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Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles
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We report unusual physics associated with wave scattering in pseudospin-1 systems whose band structure
consists of a conventional Dirac cone and a topologically flat band. First, for small scatterer size, we find a
surprising revival resonant scattering phenomenon and identify a peculiar type of boundary trapping profile
through the formation of unusual vortices as the physical mechanism. Second, for larger scatterer size, a perfect
caustic phenomenon arises as a manifestation of the super-Klein tunneling effect, leading to the scatterer’s
being effectively as a Veselago lens. Third, in the far scattering field, an unexpected isotropic behavior emerges
at low energies, which can be attributed to the vanishing Berry phase for massless pseudospin-1 particles
and, consequently, to constructive interference between the time-reversed backscattering paths. We develop an
analytic theory based on the generalized Dirac-Weyl equation to fully explain these phenomena and articulate
experimental schemes with photonic or electronic systems.
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I. INTRODUCTION

Solid state materials whose energy bands contain a Dirac
cone structure have been an active area of research since
the experimental realization of graphene [1,2]. From the
standpoint of quantum transport, the Dirac cone structure
and the resulting pseudospin characteristic of the underlying
quasiparticles can lead to unconventional physical proper-
ties/phenomena such as high carrier mobility, antilocalization,
chiral tunneling, and negative refractive index, which are not
usually seen in traditional semiconductor materials. Moreover,
due to the underlying physics being effectively governed by the
Dirac equation, relativistic quantum phenomena such as Klein
tunneling, Zitterbewegung, and pair creations can potentially
occur in solid state devices and be exploited for significantly
improving or even revolutionizing conventional electronics.
Uncovering/developing alternative materials with a Dirac cone
structure has also been extremely active [3,4]. In this regard,
the discovery of topological insulators [5,6] indicates that
Dirac cones with a topological origin can be created, leading to
the possibility of engineering materials to generate remarkable
physical phenomena such as zero-field half-integer quantum
Hall effect [7], topological magnetoelectric effect [8], and
topologically protected wave transport [9,10].

A parallel line of research has focused on developing
photonic materials with a Dirac cone structure, due to the nat-
ural analogy between electromagnetic and matter waves. For
example, photonic graphene [11,12] and photonic topological
insulators [13–18] have been realized, where novel phenomena
of controlled light propagation have been demonstrated. Due
to the much larger wavelength in optical materials as compared
with the electronic wavelength, synthetic photonic devices
with a Dirac cone structure can be fabricated at larger scales
with greater tunabilities through modulations. The efforts
have led to systems with additional features in the energy
band together with the Dirac cones, opening possibilities
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for uncovering new and “exotic” physics with potential
applications that cannot even be conceived at the present.

The materials assumed in our work are those whose energy
bands consist of a pair of Dirac cones and a topologically
flat band, electronic or optical. For example, in a dielectric
photonic crystal, Dirac cones can be induced through acci-
dental degeneracy that occurs at the center of the Brillouin
zone. This effectively makes the crystal a zero-refractive-index
metamaterial at the Dirac point where the Dirac cones intersect
with another flat band [19–23]. Alternatively, configuring an
array of evanescently coupled optical waveguides into a Lieb
lattice [24–27] can lead to a gapless spectrum consisting of
a pair of common Dirac cones and a perfectly flat middle
band at the corner of the Brillouin zone. As demonstrated
more recently, loading cold atoms into an optical Lieb lattice
provides another experimental realization of the gapless three-
band spectrum at a smaller scale with greater dynamical
controllability of the system parameters [28]. With respect
to creating materials whose energy bands consist of a pair of
Dirac cones and a topologically flat band, there have also been
theoretical proposals on Dice or T3 optical lattices [29–34]
and electronic materials such as transition-metal oxide
SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [35], two-
dimensional (2D) carbon or MoS2 allotropes with a square
symmetry [36,37], SrCu2(BO3)2 [38], and graphene-In2Te2

bilayer [39].
In spite of the diversity and the broad scales to realize

the band structure that consists of two conical bands and
a characteristic flat band intersecting at a single point in
different physical systems, there is a unified underlying
theoretical framework: generalized Dirac-Weyl equation for
massless spin-1 particles [31]. For convenience, we call
such systems pseudospin-1 Dirac cone systems. Comparing
with the conventional Dirac cone systems with massless
pseudospin/spin-1/2 quasiparticles (i.e., systems without a
flat band), pseudospin-1 systems can exhibit quite unusual
physics such as super-Klein tunneling for the two conical
(linear dispersive) bands [23,32,40,41], diffraction-free wave
propagation and novel conical diffraction [24–27], flat band
rendering divergent dc conductivity with a tunable short-range
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disorder [42], unconventional Anderson localization [43,44],
flat band ferromagnetism [28,45,46], and peculiar topolog-
ical phases under external gauge fields or spin-orbit cou-
pling [35,47–49]. In particular, the topological phases arise due
to the flat band that permits a number of degenerate localized
states with a topological origin (i.e., “caging” of carriers) [50].
Most existing works, however, focused on the physics induced
by the additional flat band, and the scattering/transport dynam-
ics in pseudospin-1 systems remains largely unknown (except
the super-Klein tunneling behavior). Our main question is the
following: what types of transport properties can arise from
pseudospin-1 systems whose band structure is characterized
by coexistence of a pair of Dirac cones and a flat band?
To address this question in the simplest possible setting
while retaining the essential physics, we study ballistic wave
scattering against a circularly symmetric potential barrier. We
note that for conventional Dirac cone systems with pseudospin
or spin-1/2 quasiparticles, there has been extensive work on
scattering [51–53] with phenomena such as caustics [54], Mie
scattering resonance [55], birefringent lens [56], cloaking [57],
spin-orbit interaction induced isotropic transport and skew
scattering [58,59], and electron whispering gallery modes [60].

Our three main findings are as follows: revival resonant
scattering, super-Klein tunneling induced perfect caustics,
and universal low-energy isotropic transport without broken
symmetries for massless quasiparticles. First, for small scat-
terer size, the effective three-component spinor wave exhibits
revival resonant scattering as the incident wave energy is varied
continuously—a phenomenon that has not been reported in
any known wave systems. Strikingly, the underlying revival
resonant modes show a peculiar type of boundary trapping pro-
file in their intensity distribution. While the profile resembles
that of a whispering gallery mode, the underlying mechanism
is quite different: these modes occur in the wave dominant
regime through the formation of fusiform vortices around the
boundary in the corresponding local current patterns, rather
than being supported by the gallery type of orbits through
total internal reflections. Second, for larger scatterer size
where the scattering dynamics are semiclassical, a perfect
caustic phenomenon arises when the incident wave energy
is about half of the barrier height, as a result of the super-Klein
tunneling effect. A consequence is that the scatterer behaves
as a lossless Veselago lens with effective negative refractive
index resulting from the Dirac cone band structure. Compared
with conventional Dirac cone systems for pseudospin-1/2
particles, the new caustics possess remarkable features such as
significantly enhanced focusing, vanishing of the second and
higher order caustics, and a well-defined static cusp. Third,
in the far scattering field, an isotropic behavior arises at low
energies. Considering that there is no broken symmetry so
the quasiparticles remain massless, the phenomenon is quite
surprising as conventional wisdom would suggest that the
scattering be anisotropic. By analyzing the characteristic ratio
of the transport to the elastic time as a function of the scatterer
size, we find that the phenomenon of scattering isotropy can
be attributed to vanishing of the Berry phase for massless
pseudospin-1 particles that results in constructive interference
between the time-reversed backscattering paths. Because of
the isotropic structure, the emergence of a Fano-type resonance
structure in the function of the ratio versus the scatterer size can

be exploited to realize effective switch of wave propagation
from a forward dominant state to a backward dominant one,
and vice versa. We develop an analytic theory with physical
reasoning to understand the three novel phenomena, and
articulate experimental verification schemes with photonic or
electronic systems.

II. RESULTS

We consider scattering of pseudospin-1 particles from a
circularly symmetric scalar potential barrier of height V0

defined by V (r) = V0�(R − r), where R is the scatterer radius
and � denotes the Heaviside function. The band structure
for the particle consists of a pair of Dirac cones and a flat
band. A comprehensive description of the Hamiltonian, its
properties, the boundary conditions, and detailed solutions of
the scattering waves is given in Appendix A. To characterize
the scattering dynamics quantitatively, we use the scattering
efficiency, defined as a ratio of the scattering to the geometric
cross sections [55]:

Q = σ

2R
, (1)

where the scattering cross section σ can be calculated through
the far-field radial reflected current, as detailed in Appendix B.

A. Near-field behavior 1: Revival resonant scattering

To uncover unusual physics, we calculate and analyze
the scattering efficiency Q as a function of the reduced
barrier strength V0R (normalized by the group velocity vg

associated with the Dirac cone) and the relative incident energy
E/V0. In order to highlight the unique manifestations of the
unconventional band structure, we focus on the under barrier
scattering process in which the particle energy is below the
barrier height: 0 < E/V0 < 1. To be concrete, we choose
E/V0 = 0.01,0.1,0.9 and, for each fixed value of E/V0,
we calculate the scattering efficiency Q versus the barrier
strength V0R. For the three chosen values of E/V0, the results
are shown by the respective red curves in Figs. 1(a)–1(c).
We see that there are well-separated sharp resonances in Q

for small values of E/V0 [e.g., Fig. 1(a)], while broadened
and overlapping ripple structures occur for larger values of
E/V0 [e.g., Figs. 1(b) and 1(c)]. Using the characteristic
size parameter kR, we can generally classify two distinct
scattering regimes: kR � 1 and kR � 1. In the former case
(kR � 1), the incident wavelength 2π/k is much larger than
the range R of the scattering potential. In this case, the wave
effects dominate the scattering dynamics with a remarkable
resonance characteristic, as shown in Figs. 1(a) and 1(b). The
case kR � 1, and, (1 − E/V0)/(E/V0)kR � 1, corresponds
to the semiclassical limit where the classical ray picture is
applicable. In this case, the scatterer acts essentially as a
Veselago reflector/lens due to an equivalent negative refractive
index arising from the particular band structure of Dirac cones
with a flat band.

From the explicit summation form of Q and the reflection
coefficients Al (labeled by the angular momentum l) obtained
within the generalized partial-wave decomposition formalism
in Appendix B, we see that the size parameter kR provides
a general estimate of the maximum number of angular

165405-2



REVIVAL RESONANT SCATTERING, PERFECT . . . PHYSICAL REVIEW B 94, 165405 (2016)

FIG. 1. General behaviors of the scattering efficiency versus the scatterer strength. Scattering efficiency Q as a function of the scatterer
strength V0R for a number of representative values of the relative incident energy: (a) E/V0 = 0.01, (b) E/V0 = 0.1, and (c) E/V0 = 0.9.
The middle and bottom panels show the corresponding probability density and local current density profiles, respectively. In (a)–(c), the blue
curves are for the conventional massless pseudospin/spin-1/2 case, while the red ones are for the massless pseudospin-1 wave system. Certain
features can be understood by referring to the resonance width expressions �1 ∝ (kR)3 for the resonances associated with the |l| = 1 channel
and �0 ∝ (kR) � �1 for those with the l = 0 channel. For example, in (a), the second and fourth modes belong to the normal excitations of
the |l| = 1 channel, which are located about the first (V0R ∼ 3.8) and the second (V0R ∼ 7) zeros of the Bessel function J1 in the domain
of V0R, while the first, third, and fifth modes are the excitations of normal modes belonging to the l = 0 channel, which are located about
the first (∼2.4), the second (∼5.5), and the third (∼8.7) zeros of the Bessel function J0(V0R). This is why the long lifetime (corresponding
to narrow resonance width) appears in the fourth mode but not in the third and fifth modes. This argument holds in the regime kR � 1 and
E/V0 � 1.

momentum channels contributing to the scattering process.
Accordingly, we can obtain a closed form of Q in the limit
of kR � 1, where only a few lowest channels dominate in
a given range of the barrier strength, say V0R ∈ [0.01,10].
Specifically, using the short-range (x � 1) behavior of the
Bessel functions appearing in the solutions of the scattering
problem, we get a closed expression for the dependence of the
scattering efficiency Q on the effective barrier strength V0R

for kR � 1 and E/V0 � 1, which reads

Q ≈ 2

kR

[
�2

0

�2
0 + [V0R − x0 + kR ln (γEkR/2)]2

+ 2 × �2
1

�2
1 + (V0R − x1 − kR)2

]
, (2)

where γE is the constant appearing in the small value ap-
proximation of the Bessel function: Y0(x) ≈ (2/π ) ln (γEx/2)
for x � 1 and the lowest |l| = 0,1 channels give the leading
contribution to and hence dominate the scattering process
with well-separated symmetric sharp resonances around

V0R = x0,x1, which correspond to the zeros of the Bessel
functions J0 and J1. The respective lifetimes are given by

1

�0
= 2

πkR
and

1

�1
= 2

π (kR)3
.

From Eq. (2), we see that, for kR � 1 and E/V0 � 1,
the resonances exhibit a Lorentzian shape (also known as
the Breit-Wigner distribution). Due to their longer lifetime,
1/�1 � 1/�0, the resonances associated with the |l| = 1
channel are much narrower than those with l = 0. In the limit
kR → 0, the resonant excitations are typically positioned at
the zeros of Jl(V0R) with an infinite lifetime (i.e., zero resonant
widths) that physically correspond to a bound state in the
antidot potential profile without an incident wave. Further
insights can be gained by considering the local probability
and current density distributions of one particular excitation
of the normal modes, e.g., the first resonance associated with
the |l| = 1 channel, as indicated in Figs. 1(a2) and 1(a4).
Analytically, we obtain the probability density inside the
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scattering region (r < R) as

ρ< ≈ |B1|2
[
J 2

1 (V0r) + J 2
0 (V0r) + J 2

2 (V0r)

2

+ (
J 2

1 − J0J2
)

cos (2θ )

]
, (3)

together with the local current distribution

j< ≈ −Re(B∗
1 B0)

[
2J 2

1 (V0r) + J 2
0 (V0r) − J0(V0r)J2(V0r)

]
× cos θ êr + Re(B∗

1 B0)J0(V0r)[J0(V0r) + J2(V0r)]

× sin θ êθ , (4)

where Re(B∗
1 B0) denotes the real part of (B∗

1 B0), and Bl are the
transmission coefficients (Appendix B). When a scattering res-
onance emerges, the magnitude of the transmission coefficient
behaves as

|B1| ∼ 1

kRJ1(V0R)
� 1,

leading to a noticeable probability density concentration
inside the scatterer, indicating the occurrence of wave trap-
ping/confinement. Moreover, it follows from Eq. (4) that,
accompanying the confinement, a vortex pattern symmetric
with respect to the x axis is formed. In general, in the resonant
scattering regime, the incident wave is confined/trapped in
vortices (as demonstrated in the bottom panel of Fig. 1)
rather than through the conventional total internal reflection
mechanism.

Comparing with the conventional pseudospin-1/2 Dirac
cone systems [cf. Figs. 1(a1) and 1(a3), as well as the blue
curve in Fig. 1(a)], we see that there are common features
in the scattering curve and trapping mechanism but with
different resonant wave/current patterns. In particular, the
trapping intensity distribution is radially symmetric for the
pseudospin-1/2 case, but for a pseudospin-1 particle, there
is an angular dependence of the scattering amplitude with a
well-defined rotational symmetry, which can be analyzed for
a specific resonant mode using Eq. (3).

Given the particular range of the scattering strength V0R

as set in Figs. 1(a)–1(c), we see that increasing E/V0 leads
to larger values of kR and hence the scattering process
involves higher angular momentum channels. As a result, more

quasibound modes can be excited, generating overlapping
and broadened resonances, as shown in Figs. 1(b) and 1(c).
In the limit of kR � 1, say V0R � 1 for E/V0 ∼ 1, we
enter the semiclassical regime where the ray picture is
applicable. We obtain Q ≈ 2[1 − π cos(2V0R − π/4)/4V0R]
as a damped oscillatory function of the scattering strength V0R

about a constant value. Distinct from the resonant scattering
regime dominated by wave interference/diffraction, in the
semiclassical regime the scatterer acts as a Veselago reflector
due to its effective negative refractive index. The associated
local probability density and current density patterns in typical
situations for both conventional massless pseudospin-1/2 and
massless pseudospin-1 cases are shown in Figs. 1(b1)–1(b4)
and 1(c1)–1(c4), respectively.

To gain further insights into the scattering behaviors, we
plot Q as a function of V0R and E/V0, as shown in Figs. 2(a)
and 2(b), respectively. As expected, for the pseudospin-1/2
Dirac cone system, the curve of Q versus V0R tends to be
smooth as E/V0 is increased [Fig. 2(a)]. However, for the
pseudospin-1 Dirac cone system shown in Fig. 2(b), the re-
markable phenomenon of revival resonant scattering emerges:
the sharp resonances disappear, reappear unexpectedly, and
then disappear again with continuous increase in E/V0. We
emphasize that this revival phenomenon is quite exceptional
which, to our knowledge, has not been reported in any other
known wave systems. In the limit of V0R � 1 (V0R > kR),
we obtain

Q 
 2

kR

[
P 2

0

P 2
0 + Q2

0

+ 2 × P 2
1

P 2
1 + (4 + Q1)2

]
, (5)

where

P0 = πkR, and

Q0 = 2[kR ln(γEkR/2) − J0(V0R − kR)/J1(V0R − kR)],

with P1 and Q1 given by [P1,Q1] = kR[P0,Q0]. The first term
of Eq. (5),

P 2
0

P 2
0 + Q2

0

≈ π2J 2
1 (V0R − kR)

4J 2
0 (V0R − kR)

(kR)2


 π2(1 − E/V0)2

16
(V0R)2(kR)2 � 1,

FIG. 2. Scattering efficient Q versus the scatterer strength V0R and the relative incident energy E/V0 for (a) massless pseudospin-1/2 and
(b) massless pseudospin-1 wave systems. The black curve is for E/V0 = 0.49 with a highlighted visual effect.
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FIG. 3. Vortex-based wave trapping for massless pseudospin-1 scattering. (a)–(c) Schematic illustration of three types of vortex-based wave
trapping. (d) Wave pattern near the boundary for a massless pseudospin-1/2 particle for E/V0 = 0.086. (e), (f) Boundary wave patterns for the
massless pseudospin-1 case for E/V0 = 0.044 and E/V0 = 0.487, respectively. The value of V0R is set to be 4.5 for all cases.

is off-resonance. Remarkably, the second term generates
an additional resonance for 4 + Q1 = 0, which corresponds
to the emerging revival resonance observed. Explicitly, the
associated revival resonant condition can be obtained from 4 +
kRQ0 = 0 as E/V0 ≈ 1/2, which agrees with the numerical
results as displayed in Fig. 2(b).

Certain remarkable features of the revival resonances can
be revealed through the underlying revival resonant modes
(RRMs) defined in terms of the associated local probability
and current density patterns. We find that the RRMs ex-
hibit unusual boundary trapping profiles, where the higher
the resonance frequency (energy) the more pronounced the
trapping. Examining the corresponding local current density
distribution of a specific RRM, we find that the incident
wave is fed into fusiform vortices about the boundary and
is trapped there. In contrast, for conventional pseudospin-1/2
scattering, no such trapping phenomenon occurs. Using the
general vortex-based trapping mechanism, we can get an
intuitive physical picture for the unusual boundary trapping
phenomenon through a qualitative analysis of vortex formation
in the local current distribution stipulated by the boundary
conditions. In particular, for a given local current configuration
outside the scattering boundary, as indicated by the light blue
arrows in Figs. 3(a)–3(c), we sketch the possible local current
patterns inside the boundary, denoted by the blue, green, and

red arrows, respectively. This can be done with the boundary
conditions defined in terms of the spinor wave function
	 = [ψ1,ψ2,ψ3]T and their effect on the associated local
current field j (see Appendix A). Since continuity is the only
constraint on the normal component of the local currents at the
boundary (the tangent component is in general discontinuous
and can even have opposite directions), there is an additional
freedom to configure the corresponding current pattern inside
the potential region for a particular pattern outside. This leads
to the remarkable fusiform boundary vortices as illustrated
in Fig. 3(c) with the dramatic phenomenon of boundary
trapping and, consequently, to the resonances in the curve
of the scattering efficiency. Note that, for the conventional
scalar or spinor wave systems, the current configuration is
well determined in the sense that, given a configuration on
one side of the boundary, that on the other side is then
determined completely. This is due to the continuity in both
components of the local currents at the boundary, as illustrated
in Fig. 3(a). As a concrete example, we demonstrate the full
local current patterns in Figs. 3(d)–3(f), where the former
two represent the typical local current profiles underlying the
conventional low-order resonant modes excited in the massless
pseudospin-1/2 and massless pseudospin-1 wave systems,
respectively, while the last one is for that of the RRM that
arises only for the massless pseudospin-1 wave system.
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FIG. 4. Comparison of conventional resonant, revival resonant, and whispering gallery modes for the pseudospin-1 Dirac cone system.
(a)–(c) Typical probability distributions for the conventional resonant mode, revival resonant mode (RRM), and whispering gallery mode
(WGM), respectively, where the scattering parameters [E/V0,V0R] are (a) [0.2, 11.598], (b) [0.487,4.5], and (c) [0.4157, 100]. (d)–(f) The
corresponding current patterns with the magnitude coded by colors: monotonically increasing from blue to red.

For pseudospin-1 Dirac cone systems, a remarkable phe-
nomenon is super-Klein tunneling (see Appendix A), which
occurs when the energy of the incident particle is about
one-half of the potential height. In this case, forward scattering
is maximized. In contrast, the revival scattering resonances
are associated with fusiform vortices about the boundary,
creating perfect wave trappings there and eliminating any
forward scattering. Both super-Klein tunneling and revival
resonant scattering depend on the scatterer strength V0R

and the relative incident energy E/V0. From an applied
point of view, it is thus possible to switch the super-Klein-
tunneling dominant forward scattering on and off efficiently
by tuning the parameters. In fact, the higher pseudospin degree
of freedom and the flexible scattering boundary conditions
render richer current patterns that can be manipulated through
parameter perturbation. This may find applications in novel
photonic integrated circuit design, as pseudospin-1 systems
have been realized experimentally in a variety of photonic
crystals [19,20,23–26,28].

While the RRMs uncovered appear similar to the well-
known whispering gallery modes (WGMs) in terms of the
intensity profiles, we emphasize that the underlying mecha-
nisms are quite different. In particular, the WGMs are due to
the total internal reflection within an effective semiclassical ray
regime, but the RRMs result from the formation of unusual,
dominant vortices locally attached to the boundary due to wave

interference and can thus occur for much smaller scatterer size
kR, a regime in which the semiclassical ray approximation
fails. An explicit comparison of conventional resonant, revival
resonant, and whispering gallery modes for the pseudospin-1
Dirac cone system is presented in Fig. 4.

B. Near-field behavior 2: Perfect caustics

Caustics, a spatial region in which the density of light rays is
singular, occur in the semiclassical regime. This phenomenon
is quite common in daily life, mostly through geometric optics.
For a pseudospin-1/2 Dirac cone system, caustics can occur
due to the tunable effective negative refractive index and the
Klein tunneling effect, as shown in Figs. 5(a) and 5(c). For the
pseudospin-1 Dirac cone system, the surprising phenomenon
of perfect caustic/lens behavior occurs, as shown in Figs. 5(b)
and 5(d) for the same parameter as in Figs. 5(a) and 5(c),
which emerges in the regime where the incident wavelength is
much smaller than the scatterer radius R. The caustic patterns
for the massless pseudospin-1 system are “perfect” in the
sense that they are significantly more focused/concentrated
than the pseudospin-1/2 counterparts. We find that perfect
caustics are a result of the super-Klein tunneling effect for
massless pseudospin-1 particles, where the transmission coef-
ficient approaches unity for any incident angle [23,32,40,41].
Specifically, for a single straight scattering interface, we obtain
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FIG. 5. Caustic behavior in the semiclassical regime and perfect caustics in pseudospin-1 Dirac cone systems. The probability and local
current density patterns, respectively, for [(a),(c)] conventional pseudo-1/2 and [(b),(d)] pseudospin-1 Dirac cone systems. The probability
density patterns in (a) and (b) are plotted on a logarithmic scale. The corresponding local current density patterns in (c) and (d) are color coded
with magnitude normalized by its maximum. The parameters are kR = 300 and E/V0 = 1/2.

the transmission coefficient for incident angle θ (−π/2 � θ �
π/2) as

T = 4ττ ′ cos θ ′ cos θ

cos2 θ ′ + cos2 θ + 2ττ ′ cos θ ′ cos θ
, (6)

with the refractive angle given by

θ ′ = π − tan−1 |E/V0| sin θ√
(1 − E/V0)2 − (E/V0)2 sin2 θ

,

where τ = sgn(E) and τ ′ = sgn(E − V0). It follows from
Eq. (6) that T ≡ 1 for E/V0 = 1/2, regardless of the incident
angle, as shown by the thick red curve in Fig. 6, signifying a
super-Klein tunneling behavior. For comparison, the incident
angle dependent transmission probability for the conventional
pseudospin-1/2 system is shown as the thick blue line in the
same figure.

Within the ray formalism and based on differential geome-
try [54], we obtain analytically the following caustic envelope
equation defining a curve rc = (xc,yc) as

rc(p,θ )

R
= (−)p−1

[
(− cos �, sin �) + cos β

1 + 2(p − 1)β ′

1 + (2p − 1)β ′

× (cos (� + β), − sin (� + β))

]
, (7)

where � = θ + 2(p − 1)β, sin β = sin θ/|1 − V0/E|, and
β ′ = cos θ/

√
(1 − V0/E)2 − sin2 θ with p being the number

of chords inside the scattering region corresponding to p − 1
internal reflections. Intuitively, the caustics for p > 1 are less

visible since the ray intensity decreases after each internal
reflection. However, for our pseudospin-1 Dirac cone system,
the super-Klein tunneling effect for E/V0 = 1/2 will suppress
the p > 1 caustics completely, leading to a perfect caustic
for p = 1, which intuitively can be better seen from the
corresponding local current patterns in Figs. 5(c) and 5(d).

While super-Klein tunneling T ≡ 1 occurs exactly for
E/V0 = 0.5 for the entire range of the incident angle, even
when E/V deviates from the value of 0.5 (e.g., E/V = 0.4),

0.20.2 0.40.4 0.60.6 0.80.8 101
transmission probability T

−90o

−60o

−30o

0o

30o

60o

90o

FIG. 6. Super-Klein tunneling in pseudospin-1 Dirac cone sys-
tems. Transmission probability: red and blue curves are for the
massless pseudospin-1 and pseudospin-1/2 particles, respectively,
with E/V0 = 0.5 (solid lines) and E/V0 = 0.4 (dashed lines). For
the former (solid red line) the transmission is unity, regardless of the
incident angle.
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FIG. 7. Robustness of super-Klein tunneling and perfect caustics in pseudospin-1 Dirac cone systems. Top panels: polar plots of the
transmission probability for different values of E/V0 as indicated. The left column is for the pseudospin-1/2 system, while the right is for the
pseudospin-1 system. Parameters used for generating the caustic patterns are kR = 300 and E/V0 = 0.4 (rather than exactly at E/V0 = 0.5).

T ≈ 1 still persists for a substantial range of the incident angle,
as shown in the top-right corner of Fig. 7. In addition, the
phenomenon of perfect caustics holds as well, as shown in
Figs. 7(b) and 7(d). Because of the flexible energy range for
super-Klein tunneling and perfect caustics to occur, it may be
feasible to observe these phenomena in experiments.

C. Far-field behavior: Isotropic scattering of massless
pseudospin-1 quasiparticles and control

Far away from the scattering center, i.e., r � R, for unit
incident density, the spinor wave function can be written as

	>(r,θ ) ≈ 1

2

⎛
⎝ 1√

2τ

1

⎞
⎠eikr cos θ + 1

2

⎛
⎝e−iθ√

2τ

eiθ

⎞
⎠f (θ )√

r
eikr , (8)

where f (θ ) denotes the 2D far-field scattering amplitude in the
direction defined by the angle θ with the x axis. The differential

and the total cross sections are given, respectively, by

dσ

dθ
= |f (θ )|2 (9)

and

σ =
∫ 2π

0
|f (θ )|2dθ. (10)

In addition, we define the transport or momentum-relaxation
cross section as

σtr =
∫ 2π

0
dθ |f (θ )|2(1 − cos θ ). (11)

The three types of cross sections are experimentally mea-
surable and can be used to quantitatively characterize the
basic scattering and transport physics for pseudospin-1 Dirac
cone systems. For example, consider such a system with
randomly distributed identical scatterers of low concentration,
i.e., nc � 1/R2; the conductivity in units of the conductance
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quantum G0 can be expressed as (see Appendix C)

G

G0
= k

ncσtr
= vgkτtr, (12)

where the sample size is assumed to be larger than the mean-
free path L = vgτtr with τtr being the transport mean-free time,
and vg is the group velocity. The elastic scattering time (the
quantum lifetime) τe can be determined from the total cross
section through

1

τe

= ncvgσ. (13)

The two time scales define the following characteristic ratio:

ξ = τtr

τe

= σ

σtr
≡

∮
dθ |f (θ )|2∮

dθ |f (θ )|2(1 − cos θ )
, (14)

which can be used to characterize the far-field behavior of the
scattering process. Through a detailed analysis, we obtain the
following formula (see Appendix B):

ξ = 2
∑

l sin2 δl∑
l sin2(δl+1 − δl)

, (15)

where δl is the scattering phase shift associated with angular
momentum l.

We present our finding of the general isotropic nature of
low-energy scattering for the massless pseudospin-1 wave.
To be concrete, we calculate from Eq. (15) the ratio ξ as a
function of kR for a given barrier strength V0R = 5. The result
is shown as the red curves in Fig. 8, where we see that there
is a characteristic constant ratio ξ ≈ 1 of the transport time to
the elastic time for kR � 1. For comparison, we calculate
the corresponding ratio for the massless pseudospin-1/2
wave, where low-energy scattering is universally anisotropic
as characterized by the constant ratio ξ ≈ 2 [53,58]. Our
result indicates that, for a massless pseudospin-1 particle,

backscattering is as pronounced as forward scattering. This
finding is quite counterintuitive: if the massless nature of the
quasiparticles is sustained, they can penetrate through potential
barriers of arbitrary strength via the mechanism of Klein
tunneling, making forward scattering more pronounced. Since
super-Klein tunneling can occur for massless pseudospin-1
quasiparticles but the scattering is isotropic at low energies,
the message is that, to generate isotropic transport, it may not
be necessary to break symmetries to alter the massless nature of
the quasiparticles through, e.g., additional mechanisms such
as spin-orbit interactions. Equivalently, an isotropic ratio ξ

for massless quasiparticles does not necessarily imply any
symmetry breaking leading to a finite mass.

To gain deeper insights into the physics underlying the
counterintuitive phenomenon of isotropic scattering for mass-
less particles, we analyze the characteristic ratio ξ in terms
of the scattering cross sections. The reflection coefficient
associated with angular momentum l satisfies Al = A−l .
Using this relation, we obtain the differential cross section
as (Appendix B)

dσ

dθ
= 2

πk

{
|A0|2 + 2

∞∑
n=1

|An|2[1 + cos (2nθ )]

+ 4
∞∑

n=1

Re(A0A
∗
n) cos (nθ ) + 8

∞∑
m>n=1

Re(AnA
∗
m)

× cos (nθ ) cos (mθ )

}
. (16)

In the regime kR � 1 where the total angular momentum
channels (l = 0, ± 1) dominate the scattering process, we have

dσ

dθ
≈ 2

πk
{|A0|2 + 2|A1|2[1 + cos (2θ )]}, (17)
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FIG. 8. Isotropic scattering of a massless pseudospin-1 quasiparticle. Ratio ξ as a function of kR for V0R = 5: the red and blue lines are
for the massless pseudospin-1 and pseudospin-1/2 cases, respectively.

165405-9



HONG-YA XU AND YING-CHENG LAI PHYSICAL REVIEW B 94, 165405 (2016)

resulting in an isotropic ratio that agrees with the simulation
result:

ξ ≡
∮

dθ dσ
dθ∮

dθ dσ
dθ

(1 − cos θ )
≈ 1. (18)

A remarkable feature associated with the expression of dσ/dθ

in Eq. (17) is the presence of backscattering characterized by
a finite differential cross section at θ = π :

dσ

dθ

∣∣∣∣
θ=π

= 2

πk
[|A0|2 + 4|A1|2], (19)

which results from the constant term contributed by the l = 0
channel and the constructive interference between the time-
reversed scattering paths denoted by l = ±1. The underlying
physical picture can then be understood, as follows. Consider
the pseudohelicity defined as ĥ = S · k/k. Its eigenvalues
are conserved during the scattering process because of
the commutation [ĥ,Ĥ ] = 0 for the massless pseudospin-1
system. In general, when time-reversal symmetry is taken
into account, a typical backscattering process consists of a
pair of scattering paths with a 2π relative rotation of the
pseudospin between them. This leads to a phase difference
determined by the underlying Berry phase ei�B . For a massless
pseudospin-1 particle, we have �B = 0. There is thus coherent
interference for backscattering, which makes the low-energy
scattering isotropic. When this general picture is applied
to a conventional pseudospin-1/2 Dirac cone system with
�B = π , it is straightforward to see that for backscattering
there is complete destructive interference and the zero total
angular momentum channel is absent [51,61]. In particular, we
have, for the differential cross section, dσ/dθ ∼ (1 + cos θ )
for kR � 1. The ratio ξ thus becomes ξ ≈ 2/

∮
dθ (1 −

cos 2θ ) = 2. The analysis agrees with the numerical results
in Fig. 8.

Another phenomenon is the emergence of a Fano-like
resonance profile for larger values of kR where higher angular
momentum channels can be excited and interfere with the
lower ones, as manifested in the behavior of ξ versus kR.
This provides a way to manipulate Klein-tunneling-based
scattering. In particular, for the conventional pseudospin-1/2
Dirac cone system [as illustrated by the blue curves in the insets
(II) and (III) of Fig. 8], the preferred scattering directions can
be controlled through tuning of the quantity kR. However,
for such particles, since backscattering is typically totally
suppressed, it is not possible to switch between forward
and backward scattering. Remarkably, controlled switching
in the scattering dynamics from forward to backward and
vice versa can be done for our pseudospin-1 system. There
are in fact a number of controllable scattering scenarios
ranging from the isotropic type (ξ ≈ 1), the backscattering
dominant type (ξ < 1), and the forward scattering dominant
type (ξ > 2), and the switches among them can be realized
by tuning the scattering parameter kR. The feasibility of
controlled scattering can be seen from the red curves in the
insets of Fig. 8. This capability of scattering control can have
potential applications in unconventional photonic/electronic
circuit design.

III. DISCUSSION

Using a general Hamiltonian for pseudospin-1 systems
whose energy band structure constitutes a pair of Dirac
cones and a topologically flat band, we investigate the basic
problem of wave scattering from a circularly symmetric
potential barrier. In spite of its simplicity, the system gives
unusual and unexpected physics: revival resonant scattering,
perfect caustics, and isotropic scattering for massless quasi-
particles. In particular, for small scatterer size, the effective
three-component spinor wave exhibits revival resonant (Mie)
scattering features as the incident wave energy is varied
continuously—a surprising phenomenon which, to our knowl-
edge, has not been reported in any known wave systems. For
larger scatter size rendering semiclassical the underlying scat-
tering dynamics, a supercaustic phenomenon arises when the
incident wave energy is about half of the barrier height, which
is essentially a manifestation of the super-Klein tunneling
effect for massless pseudospin-1 particles. Because of Klein
tunneling, intuitively wave scattering should be anisotropic
due to suppression of backward scattering, which is indeed the
case for conventional pseudospin-1/2 particles. However, for
a pseudospin-1 particle, the associated Berry phase can lead to
constructive interference in the backward direction, leading to
the counterintuitive phenomenon of isotropic scattering even
for massless quasiparticles. We develop an analytic theory and
physical understanding with extensive numerical support to
substantiate our findings.

It is possible to conduct an experimental test of the findings
of this paper. For example, in a recent work [23], it was demon-
strated for a class of two-dimensional dielectric photonic
crystals with Dirac cones induced accidentally [19–22] that
the Maxwell’s equations can lead to an effective Hamiltonian
description sharing the same mathematical structure as that
of massless pseudospin-1 particles. In particular, the photonic
analogy of the gate potential in the corresponding electronic
system can be realized by manipulating the scaling properties
of Maxwell’s equations. Recent experimental realizations of
photonic Lieb lattices consisting of evanescently coupled
optical waveguides implemented through the femtosecond
laser-writing technique [24–27] make them prototypical for
studying the physics of pseudopsin-1 Dirac systems. With a
particular design of the refractive index profile across the lat-
tice to realize the scattering configuration, our findings can be
experimentally tested. Loading ultracold atoms into an optical
Lieb lattice fabricated by interfering counterpropagating laser
beams [28] provides another versatile platform to test our
findings, where appropriate holographic masks can be used
to implement the desired scattering potential barrier [32,62].
In electronic systems, we note that the historically studied
but only recently realized 2D magnetoplasmon system [63] is
described by three-component linear equations with the same
mathematical structure of massless pseudospin-1 particles,
which can serve as a 2D electron gas system to test our results.

From an applied perspective, the phenomenon of revival
resonant scattering can be a base for articulating a new class
of microcavity lasers based on the principles of relativistic
quantum mechanics. It may also lead to new discoveries in
condensed matter physics through exploiting the phenomenon
in electronic systems. The phenomenon of perfect caustics
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can have potential applications in optical imaging defying the
diffraction limit as well as in optical cloaking.
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APPENDIX A: HAMILTONIAN
AND GENERAL PROPERTIES

The effective low-energy Hamiltonian associated with
pseudospin-1 Dirac cones can be written, in the unit � = 1,
as [23,24,40]

H0 = vg S · k, (A1)

where vg is the magnitude of the group velocity associated
with the Dirac cone, k = (kx,ky) denotes the wave vector, and
S = (Sx,Sy) is a vector of matrices with components

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ and Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠.

(A2)

Along with another matrix

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

the three matrices form a complete representation of spin-1,
which satisfies the angular momentum commutation relations
[Sl,Sm] = iεlmnSn with three eigenvalues: s = ±1,0, where
εlmn is the Levi-Civita symbol. It follows from Eq. (A1) that
the energy spectrum consists of three bands that intersect
at the Dirac point: a dispersionless flat band E0(k) = 0 and
two linearly dispersive bands Eτ (k) = τvg|k| with τ = ±1
being the band index. The corresponding eigenfunctions in
the position representation r = (x,y) are

ψk,τ (r) = 〈r|k,τ 〉 = 1
2 [e−iθ ,

√
2τ,eiθ ]T eik·r (A3)

for the dispersive bands and

ψk,0(r) = 〈r|k,0〉 = 1√
2

[−e−iθ ,0,eiθ ]T eik·r (A4)

for the flat band, where θ = tan−1(ky/kx). The current operator
is defined from Eq. (A1) as

ĵ = ∇kH0 = vg S. (A5)

The local current in a given state ψ(r) = [ψ1,ψ2,ψ3]T can
thus be expressed as

j (r) = vgψ
†Sψ ≡ (jx,jy)

=
√

2vg(Re[ψ∗
2 (ψ1 + ψ3)], − Im[ψ∗

2 (ψ1 − ψ3)]),

(A6)

which satisfies the common continuity equation

∂

∂t
ρ + ∇ · j = 0, (A7)

where ρ = ψ†ψ is the probability density associated with state
ψ . From Eqs. (A3) and (A4), we see that the associated local
current density satisfies j0 = 0 for the flat band plane wave,
and

j τ = vg(cos θ, sin θ ) = τvg

k
|k| (A8)

for the dispersive band plane wave. In terms of the Berry phase
associated with the band structure, we obtain from Eqs. (A3)
and (A4) the corresponding Berry connections

Aτ
k = 〈k,τ |i∇k|k,τ 〉 = 0,

A0
k = 〈k,0|i∇k|k,0〉 = −2Aτ

k = 0

for all three bands. The Berry phase is thus given by

�
τ,0
B =

∮
Cτ,0

kd

dk · Aτ,0
k = 0, (A9)

for any closed path Cτ,0
kd

encircling the degeneracy point kd of
the momentum space defined in each band. We note that the
vanishing or 2π quantized Berry phase is consistent with the
fundamental properties of spin-1 particles.

Super-Klein tunneling. A remarkable phenomenon for
pseudospin-1 Dirac cone systems, which is not usually seen in
conventional Dirac cone systems such as graphene and topo-
logical insulators, is super-Klein tunneling [23]. Specifically,
following the standard treatment of Klein tunning for graphene
systems [64], one can consider the basic problem of wave
scattering from a rectangular scalar (electrostatic) potential
barrier defined as V (x,y) = V0�(x)�(D − x) with barrier
width D and height V0. The transmission probability based
on the effective Hamiltonian, Eq. (A1), for incident energy
E �= 0,V0 is given by

T = (1 − γ 2)(1 − γ ′2)

(1 − γ 2)(1 − γ ′2) + 1
4 (γ + γ ′)2 sin2 (qxD)

, (A10)

where γ = τ sin θ , γ ′ = τ ′ sin θ ′ with τ = sgn(E), τ ′ =
sgn(E − V0), θ = tan−1 (ky/kx) is the incident angle, and
θ ′ = arctan (ky/qx) with

qx =
√

(E − V0)2 − k2
y.

A striking feature of Eq. (A10) is that, when the incident wave
energy is one-half of the potential barrier height, i.e., E =
V0/2, one has τ = −τ ′, θ = θ ′ and, consequently, perfect
transmission with T ≡ 1 for any incident angle θ—hence the
term “super-Klein tunneling.”

APPENDIX B: ANALYSIS OF SCATTERING
OF MASSLESS PSEUDOSPIN-1 WAVE

Due to the circular symmetry of the scattering potential, it
is convenient to formulate the solution in the polar coordinates
r = (r,θ ), in which the Hamiltonian is

Ĥ = Ĥ0 + V (r)1 = vg√
2

⎛
⎝ 0 L̂− 0

L̂+ 0 L̂−
0 L̂+ 0

⎞
⎠

+ V0�(r − R)1, (B1)
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with the compact operator given by

L̂± = −ie±iθ

(
∂r ± i

∂θ

r

)
.

The z component of the total angular momentum is Ĵz =
−i∂θ + Ŝz, and we have [Ĥ ,Ĵz] = 0. For a conventional
two-dimensional Dirac cone system with massless spin-1/2
excitations, we have(

0 L̂−
L̂+ 0

)(
f

(0,1)
l (kr)

iτf
(0,1)
l+1 (kr)eiθ

)
eilθ

= E

(
f

(0,1)
l (kr)

iτf
(0,1)
l+1 (kr)eiθ

)
eilθ , (B2)

where the radial function f
(0)
l = Jl is the Bessel function, and

f
(1)
l = H

(1)
l is the Hankel function of the first kind. Assuming

V0 = 0, we obtain solutions to Eq. (B1):

ψ
(0,1)
lE (r,θ ) = 1√

2π

⎛
⎜⎝

f
(0,1)
l−1 (kr)e−iθ

iτ
√

2f
(0,1)
l (kr)

−f
(0,1)
l+1 (kr)eiθ

⎞
⎟⎠eilθ , (B3)

for the dispersive band E = τvgk, and

ψ
(0,1)
l0 (r,θ ) = 1√

2π

⎛
⎜⎝f

(0,1)
l−1 (kr)e−iθ

0

f
(0,1)
l+1 (kr)eiθ

⎞
⎟⎠eilθ (B4)

for the flat band E = 0. Apparently, ψlE and ψl0 act as a spinor
spherical wave basis for massless spin-1 excitation governed
by Hamiltonian (A1). To reveal and characterize the basic scat-
tering features/mechanisms in a massless pseudospin-1 Dirac
cone system, we turn on the circularly symmetric scattering
potential V (r) = V0�(R − r) and launch an incident plane
spinor wave of a massless spin-1 particle outside the scattering
region (r > R). Without loss of generality, we assume that
the incident wave propagating along the x axis with a finite
incident energy |E| > 0 is explicitly given by

ψI
k,τ (r,θ ) = 1

2

⎛
⎝ 1√

2τ

1

⎞
⎠eikr cos θ . (B5)

Making use of the Jacobi-Anger identity

eiz cos θ ≡
∞∑

l=−∞
ilJl(z)eilθ ,

we can rewrite the incident wave in the spinor spherical wave
basis as

ψI
k,τ (r,θ ) = 1

2

∑
l

il−1

⎛
⎜⎝

Jl−1e
i(l−1)θ

iτ
√

2Jle
ilθ

−Jl+1e
i(l+1)θ

⎞
⎟⎠

=
√

π

2

∞∑
l=−∞

il−1ψ
(0)
lE (r,θ ). (B6)

Since the total (pseudo-)angular momentum is conserved
during scattering, the reflected wave can be written as (r > R)

ψR
k,τ (r,θ ) =

√
π

2

∞∑
l=−∞

il−1Alψ
(1)
lE (r,θ ). (B7)

Similarly, we define the transmitted wave inside the scattering
region (r < R) as

ψT
q,τ ′ (r,θ ) =

√
π

2

∞∑
l=−∞

il−1Blψ
(0)
lE′(r,θ ), (B8)

where q = |E − V0|/vg and E′ = E − V0 = τ ′vgq. The total
wave function outside the scattering region (r > R) is given
by

	>(r,θ ) = ψI
k,τ (r,θ ) + ψR

k,τ (r,θ ) = [ψ>
1 ,ψ>

2 ,ψ>
3 ]T , (B9)

while the wave function inside the scattering region (r < R)
is

	<(r,θ ) = ψT
q,τ ′ (r,θ ) = [ψ<

1 ,ψ<
2 ,ψ<

3 ]T . (B10)

In order to determine the reflection and transmission coef-
ficients, Al and Bl , respectively, we need the exact boundary
conditions imposed on the total wave functions at the scattering
interface (r = R).

Boundary conditions for massless pseudospin-1 scattering.
Recalling the commutation relation [Ĵz,Ĥ ] = 0 (i.e., conser-
vation of the total angular momentum), we define the following
wave function:

	(r,θ ) = [ψ1,ψ2,ψ3]T =
⎛
⎝R1(r)e−iθ

R2(r)
R3(r)eiθ

⎞
⎠eilθ , (B11)

which satisfies

Ĥ	 = E	. (B12)

Substituting Eq. (B11) into Eq. (B12) and eliminating the an-
gular components, we obtain the following one-dimensional,
first-order ordinary differential equation for the radial compo-
nent of the wave function:

−i
vg√

2

⎛
⎜⎝

0 d
dr

+ l
r

0
d
dr

− l−1
r

0 d
dr

+ l+1
r

0 d
dr

− l
r

0

⎞
⎟⎠

⎛
⎝R1(r)
R2(r)
R3(r)

⎞
⎠

= [E − V (r)]

⎛
⎝R1(r)
R2(r)
R3(r)

⎞
⎠. (B13)

Directly integrating the radial equation over a small interval
r ∈ [R − η,R + η] defined about the interface at r = R and
taking the limit η → 0, we obtain

R2(R − η) = R2(R + η),

R1(R − η) + R3(R − η) = R1(R + η) + R3(R + η), (B14)

provided that the potential V (r) and the radial wave-function
components R1,2,3(r) are all finite. Reformulating the continu-
ity conditions in terms of the corresponding wave functions, we
obtain the boundary conditions for scattering of the massless
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pseudospin-1 wave as

ψ<
2 (R,θ ) = ψ>

2 (R,θ ),

ψ<
1 (R,θ )eiθ + ψ<

3 (R,θ )e−iθ = ψ>
1 (R,θ )eiθ + ψ>

3 (R,θ )e−iθ .

(B15)

It follows from Eq. (B15) that in general there is a discontinuity
in the spinor components ψ1 and ψ3.

To see the physical meaning underlying the boundary
conditions, we calculate the associated local current density in
a given state 	 = [ψ1,ψ2,ψ3]T , which in the polar coordinates
reads

jr = vg	
†S · êr	 =

√
2vgRe[ψ∗

2 (ψ1e
iθ + ψ3e

−iθ )],

jθ = vg	
†S · êθ	 = −

√
2vgIm[ψ∗

2 (ψ1e
iθ − ψ3e

−iθ )],

(B16)

where êr = (cos θ, sin θ ) and êθ = (− sin θ, cos θ ). We con-
clude from Eq. (B16) that the boundary conditions in Eq. (B15)
imply conservation (continuity) of the radial (normal) current
density jr across the boundary, but the angular (tangent)
current density jθ need not be continuous across the boundary
in general. In addition, with respect to the probability density
ρ = |ψ1|2 + |ψ2|2 + |ψ3|2, we infer from the boundary condi-
tions the following two features: (1) ρ< �= ρ> in general, and
(2) a larger probability density difference �ρ = ρ< − ρ> will
occur if there is a prominent imbalance in the wave-function
components between ψ1 and ψ3 across the boundary. For the
closed scattering boundary studied in this paper, we have ρ< =
|R<

1 |2 + |R<
2 |2 + |R<

3 |2 and ρ> = |R>
1 |2 + |R>

2 |2 + |R>
3 |2.

Making use of the boundary conditions in Eq. (B14), we obtain

�ρ = (|R<
1 |2 + |R<

3 |2) − (|R>
1 |2 + |R>

3 |2), (B17)

with the constraint R<
1 + R<

3 = R>
1 + R>

3 ≡ 2R. Defining δ

as the (radial) wave-function component imbalance strength
and then substituting

R<
1 = R − δ<, R<

3 = R + δ<;

R>
1 = R − δ>, R>

3 = R + δ>

into Eq. (B17), we obtain

�ρ = 2(δ2
< − δ2

>). (B18)

As a result, we see that there is a remarkable increase in
the probability density, �ρ ∼ 2δ2

<, from the outer to the
interior of the scattering boundary if the scattering potential
redistributes the wave-function components such that |δ<| �
|δ>| ∼ 0, suggesting the emergence of a strong boundary
confinement/trapping phenomenon.

Imposing the boundary conditions on the total wave
functions on both sides of the scattering region as in Eqs. (B9)
and (B10), we get

BlJl(qR) = ττ ′[Jl(kR) + AlH
(1)
l (kR)

]
,

BlX
(0)
l (qR) = X

(0)
l (kR) + AlX

(1)
l (kR), (B19)

where

X
(0,1)
l = f

(0,1)
l−1 − f

(0,1)
l+1 .

Solving Eq. (B19), we obtain the reflection and transmis-
sion coefficients, respectively, as

Al = − Jl(qR)X(0)
l (kR) − ττ ′X(0)

l (qR)Jl(kR)

Jl(qR)X(1)
l (kR) − ττ ′X(0)

l (qR)H (1)
l (kR)

, (B20)

Bl = H
(1)
l (kR)X(0)

l (kR) − X
(1)
l (kR)Jl(kR)

H
(1)
l (kR)X(0)

l (qR) − ττ ′X(1)
l (kR)Jl(qR)

. (B21)

The θ -independent expressions of Al and Bl are consistent
with the rotational symmetry of the system. Using the basic
relations J−l = (−)lJl and H

(1)
−l = (−)lH (1)

l , we have A−l =
Al and B−l = Bl . Once Al and Bl have been obtained, the
resulting probability density ρ = 	†	 and the local current
density j = vg	

†S	 can be calculated.
Scattering efficiency. To quantify the scattering dynamics

of massless pseudospin-1 particles, we use the scattering
efficiency in terms of the scattering cross section as Q =
σ/(2R). In general, the various scattering cross sections can
be calculated using the far-field radial reflected current. For
example, for the incident wave given in Eq. (B5), we have
σ = 1/(τvg)

∫ π

−π
j ref
∞ r dθ with j ref

∞ ≡ limr→∞ j ref
r (θ ) being the

far-field radial reflected current. We have

j ref
r (θ ) = τvg

2
Re

{∑
l,m

im−l−1A∗
l AmH

(2)
l (kr)

[
H

(1)
m−1(kr)

− H
(1)
m+1(kr)

]
ei(m−l)θ

}
. (B22)

With the asymptotic expressions of the Hankel functions
H

(1,2)
l (kr) ∼ √

[2/(πkr)]e±i[kr−l(π/2)−(π/4)] for kr � 1, we
have

j ref
∞ ∼ 2τvg

πkr
Re

[∑
l,m

A∗
l Amei(m−l)θ

]
, (B23)

and finally arrive at

σ = 4

k

∑
l=−∞

|Al|2 (B24)

and

Q = 2

kR

∞∑
l=−∞

|Al|2 = 2

kR

(
|A0|2 + 2

∞∑
n=1

|An|2
)

. (B25)

Far-field behavior: General analysis. Far away from the
scattering center, i.e., r � R, for unit incident density, the
spinor wave function can be written as

	>(r,θ ) ≈ 1

2

⎛
⎝ 1√

2τ

1

⎞
⎠eikr cos θ + 1

2

⎛
⎜⎝

e−iθ

√
2τ

eiθ

⎞
⎟⎠f (θ )√

r
eikr ,

(B26)

where f (θ ) denotes the 2D far-field scattering amplitude in the
direction defined by angle θ with the x axis. The differential
and the total cross sections are given, respectively, by

dσ

dθ
= |f (θ )|2 (B27)
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and

σ =
∫ 2π

0
|f (θ )|2dθ. (B28)

In addition, we define the transport or momentum-
relaxation cross section as

σtr =
∫ 2π

0
dθ |f (θ )|2(1 − cos θ ). (B29)

The three types of cross sections are experimentally mea-
surable and can be used to quantitatively characterize the
basic scattering and transport physics for pseudospin-1 Dirac
cone systems. For example, consider such a system with
randomly distributed identical scatterers of low concentration,
i.e., nc � 1/R2; the conductivity in units of the conductance
quantum G0 can be expressed as

G

G0
= k

ncσtr
= vgkτtr, (B30)

where the sample size is assumed to be larger than the mean-
free path L = vgτtr with τtr being the transport mean-free time.
The elastic scattering time (the quantum lifetime) τe can be
determined from the total cross section through

1

τe

= ncvgσ. (B31)

The ratio of the two characteristic times defines the following
pertinent dimensionless parameter:

ξ = τtr

τe

= σ

σtr
≡

∮
dθ |f (θ )|2∮

dθ |f (θ )|2(1 − cos θ )
, (B32)

leading to insights into the type and the spatial structure of the
impurities presented in the sample. In particular, long-range
impurities have a large value of ξ , while a small value
implies that the impurities are short ranged or have sharp
boundaries. Equation (B32) can be used to measure the degree
of angular anisotropy of the scattering process. In fact, a recent
work [58] demonstrated that there is a general constant ξ ≈ 2
characterizing the anisotropic feature of low-energy scattering
for a massless pseudospin-1/2 wave in the presence of short-
range scatterers, while the spin-orbit interactions that make the
quasiparticles massive can dramatically change this scenario,
effectively leading to an isotropic ratio of ξ ≈ 1—a typical
signature of scattering of massive particles at low energies.
More recently, the angular scattering feature for a general
α-T3 model was studied [65], and an explicit relation between
ξ and the underlying Berry phase �B was obtained with the
finding that the massless pseudospin-1 wave (i.e., for �B = 0)
possesses the much larger ratio of ξ = 3. These results imply
that scattering of the massless pseudospin-1 wave should
be much more anisotropic than the massless pseudospin-1/2
wave, due to super-Klein tunneling. However, we find that this
may not be true for a massless pseudospin-1 wave in general.
In contrast, the underlying low-energy scattering displays
a remarkable isotropic character (i.e., ξ ≈ 1) even without
any symmetry breaking affecting the massless nature of the
quasiparticle.

From the exact expression of 	> [Eq. (B9)], we obtain the
scattering amplitude in terms of the reflection coefficients Al

as

f (θ ) = e−iπ/4

√
2

πk

∞∑
l=−∞

Ale
ilθ = e−iπ/4

√
2πk

∞∑
l=−∞

(Sl − 1)eilθ ,

(B33)

where

Sl ≡ 1 + 2Al = −Jl(qR)
[
H

(2)
l−1(kR) − H

(2)
l+1(kR)

] − ττ ′[Jl−1(qR) − Jl+1(qR)]H (2)
l (kR)

Jl(qR)
[
H

(1)
l−1(kR) − H

(1)
l+1(kR)

] − ττ ′[Jl−1(qR) − Jl+1(qR)]H (1)
l (kR)

= e2iδl , (B34)

with δl denoting the scattering phase shift associated with
angular momentum l. Substituting the expression of f (θ ) into
Eqs. (B27)–(B29), we obtain the differential cross section as

dσ

dθ
= 1

2πk

∣∣∣∣∣
∑

l

(Sl − 1)eilθ

∣∣∣∣∣
2

. (B35)

Similarly, the other two cross sections are given by

σ = 1

k

∑
l

|Sl − 1|2 = 4

k

∑
l

sin2 δl, (B36a)

σtr = σ − 1

k

∑
l

Re[(Sl − 1)(S∗
l+1 − 1)], (B36b)

= 2

k

∑
l

sin2(δl+1 − δl). (B36c)

With the definition of f (θ ) [Eq. (B33)], the underlying
optical theorem can be expressed as

σ =
√

8π

k
Im[e−iπ/4f (0)], (B37)

where Im(·) denotes the imaginary part. We finally obtain the
following formula for the characteristic ratio:

ξ = 2
∑

l sin2 δl∑
l sin2(δl+1 − δl)

. (B38)

APPENDIX C: DERIVATION OF EQ. (12) OR EQ. (B30)

In two dimensions, it follows from the Boltzmann transport
equation that the resulting current i due to an applied electric
field E takes the general form given by [66]

i = ge2

(2π )2

∫
d2k τtr

∂f (ε)

∂ε
(vk · E)vk, (C1)
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where g denotes the degeneracies, f (ε) is the Fermi distri-
bution function, and vk = (1/�)∇kε(k) is the band velocity.
The transport relaxation time τtr can be calculated from
Fermi’s golden rule, which for our scattering process takes
the following form in relation to the transport cross section:

1

τtr
= 1

(2π )2

∫
d2k′(1 − cos φ)W (k′,k) = ncvgσtr, (C2)

where nc is the concentration of impurities and

W (k′,k) = 4π2
�v2

gnc

k
|f (φ)|2δ(εk − εk′ ) (C3)

is the quantum scattering rate from state |k〉 to final state
|k′〉 with the scattering angle φ = arccos(k · k′/k2) and the

scattering amplitude f (φ) at the angle φ. Comparing with the
standard macroscopic equation (Ohm’s law) i = G · E with
G being the conductivity tensor, we obtain, for E = Eex ,

G = Gxx = ge2

(2π )2

1

�2

∫ 2π

0
cos2 θ dθ

∫
ε dε

∂f (ε)

∂ε
τtr. (C4)

At zero temperature, we have

G = ge2

4π

ε

�2
τtr = G0vgkτtr = G0

k

ncσtr
, (C5)

where g = 4 is assumed (accounting for spin and valley) and
G0 = 2e2/h is the conductance quantum or, equivalently, the
quantized unit of conductance.
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and B. Dóra, Phys. Rev. B 88, 161413 (2013).

[43] J. T. Chalker, T. S. Pickles, and P. Shukla, Phys. Rev. B 82,
104209 (2010).

[44] J. D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, and S. Flach,
Phys. Rev. Lett. 113, 236403 (2014).

[45] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[46] H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).
[47] H. Aoki, M. Ando, and H. Matsumura, Phys. Rev. B 54, R17296

(1996).
[48] C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010).
[49] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83,

063601 (2011).
[50] J. Vidal, R. Mosseri, and B. Douçot, Phys. Rev. Lett. 81, 5888
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