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Formed through a closed domain magnetic heterostructure on the surface of a three-dimensional topological
insulator, a quantum dot permits a class of quantized interfacial states of topological origin. We find that these states
exhibit a remarkable reverse Stark effect in response to an applied electric field. In particular, those topological
states whose energies are within the gap exhibit peculiar electrical alignments that are opposite to those associated
with the conventional quantum-confined Stark effect in that the positive- (negative-) energy states tend to align with
(against) the direction of the field. The phenomenon has unusual implications for the associated optical transitions.
Furthermore, the exotic topological states exhibit polarized spin textures that can be effectively controlled
electrically or optically, opening an avenue for potential applications in Dirac-material-based spintronics.
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I. INTRODUCTION

In systems exhibiting the conventional quantum-confined
Stark effect (QCSE), e.g., a semiconducting quantum well,
an external electrical field shifts the electronic states in the
conduction band to lower energies and the hole states in
the valence band to higher energies [1]. As a result, the
energy differences between the electronic and hole states are
narrowed, reducing the frequencies of the permitted photon
absorption or emission. In this paper, we report the intriguing
phenomenon of reverse Stark effect: in topological Dirac
materials an applied electrical field tends to widen the energy
differences and consequently increase the light absorption or
emission frequencies.

Uncovering, understanding, and exploiting exotic quantum
phases are frontier problems in physics [2]. Recent years have
witnessed a great deal of effort in phase phenomena of certain
topological origin [3,4]. For example, two-dimensional (2D)
gapless topological phases were predicted and realized at the
interface between bulk Bi2Se3 crystal and the vacuum [5],
where a change in the Z2 invariant from the former to
the latter occurs. Inducing an energy gap by breaking the
time-reversal symmetry in the vicinity of a magnetic material
can lead to exotic phases of broken symmetry with dramatic
physical consequences [4,6] such as the zero-field half-integer
quantum Hall effect [3], topological magnetoelectric effect [7],
and magnetic monopole [8]. Topological effects in gapped
Dirac materials are thus quite intriguing, where topologically
protected chiral interfacial states carrying dissipationless
currents, which share the same mechanism as that for the
Jackiw-Rebbi modes [9], can arise. More recently, it was
demonstrated that tuning the topological behaviors through an
electric field can lead to the quantum spin Hall effect, bringing
field-effect topological transistors closer to reality [10].

We investigate the response of the topological states in
a confined geometry, e.g., a quantum dot formed on the
surface of a three-dimensional (3D) topological insulator via a
closed magnetic domain heterostructure, to an applied electric
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field. The system can be described by the Dirac equation
subject to proper mass confinement. With an inverted mass
profile, a branch of quantized topological edge states can
emerge [11]. We find that, when an external electric field is
applied, the under-gap topological states exhibit quite unusual
alignments: the positive- (negative-) energy electronic states
follow (align against) the direction of the field. As a result, a
reverse QCSE occurs in that the frequencies of the permitted
light absorption or emission increase. Remarkably, these
states possess spin textures of ringlike in-plane polarization,
which can be effectively controlled electrically or optically.
We provide an analysis based on solutions of the Dirac
equation to explain these counterintuitive phenomena. The
findings can have potential applications in Dirac material based
optoelectronics and spintronics.

This paper is organized as follows. In Sec. II, we formulate
the theoretical model and demonstrate the emergence of
quantized topological edge states. In Sec. III, we investigate the
response of the topological edge states to an external electric
field and present the phenomena of reverse electric alignments,
electrically controllable spin, and optical transitions. To
elaborate on the practical significance of these phenomena,
in Sec. IV, we discuss feasible experimental schemes and
potential applications.

II. HAMILTONIAN AND QUANTIZED
TOPOLOGICAL STATES

Consider a dot geometry formed on the surface of a
3D topological insulator (TI) through a nanoscale magnetic
heterostructure, as schematically shown in Fig. 1(a). For low
energies, the system is described by the following 2D Dirac
Hamiltonian [4,12]:

Ĥ = vF σ̂ · p̂ − eϕ + M(r)σ̂z, (1)

where vF is the Fermi velocity, σ̂ is the vector of Pauli
matrices, p = (px,py,0), r = (x,y,0), the potential ϕ comes
from the applied electric field E = −∇ϕ, and −e < 0 is the
charge of an electron. The position-dependent “mass” term
M is responsible for the confinement through a time-reversal
symmetry-breaking mechanism. For simplicity, we assume
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FIG. 1. (Color online) (a) Schematic illustration of a quantum
dot formed on the surface of a 3D topological insulator through a
closed magnetic domain heterostructure of ferromagnetic insulators
(e.g., EuS). (b) Schematic energy diagram of the dot system with
mass confinement for zero applied field (R: dot radius; M1 and M2:
dimensionless masses of the inner and outer regions, respectively).
(c) Energy spectra of the dot structure in (b) as a function of M1 for
fixed M2 = 10, where the blue curves denote the normal states, and
the black dashed lines specify the insulating gap boundaries defined
by M1. The emergent edge states through a topological mechanism
are divided into the under-gap and over-gap ones, denoted by the
red and green curves, respectively. (d) Sectional view of the density
distributions of the lowest positive-energy states for M1 = ∓2 as
indicated by the red and blue dots in (c). The red and blue curves
are for the topological and normal states, respectively. Arrows denote
the local spin orientation in the Sx − Sz plane. The dashed and dot-
dashed lines correspond to the case of hard-wall confinement, i.e.,
M2 → +∞.

that the confined region is circularly symmetric with potential
jumps at the boundary:

M(r) = M1�(R − r) + M2�(r − R),

where R is the dot radius, as shown in Fig. 1(b), the
corresponding energy diagram for the confinement. A constant
electric field is applied in the x direction:E = E0ex . In the polar
coordinates, the Hamiltonian can be written as Ĥ = Ĥ0 + Ĥ1,
where

Ĥ0 =
(
M L̂−
L̂+ −M

)
, Ĥ1 = eE0r cos θ, (2)

and

L̂± = −i�vF e±iθ

(
∂r ± i

∂θ

r

)
.

For zero field (E0 = 0), the z component of the total angular
momentum, Ĵz = −i�∂θ + (�/2)σ̂z, commutes with Ĥ . As a
result, the eigenstates take on the following general form [13]:

〈r|ν〉 = ψν(r,θ ) = 1√
Nν

exp(ilθ )

(
fl(κνr)

iξνfl+1(κνr)eiθ

)
, (3)

where

ξν = �vF κν/(εν + M),

κν =
√

ε2
ν − M2

/
�vF ,

and the radial distribution function is fl(κνr) = Jl(κνr) for r <

R and fl = CH
(1)
l otherwise (Jl and H

(1)
l are, respectively, the

Bessel and the Hankel functions of the first kind). Introducing
the compact index ν = [τ,ln], we can use the integers l and
n to specify the orbital angular momentum and the discrete
bound states due to the radial confinement, respectively, and
τ = ±1 to denote the sign of the bound-state energies. The
eigenvalues εν = εν�vF /R can be determined by imposing
the continuity of the wave function ψν(r,θ ) at r = R, and the
associated unknown coefficients can be calculated using

C = Jl

(√
ε2
ν − M2

1 R
/

�vF

)/
H

(1)
l

(√
ε2
ν − M2

2 R
/

�vF

)
,

Nν = 2π

∫ ∞

0
r[|fl(κνr)|2 + |ξνfl+1(κνr)|2]dr = R2A2

ν .

Figure 1(c) shows, for the zero-field case, the dependence of
the eigenenergies on the inner-region mass (in units of energy)
M1 = M1�vF /R for one fixed value of the outer-region mass
M2 = 10�vF /R. As M1 changes from positive to negative
(in the sense that a sign change in the mass occurs between
the inner and outer domains, i.e., M1M2 < 0), a class of
new electronic states arises, localized at the dot edge. The
mechanism behind the formation of these edge states is the
Jackiw-Rebbi modes, which are protected by topological
changes due to a sign change in the band masses between
the two sides of a boundary. The edge states are a quantized
version of the modes (henceforth quantized Jackiw-Rebbi
states). For the configuration shown in Fig. 1(a), it is thus
possible to engineer quantum (electronic) states topologically
by tuning the sign ofM1 for a fixedM2 value, as demonstrated
in Fig. 1(c). It is remarkable that the emergent topological
states have special spin polarization and carry a dissipationless
current. Along with the definition of the spin operator Ŝ =
�/2(σ̂y, − σ̂x,σ̂z), we show in Fig. 1(d) the density distribution
and the spin textures of a representative topological state [one
marked by the red dot in Fig. 1(c)]. For comparison, we also
display a normal state marked by the blue dot in Fig. 1(c),
which is localized within the inner dot domain and exhibits
conventional spin polarization due to the given inner-region
mass. Our goal is to study and understand the response of
these quantized topological states to an external electric field.

III. RESULTS

Say the external electric field is along the x direction.
Due to the lack of a circular symmetry in Ĥ , the eigenstates
and eigenenergies can be calculated numerically through an
expansion of the state vector: |τ,n〉 = ∑

ν cν |ν〉, in terms of
the eigenstates |ν〉 of the circularly symmetric case (E0 =
0), where cν are the expanding coefficients. Note that the
particle-hole symmetry (i.e., symmetry between the positive
and negative energies) is preserved even in the presence of an
external electric field [14]. This can be seen by transforming
Ĥ in the Hamiltonian with ϕ = −E0x to Ĥ ′ = UĤU † =
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−Ĥ through the unitary transformation Û = σ̂xRx , with
Rx denoting the reflection operation with respect to x = 0,
provided that the confinement potential M(r) is an even
function of x. For the disk geometry considered, the resulting
bounded energies occur in symmetric pairs with respect to
the zero-energy line. For simplicity, we adopt the hard-wall
confinement to explicitly generate a set of complete orthogonal
basis {εν,|ν〉} and then determine the bound states {En,|τ,n〉}
for a given electric field E0 through numerical diagonalization
of the matrix Hamiltonian [Hμν] of elements

Hμν = δμνεν + 〈μ|Ĥ1|ν〉.
For convenience, we use the dimensionless parameter λ =
E0R|e|/(�vF /R) to characterize the applied electric field
strength and set M2 to be +∞. The mass potential inside
is set as M1 = ±2�vF /R, which characterizes the normal
and topological quantum dot systems, respectively. We use a
basis of size about 800 to calculate approximately 50 pairs of
bound states with a maximum convergence accuracy of 10−6

for any λ within the range of [−5,5].

A. Reverse electric alignments

The bound-state energies as a function of the dimensionless
electric field strength λ are shown in Figs. 2(a) and 2(b)
for the normal (M1 = 2�vF /R) and the topological (M1 =
−2�vF /R) cases, respectively. As expected, for both cases,
the spectra exhibit particle-hole symmetry. In addition, there
is a Stark shift between levels that have approximately equal
energies (quasidegeneracy), and a stronger field generates a
larger shift. A striking phenomenon is that, as λ is increased,
the dependence of the under-gap topological bound-state
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FIG. 2. (Color online) (a) and (b) Dependence of the bound-state
energies on the applied electric field strength λ for M1 = ±2,
respectively. (c)–(e) Sectional view of the evolution of the normal
electronic states [triangles and circles in (a)] for λ = −2.5,0,2.5, re-
spectively. (f)–(h) Similar to (c)–(e), but for the topological electronic
states indicated in (b) and their adjacent over-gap topological bound
states (green dashed lines). In (c)–(h), all the probability density
distributions of the indicated electronic states are displaced with solid
horizontal lines defining 〈n,τ |τ,n〉 = 0 for each curve, while those
of the negative-energy electronic states are rescaled by −1.

energies on λ (the red curves) exhibits a pattern that is squarely
opposite those for the normal bound states [blue curves,
Figs. 2(a) and 2(b)] and for the over-gap topological bound
states [green curves, Fig. 2(b)]. We note that the under-gap
topological states are in fact the quantized anomalous Hall
effect (QAHE) states with absolute values of energies less
than |M1| that defines a basic insulating gap for the inner
region of the dot. Despite the fact that these states originate
from the same topological mechanism as and share similar
edge-localized density distributions with other topological
bound states, the effects of an applied electric field can be quite
different. This can be further seen from Figs. 2(c)–2(h), where
the responses of the corresponding electronic states to the
external electric field are shown. For the normal bound states
[thick solid lines, Figs. 2(c)–2(e)] and over-gap topological
bound states [dashed green lines, Figs. 2(f)–2(h)], we observe
the usual alignment behavior: the positive-energy electronic
states move against the direction of the applied field, while
the negative-energy states move towards the direction of the
field. The under-gap topological bound states [thick solid black
lines, Figs. 2(f)–2(h)], however, follow the opposite pattern,
which is consistent with the behavior observed from the energy
spectrum.

To understand the abnormal electric response behavior
exhibited by the under-gap topological bound states, we
develop a perturbation analysis by treating λ as a small
parameter. From the standard time-independent nondegenerate
perturbation theory [15], we can calculate the perturbed energy
for a given unperturbed bound state |ν〉 up to second order in λ

through the expansion Eν = E(0)
μ + λE(1)

ν + λ2E(2)
ν . We obtain

the corresponding corrections (expressed in dimensionless
form):

E(0)
ν = 〈ν|Ĥ0|ν〉 = εν,λE(1)

ν = Hνν
1 ,

and

λE(2)
ν =

∑
μ 	=ν

∣∣Hμν

1

∣∣2

εν − εμ

, (4)

where the matrix element H
μν

1 is given by

H
μν

1 ≡ λ〈μ|ρ cos θ |ν〉 = λπ [δl,l′−1 + δl,l′+1]A−1
μ A−1

ν

×
∫ 1

0
ρ2[J ∗

l′ (kμρ)Jl(kνρ)

+ ξ ∗
μξνJ

∗
l′+1(kμρ)Jl+1(kνρ)]dρ

and ρ ≡ r/R, kν ≡ Rκν . We see that Hνν
1 = 0, and hence,

the first-order energy correction E(1)
ν vanishes. To analyze the

second-order effect and relate it to the numerical results, we
focus on the lowest (highest) positive (negative) unperturbed
electronic state, i.e., |1,01〉 (|−1,−11〉). From

E(2)
ν =

∑
μ 	=ν

|〈μ|ρ cos θ |ν〉|2
εν − εμ

,

we can conclude that the leading term is restricted
to two nearest-neighbor states in the energy domain
with the angular momentum difference ±1 relative
to the given state |ν〉, e.g., for |ν〉 = |1,01〉, |μ〉 ∈
{|−1,−11〉,|1,±11〉|ε−1,−11 < 0 < εν < ε1,±11}. As a result,
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we can calculate the second-order correction to the lowest
positive bound-state energy using the approximation

E(2)
ν = π

[ |Iμ1ν |2
εν − εμ1

− |Iμ2ν |2
εμ2 − εν

]
, (5)

where

Iμ1ν = 1

Aμ1Aν

∫ 1

0
ρ2F1(ρ)dρ,

Iμ2ν = 1

Aμ2Aν

∫ 1

0
ρ2F2(ρ)dρ,

F1(x) ≡ J ∗
−1(kμ1x)J0(kνx) + ξ ∗

μ1
ξνJ

∗
0 (kμ1x)J1(kνx),

F2(x) ≡ J ∗
±1(kμ2x)J0(kνx) + ξ ∗

μ2
ξνJ

∗
±1+1(kμ2x)J1(kνx),

the subindices μ1 = [−1,−11], ν = [1,01], and μ2 =
[1,±11] denote the relevant states, and the correspond-
ing energies satisfy the relation εμ1 = −εν < 0 < εν < εμ2 .
Specifically, for the normal case (M1 = 2�vF /R), we have
μ2 = [1,11], M1 < εν = −εμ1 � εμ2 , and hence,

(εμ2 − εν)  (εν − εμ1 ) = 2εν,

ξ ∗
μ1

ξν = −1,

ξ ∗
μ2

ξν  1.

Using these relations, we obtain

|Iμ2ν | ∼ 2|Iμ1ν |.
It is thus straightforward to conclude E(2)

ν < 0, and conse-
quently, a decreasing energy-field strength relation. For the
topological case of M1 = −2�vF /R, we see that the states
|μ1〉 and |ν〉 are the highest negative and the lowest positive
under-gap topological states, respectively, while the state
|μ2〉 = |1,−11〉 is an adjacent positive over-gap normal state.
Finally, we have

(εμ2 − εν) > (εν − εμ1 ),

|Iμ2ν | ∼ |Iμ1ν |/3,

leading to E(2)
ν > 0 and hence a reverse dependence of the

energies on the strength of the applied field.

B. Optical transition and spin control

The phenomenon of reverse electric field alignments for
the under-gap topological bound states and our perturbation
analysis suggest the occurrence of abnormal QCSE in our
mass-confined Dirac system, with potential applications in
Dirac material-based optoelectronic and spintronic devices.
As a concrete demonstration, we calculate the electric-field-
dependent optical absorption intensity α between the highest
negative |g〉 and the lowest positive |f 〉 energy states, which
is determined by dipole matrix element dgf as

α ∝ |v · dgf |2, (6)

where

dgf = ie�vF

Ef − Eg

〈g|σ̂ |f 〉
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FIG. 3. (Color online) Dipole-induced optical transition rate be-
tween states |g〉 and |f 〉 as a function of the applied electric field
strength λ and the transition energy �E ≡ Ef − Eg = δ�vF /R,
where the blue and red dots are for the normal (M1 = 2�vF /R)
and topological (M1 = −2�vF /R) cases, respectively, with the dot
size being proportional to the optical absorption intensity α.

and v = (ex + ey)/
√

2 is the polarization vector of the incident
light [16,17].

Figure 3 shows the calculated absorption spectra for the
normal (blue dots) and topological (red dots) cases, where the
sizes of the dots are scaled by the values of the corresponding
optical absorption intensity. We see that, in contrast to the
normal case where increasing the electric field strength
reduces the transition energies and hence the optical absorption
frequencies as with conventional QCSE [18], the under-gap
topological states generate a small electric-field-modulated
optical absorption rate but, within a certain range of the field
strength, lead to an opposite dependence of the transition
energy on the field strength.

A remarkable phenomenon is that the spin texture of the
topological states [see Fig. 1(d)] renders possible control of
spin (and hence the associated magnetic properties) through
modulation of the electrical field. To demonstrate this, we
calculate the expectation values of the in-plane spin for the
topological states,

〈Sx,y〉 = ±�/2〈j |σ̂y,x |j 〉
for j = g,f . Figure 4(a) shows the dependence of 〈Sx,y〉 on
the electric field strength λ, where the dashed and solid lines
are for states |g〉 and |f 〉, respectively, and the results for
the normal states are included in the inset. Compared with
the normal states, the topological states have the intriguing
feature that the applied in-plane polarized electric field can
modulate the in-plane spins effectively, which is highly desired
in spintronics applications. This feature can be further seen
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FIG. 4. (Color online) (a) Expectation values of the in-plane spin
projection 〈Sx,y〉 of the electronic states |g〉 and |f 〉 as a function of λ,
where the solid red and dashed pink lines are 〈Sx〉, and the gray lines
represent 〈Sy〉. The inset denotes the normal case, where the solid
blue and dashed cyan lines are for 〈Sx〉, and the gray lines correspond
to 〈Sy〉. In both cases, the solid lines are for the lowest positive
energy electronic state |f 〉, whereas the dashed lines correspond to
the highest negative energy electronic state |g〉. (b) and (c) Density
distributions and spin textures of the state |f 〉 for different values
of λ: −4.5, − 2.5,2.5,4.5, from left to right, as marked by the solid
triangles for the topological case in (a) and by the open triangles for
the normal case in the inset of (a), respectively. In both (b) and (c),
the color code represents the local probability density, and the gray
arrows denote the local in-plane spin orientations.

in Figs. 4(b) and 4(c), where the evolutions of the spin
texture of state |f 〉 (i.e., the lowest positive-energy state)
under the applied field in both cases are shown; Figs. 4(b)
and 4(c) correspond to the topological and normal cases,
respectively. The robust optical transition between the under-
gap topological states |g〉 and |f 〉 shown in Fig. 3 indicates
that, for a given applied electrical field, it is also possible to
control the spin polarizations optically. In fact, Fig. 4(b) shows
unequivocally the reverse alignment behavior of the under-gap
topological states as analyzed.

IV. EXPERIMENTAL SCHEMES AND POTENTIAL
APPLICATIONS

In order to validate and characterize the phenomena
uncovered, we articulate a feasible experimental scheme to
realize the proposed setup, as shown schematically in Fig. 1(a).
From the existing experimental works [6,19–23], we have that
the nonuniform mass confinement can be implemented via a
closed magnetic heterostructure of ferromagnetic insulators
such as EuS, GdN, yttrium iron garnet (or Y3Fe5O12),
and Cr2Ge2Te6, with different magnetizations for each side

deposited on the surface of a 3D topological insulator. Depend-
ing on the local exchange coupling of the topological insulator
and ferromagnetic insulator as well as the interface quality
between them, the magnitude of the induced mass potential
can be several to a hundred meV [19,21,23]. Interestingly, the
sign of the induced mass is tunable by changing the direction
of the magnetization in the topological insulator caper layer,
which can be achieved by means of the anisotropic feature of
the materials [6,22]. The gate electrode can be attached to the
topological insulator through which an external electric field
can be applied [24].

To discuss the experimental scheme, it is convenient to
use the actual physical units of the related dimensionless
quantities with specific material parameters. We obtain �vF ∼
400 meV nm for typical TI materials [5], say, Bi2Se3 or
PbxSn1−xTe. To compare with existing results on the con-
ventional InAs/GaAs self-assembled [18] and HgTe quantum
dots [25], we consider a similar dot size, e.g., R = 10 nm,
where the relevant bound-state energies lie within the range of
[−120,120] meV for the mass potential magnitude |M1| ∼
80 meV. The applied electric field is E0 ∼ 40λ kV/cm,
i.e., ranging from −200 to 200 kV/cm for λ ∈ [−5,5].
Correspondingly, we obtain the transition energy �E ∼ 40δ

meV with the associated wavelength ∼ hc/(40δ) = 30.996/δ

μm. For clarity, we also include these quantities with the
related physical units in Figs. 3 and 4(a). We see that
the electric-field-dependent optical transitions for both the
conventional and topological cases occur at the mid-infrared
(mid-IR) regime in our system, which can be promising
for developing reversal QCSE mid-IR optical modulators.
Interestingly, for the topological states, the in-plane spin
texture can be effectively controlled when varying the applied
electric field, thanks to the unusual ringlike spin orientation of
the associated topological modes. We remark that the electric
field strength analyzed here is actually on the same order
of magnitude as that used for the conventional quantum dot
systems [18]. Since the bulk band gap of typical materials
such as Bi2Se3 of about 300 meV [4,5] is indeed much
larger than the energy scales of our system, the phenom-
ena uncovered in this paper are potentially experimentally
realizable.

V. CONCLUSION

To summarize, we uncovered a striking reverse Stark
effect in TI-based quantum dot systems that permits a class
of quantized topological states. With an in-plane electric
field, the under-gap topological states exhibit reverse electric
alignments, leading to a reverse QCSE phenomenon. We
show that the counterintuitive phenomenon can be fully
explained by using a second-order perturbation theory. The
phenomenon is not only fundamental to relativistic quantum
mechanics of Dirac materials but also practically significant.
For example, the reverse Stark effect leads to an inverted
optical absorption spectrum, and this anomalous feature can
be exploited to develop Dirac-material-based optoelectronic
devices, e.g., reverse QCSE mid-IR optical modulators. In
addition, due to their special spin textures, the in-plane spin
degree of freedom of the under-gap topological states can
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be effectively controlled electrically or optically, opening an
avenue for spintronics applications. We further discuss feasible
experimental validation schemes and potential applications.
Interesting issues to be explored include the effects of
symmetry breaking and impurity scattering.

ACKNOWLEDGMENTS

This work was supported by AFOSR under Grant No.
FA9550-15-1-0151 and by ONR under Grant No. N00014-
15-1-2405.

[1] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W.
Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53,
2173 (1984).

[2] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd
ed. (Cambridge University Press, New York, 2013).

[3] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,
195424 (2008).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[5] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,

Nat. Phys. 5, 438 (2009).
[6] P. Wei, F. Katmis, B. A. Assaf, H. Steinberg, P. Jarillo-Herrero,

D. Heiman, and J. S. Moodera, Phys. Rev. Lett. 110, 186807
(2013).

[7] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett.
102, 146805 (2009).

[8] X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323, 1184
(2009).

[9] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[10] Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, and A. Zunger,

Nano Lett. 15, 1222 (2015).
[11] G. J. Ferreira and D. Loss, Phys. Rev. Lett. 111, 106802 (2013).
[12] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[13] A. Gutiérrez-Rubio and T. Stauber, Phys. Rev. B 91, 165415

(2015).
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