyge, and A.-P. Jauho,
Phys. Rev. Lett. 117, 276801 (2016).

[35] M. M. Asmar and S. E. Ulloa, Phys. Rev. B 87, 075420 (2013).

[36] A. G. Moghaddam and M. Zareyan, Phys. Rev. Lett. 105,
146803 (2010).

[37] S.-H. Zhang, J.-J. Zhu, W. Yang, and K. Chang, 2D Mater. 4,
035005 (2017).

[38] H.-Y. Xu, G.-L. Wang, L. Huang, and Y.-C. Lai, Phys. Rev. Lett.
120, 124101 (2018).

[39] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotech-
nol. 3, 491 (2008).

[40] B. Liao, M. Zebarjadi, K. Esfarjani, and G. Chen, Phys. Rev. B
88, 155432 (2013).

[41] G.-H. Lee, G.-H. Park, and H.-J. Lee, Nat. Phys. 11, 925 (2015).

[42] S. Chen, Z. Han, M. M. Elahi, K. M. M. Habib, L. Wang, B.
Wen, Y. Gao, T. Taniguchi, K. Watanabe, J. Hone, A. W. Ghosh,
and C. R. Dean, Science 353, 1522 (2016).

[43] D. Song, V. Paltoglou, S. Liu, Y. Zhu, D. Gallardo, L. Tang, J.
Xu, M. Ablowitz, N. K. Efremidis, and Z. Chen, Nat. Commun.
6, 6272 (2015).

[44] L. Lu, J. D. Joannopoulos, and M. Solja¢ié¢, Nat. Photonics 8,
821 (2014).

[45] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[46] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M.
Segev, D. N. Christodoulides, and M. Khajavikhan, Science
359, eaar4005 (2018).

[47] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D.
Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev,
Science 359, eaar4003 (2018).

[48] J. U. Nockel, A. D. Stone, and R. K. Chang, Opt. Lett. 19, 1693
(1994).

[49] A. Mekis, J. U. Nockel, G. Chen, A. D. Stone, and R. K. Chang,
Phys. Rev. Lett. 75, 2682 (1995).

[50] J. U. Nockel, A. D. Stone, G. Chen, H. L. Grossman, and R. K.
Chang, Opt. Lett. 21, 1609 (1996).

[51] J. U. Nockel and A. D. Stone, Nature (London) 385, 45 (1997).
[52] C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D.
Stone, J. Faist, and D. L. Sivco, Science 280, 1556 (1998).

[53] Z. Liu and Y.-C. Lai, Phys. Rev. E 65, 046204 (2002).

[54] Y.-C. Lai and T. Té€l, Transient Chaos: Complex Dynamics on
Finite-Time Scales (Springer, New York, 2011).

[55] E. G. Altmann, J. S. Portela, and T. Tél, Rev. Mod. Phys. 85,
869 (2013).

[56] H. Cao and J. Wiersig, Rev. Mod. Phys. 87, 61 (2015).

[57] G. Vattay, A. Wirzba, and P. E. Rosenqvist, Phys. Rev. Lett. 73,
2304 (1994).

[58] E. E. Narimanov, G. Hackenbroich, P. Jacquod, and A. D. Stone,
Phys. Rev. Lett. 83, 4991 (1999).

[59] E. G. Altmann, Phys. Rev. A 79, 013830 (2009).

[60] N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and
A. D. Stone, Phys. Rev. Lett. 88, 094102 (2002).

[61] S.-B. Lee, J.-H. Lee, J.-S. Chang, H.-J. Moon, S. W. Kim, and
K. An, Phys. Rev. Lett. 88, 033903 (2002).

[62] S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M.
Kim, Phys. Rev. Lett. 93, 164102 (2004).

[63] J.-W. Ryu, S.-Y. Lee, C.-M. Kim, and Y.-J. Park, Phys. Rev. E
73, 036207 (2006).

[64] J. Wiersig and M. Hentschel, Phys. Rev. Lett. 100, 033901
(2008).

[65] H. Schomerus and M. Hentschel, Phys. Rev. Lett. 96, 243903
(2006).

[66] P. Hewageegana and V. Apalkov, Phys. Rev. B 77, 245426
(2008).

[67] J. H. Bardarson, M. Titov, and P. W. Brouwer, Phys. Rev. Lett.
102, 226803 (2009).

[68] M. Titov, P. M. Ostrovsky, I. V. Gornyi, A. Schuessler, and A. D.
Mirlin, Phys. Rev. Lett. 104, 076802 (2010).

[69] R. Yang, L. Huang, Y.-C. Lai, and C. Grebogi, Europhys. Lett.
94, 40004 (2011).

[70] M. Schneider and P. W. Brouwer, Phys. Rev. B 84, 115440
(2011).

[71] J. Heinl, M. Schneider, and P. W. Brouwer, Phys. Rev. B 87,
245426 (2013).

[72] M. Schneider and P. W. Brouwer, Phys. Rev. B 89, 205437
(2014).

[73] H.-Y. Xu and Y.-C. Lai, Phys. Rev. B 94, 165405 (2016).

[74] X. Zhang and Z. Liu, Phys. Rev. Lett. 101, 264303 (2008).

[75] S. R. Zandbergen and M. J. A. de Dood, Phys. Rev. Lett. 104,
043903 (2010).

[76] S. Bittner, B. Dietz, M. Miski-Oglu, P. Oria Iriarte, A. Richter,
and F. Schifer, Phys. Rev. B 82, 014301 (2010).

[77] 1. Bloch, T. W. Hinsch, and T. Esslinger, Phys. Rev. Lett. 82,
3008 (1999).

[78] G. Reinaudi, T. Lahaye, A. Couvert, Z. Wang, and D. Guéry-
Odelin, Phys. Rev. A 73, 035402 (2006).

[79] H.-J. Stockmann, Quantum Chaos: An Introduction (Cambridge
University Press, New York, 1999).

[80] F. Haake, Quantum Signatures of Chaos, 3rd ed., Springer
Series in Synergetics (Springer-Verlag, Berlin, 2010).

[81] M. V. Berry and R. J. Mondragon, Proc. R. Soc. London, Ser. A
412, 53 (1987).

104308-11


https://doi.org/10.1038/ncomms12894
https://doi.org/10.1038/ncomms12894
https://doi.org/10.1038/ncomms12894
https://doi.org/10.1038/ncomms12894
https://doi.org/10.1038/nphys3806
https://doi.org/10.1038/nphys3806
https://doi.org/10.1038/nphys3806
https://doi.org/10.1038/nphys3806
https://doi.org/10.1038/nphys3805
https://doi.org/10.1038/nphys3805
https://doi.org/10.1038/nphys3805
https://doi.org/10.1038/nphys3805
https://doi.org/10.1103/PhysRevB.90.235402
https://doi.org/10.1103/PhysRevB.90.235402
https://doi.org/10.1103/PhysRevB.90.235402
https://doi.org/10.1103/PhysRevB.90.235402
https://doi.org/10.1126/science.aaa7469
https://doi.org/10.1126/science.aaa7469
https://doi.org/10.1126/science.aaa7469
https://doi.org/10.1126/science.aaa7469
https://doi.org/10.1038/nnano.2017.181
https://doi.org/10.1038/nnano.2017.181
https://doi.org/10.1038/nnano.2017.181
https://doi.org/10.1038/nnano.2017.181
https://doi.org/10.1126/science.aal0212
https://doi.org/10.1126/science.aal0212
https://doi.org/10.1126/science.aal0212
https://doi.org/10.1126/science.aal0212
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1103/PhysRevLett.118.066801
https://doi.org/10.1103/PhysRevLett.118.066801
https://doi.org/10.1103/PhysRevLett.118.066801
https://doi.org/10.1103/PhysRevLett.118.066801
https://doi.org/10.1038/ncomms15418
https://doi.org/10.1038/ncomms15418
https://doi.org/10.1038/ncomms15418
https://doi.org/10.1038/ncomms15418
https://doi.org/10.1038/ncomms15783
https://doi.org/10.1038/ncomms15783
https://doi.org/10.1038/ncomms15783
https://doi.org/10.1038/ncomms15783
https://doi.org/10.1103/PhysRevLett.106.176802
https://doi.org/10.1103/PhysRevLett.106.176802
https://doi.org/10.1103/PhysRevLett.106.176802
https://doi.org/10.1103/PhysRevLett.106.176802
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevLett.117.276801
https://doi.org/10.1103/PhysRevB.87.075420
https://doi.org/10.1103/PhysRevB.87.075420
https://doi.org/10.1103/PhysRevB.87.075420
https://doi.org/10.1103/PhysRevB.87.075420
https://doi.org/10.1103/PhysRevLett.105.146803
https://doi.org/10.1103/PhysRevLett.105.146803
https://doi.org/10.1103/PhysRevLett.105.146803
https://doi.org/10.1103/PhysRevLett.105.146803
https://doi.org/10.1088/2053-1583/aa76d2
https://doi.org/10.1088/2053-1583/aa76d2
https://doi.org/10.1088/2053-1583/aa76d2
https://doi.org/10.1088/2053-1583/aa76d2
https://doi.org/10.1103/PhysRevLett.120.124101
https://doi.org/10.1103/PhysRevLett.120.124101
https://doi.org/10.1103/PhysRevLett.120.124101
https://doi.org/10.1103/PhysRevLett.120.124101
https://doi.org/10.1038/nnano.2008.199
https://doi.org/10.1038/nnano.2008.199
https://doi.org/10.1038/nnano.2008.199
https://doi.org/10.1038/nnano.2008.199
https://doi.org/10.1103/PhysRevB.88.155432
https://doi.org/10.1103/PhysRevB.88.155432
https://doi.org/10.1103/PhysRevB.88.155432
https://doi.org/10.1103/PhysRevB.88.155432
https://doi.org/10.1038/nphys3460
https://doi.org/10.1038/nphys3460
https://doi.org/10.1038/nphys3460
https://doi.org/10.1038/nphys3460
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1038/ncomms7272
https://doi.org/10.1038/ncomms7272
https://doi.org/10.1038/ncomms7272
https://doi.org/10.1038/ncomms7272
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4005
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1126/science.aar4003
https://doi.org/10.1364/OL.19.001693
https://doi.org/10.1364/OL.19.001693
https://doi.org/10.1364/OL.19.001693
https://doi.org/10.1364/OL.19.001693
https://doi.org/10.1103/PhysRevLett.75.2682
https://doi.org/10.1103/PhysRevLett.75.2682
https://doi.org/10.1103/PhysRevLett.75.2682
https://doi.org/10.1103/PhysRevLett.75.2682
https://doi.org/10.1364/OL.21.001609
https://doi.org/10.1364/OL.21.001609
https://doi.org/10.1364/OL.21.001609
https://doi.org/10.1364/OL.21.001609
https://doi.org/10.1038/385045a0
https://doi.org/10.1038/385045a0
https://doi.org/10.1038/385045a0
https://doi.org/10.1038/385045a0
https://doi.org/10.1126/science.280.5369.1556
https://doi.org/10.1126/science.280.5369.1556
https://doi.org/10.1126/science.280.5369.1556
https://doi.org/10.1126/science.280.5369.1556
https://doi.org/10.1103/PhysRevE.65.046204
https://doi.org/10.1103/PhysRevE.65.046204
https://doi.org/10.1103/PhysRevE.65.046204
https://doi.org/10.1103/PhysRevE.65.046204
https://doi.org/10.1103/RevModPhys.85.869
https://doi.org/10.1103/RevModPhys.85.869
https://doi.org/10.1103/RevModPhys.85.869
https://doi.org/10.1103/RevModPhys.85.869
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/PhysRevLett.73.2304
https://doi.org/10.1103/PhysRevLett.73.2304
https://doi.org/10.1103/PhysRevLett.73.2304
https://doi.org/10.1103/PhysRevLett.73.2304
https://doi.org/10.1103/PhysRevLett.83.4991
https://doi.org/10.1103/PhysRevLett.83.4991
https://doi.org/10.1103/PhysRevLett.83.4991
https://doi.org/10.1103/PhysRevLett.83.4991
https://doi.org/10.1103/PhysRevA.79.013830
https://doi.org/10.1103/PhysRevA.79.013830
https://doi.org/10.1103/PhysRevA.79.013830
https://doi.org/10.1103/PhysRevA.79.013830
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1103/PhysRevLett.88.094102
https://doi.org/10.1103/PhysRevLett.88.033903
https://doi.org/10.1103/PhysRevLett.88.033903
https://doi.org/10.1103/PhysRevLett.88.033903
https://doi.org/10.1103/PhysRevLett.88.033903
https://doi.org/10.1103/PhysRevLett.93.164102
https://doi.org/10.1103/PhysRevLett.93.164102
https://doi.org/10.1103/PhysRevLett.93.164102
https://doi.org/10.1103/PhysRevLett.93.164102
https://doi.org/10.1103/PhysRevE.73.036207
https://doi.org/10.1103/PhysRevE.73.036207
https://doi.org/10.1103/PhysRevE.73.036207
https://doi.org/10.1103/PhysRevE.73.036207
https://doi.org/10.1103/PhysRevLett.100.033901
https://doi.org/10.1103/PhysRevLett.100.033901
https://doi.org/10.1103/PhysRevLett.100.033901
https://doi.org/10.1103/PhysRevLett.100.033901
https://doi.org/10.1103/PhysRevLett.96.243903
https://doi.org/10.1103/PhysRevLett.96.243903
https://doi.org/10.1103/PhysRevLett.96.243903
https://doi.org/10.1103/PhysRevLett.96.243903
https://doi.org/10.1103/PhysRevB.77.245426
https://doi.org/10.1103/PhysRevB.77.245426
https://doi.org/10.1103/PhysRevB.77.245426
https://doi.org/10.1103/PhysRevB.77.245426
https://doi.org/10.1103/PhysRevLett.102.226803
https://doi.org/10.1103/PhysRevLett.102.226803
https://doi.org/10.1103/PhysRevLett.102.226803
https://doi.org/10.1103/PhysRevLett.102.226803
https://doi.org/10.1103/PhysRevLett.104.076802
https://doi.org/10.1103/PhysRevLett.104.076802
https://doi.org/10.1103/PhysRevLett.104.076802
https://doi.org/10.1103/PhysRevLett.104.076802
https://doi.org/10.1209/0295-5075/94/40004
https://doi.org/10.1209/0295-5075/94/40004
https://doi.org/10.1209/0295-5075/94/40004
https://doi.org/10.1209/0295-5075/94/40004
https://doi.org/10.1103/PhysRevB.84.115440
https://doi.org/10.1103/PhysRevB.84.115440
https://doi.org/10.1103/PhysRevB.84.115440
https://doi.org/10.1103/PhysRevB.84.115440
https://doi.org/10.1103/PhysRevB.87.245426
https://doi.org/10.1103/PhysRevB.87.245426
https://doi.org/10.1103/PhysRevB.87.245426
https://doi.org/10.1103/PhysRevB.87.245426
https://doi.org/10.1103/PhysRevB.89.205437
https://doi.org/10.1103/PhysRevB.89.205437
https://doi.org/10.1103/PhysRevB.89.205437
https://doi.org/10.1103/PhysRevB.89.205437
https://doi.org/10.1103/PhysRevB.94.165405
https://doi.org/10.1103/PhysRevB.94.165405
https://doi.org/10.1103/PhysRevB.94.165405
https://doi.org/10.1103/PhysRevB.94.165405
https://doi.org/10.1103/PhysRevLett.101.264303
https://doi.org/10.1103/PhysRevLett.101.264303
https://doi.org/10.1103/PhysRevLett.101.264303
https://doi.org/10.1103/PhysRevLett.101.264303
https://doi.org/10.1103/PhysRevLett.104.043903
https://doi.org/10.1103/PhysRevLett.104.043903
https://doi.org/10.1103/PhysRevLett.104.043903
https://doi.org/10.1103/PhysRevLett.104.043903
https://doi.org/10.1103/PhysRevB.82.014301
https://doi.org/10.1103/PhysRevB.82.014301
https://doi.org/10.1103/PhysRevB.82.014301
https://doi.org/10.1103/PhysRevB.82.014301
https://doi.org/10.1103/PhysRevLett.82.3008
https://doi.org/10.1103/PhysRevLett.82.3008
https://doi.org/10.1103/PhysRevLett.82.3008
https://doi.org/10.1103/PhysRevLett.82.3008
https://doi.org/10.1103/PhysRevA.73.035402
https://doi.org/10.1103/PhysRevA.73.035402
https://doi.org/10.1103/PhysRevA.73.035402
https://doi.org/10.1103/PhysRevA.73.035402
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.1098/rspa.1987.0080

HAN, WANG, XU, HUANG, AND LAI

PHYSICAL REVIEW B 98, 104308 (2018)

[82] X. Ni, L. Huang, Y.-C. Lai, and C. Grebogi, Phys. Rev. E 86,
016702 (2012).

[83] P. E. Allain and J.-N. Fuchs, Eur. Phys. J. B 83, 301
(2011).

[84] T. Ozawa, A. Amo, J. Bloch, and I. Carusotto, Phys. Rev. A 96,
013813 (2017).

[85] F. Mortessagne, O. Legrand, and D. Sornette, Chaos 3, 529
(1993).

[86] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[87] A. Elbert and A. Laforgia, Proc. Ame. Math. Soc. 128, 2667
(2000).

104308-12


https://doi.org/10.1103/PhysRevE.86.016702
https://doi.org/10.1103/PhysRevE.86.016702
https://doi.org/10.1103/PhysRevE.86.016702
https://doi.org/10.1103/PhysRevE.86.016702
https://doi.org/10.1140/epjb/e2011-20351-3
https://doi.org/10.1140/epjb/e2011-20351-3
https://doi.org/10.1140/epjb/e2011-20351-3
https://doi.org/10.1140/epjb/e2011-20351-3
https://doi.org/10.1103/PhysRevA.96.013813
https://doi.org/10.1103/PhysRevA.96.013813
https://doi.org/10.1103/PhysRevA.96.013813
https://doi.org/10.1103/PhysRevA.96.013813
https://doi.org/10.1063/1.165958
https://doi.org/10.1063/1.165958
https://doi.org/10.1063/1.165958
https://doi.org/10.1063/1.165958
https://doi.org/10.1090/S0002-9939-00-05520-9
https://doi.org/10.1090/S0002-9939-00-05520-9
https://doi.org/10.1090/S0002-9939-00-05520-9
https://doi.org/10.1090/S0002-9939-00-05520-9



