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Particle-decay processes in a nonhyperbolic Hamiltonian system are typically characterized by alge-
braic laws. That is, for a fixed set of parameter values, if one initializes a particle in a chaotic region
near some Kol’'mogorov-Arnol’d-Moser (KAM) tori, the probability for this particle to remain in the re-
gion at time ¢ decays with time algebraically: P(z)~t "7 where z is the decay exponent. As a system pa-
rameter varies, the numerically calculated exponent z exhibits rather large fluctuations. In this paper we
examine the dynamical origin of such fluctuations using a model system which exhibits unbounded
chaotic dynamics (i.e., chaotic scattering). Our results indicate that the fluctuating behavior of z, as a
function of the parameter, can be attributed to the breakup of KAM surfaces in phase space. A particu-
larly interesting finding is that, when the outermost KAM surfaces enclosing some central island trans-
form from absolute barriers to partial barriers (Cantori), as the parameter varies, the survival probability
P(t) displays two different regions of scaling behavior with different decay exponents. The time scale
where this crossover takes place is found to coincide with the typical time for a particle to penetrate the

15 OCTOBER 1992

newly created Cantori.

PACS number(s): 05.45.+b

I. INTRODUCTION

Hamiltonian systems arise in many situations of physi-
cal interest and can exhibit a variety of phase-space struc-
tures and dynamical behaviors. The simplest among
them are integrable systems in which the entire phase
space is filled with families of invariant Kol’'mogorov-
Arnol’d-Moser (KAM) tori giving rise to regular dynam-
ics. In contrast, there is another extreme situation con-
sisting of systems that are completely chaotic. In this
case the invariant set in phase space often forms a single
component on which the dynamics is ergodic and
displays sensitive dependence on initial conditions. Ex-
amples of this latter case include the Sinai billiard system,
the Bunimovich stadium, and the Arnol’d-cat map. Most
Hamiltonian systems encountered in practice, however,
belong to the category lying somewhere between the two
extreme situations. In such systems there is typically a
mixture of regular motion on KAM tori (or surfaces) and
chaotic motion between these tori. One interesting issue
that has been addressed in the past concerns the impact
of the presence of KAM surfaces on particle motion in
the nearby chaotic regions. In this regard, one generally
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observes that if a particle is initialized in a chaotic region
near some KAM surface, then the particle wanders close
to that surface for a long time. This effect is called the
“stickiness” effect of the KAM surfaces. The origin of
this stickiness effect can be understood by the following
observation. Take two nearby points on a given KAM
torus and observe their evolution. What one typically
finds is that the distance between the two points hardly
changes with time. This means that the Lyapunov ex-
ponents in the directions along the KAM surface are zero
(i.e., the motion is quasiperiodic). On the other hand, the
symplectic nature of Hamiltonian dynamics implies that
the Lyapunov spectrum is organized in pairs of ex-
ponents with equal value but opposite signs. Hence an
orbit on a KAM surface has zero Lyapunov exponents in
directions both along and perpendicular to the surface (at
least for two-dimensional maps). (Such systems with
KAM surfaces are nonhyperbolic.) Now consider a par-
ticle initialized in the chaotic region. Due to ergodicity,
this particle will come arbitrarily close to some KAM
surface bordering the chaotic region. When this occurs,
the effective Lyapunov exponents will be very small, lead-
ing to slow divergence of the particle trajectory from the
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KAM surface, thereby causing the stickiness effect ob-
served above.

The consequences of the stickiness effect on the parti-
cle transport have been numerically investigated for both
two- and higher-dimensional area-preserving maps [1-5].
In what follows we review some of the main results of
such studies for two-dimensional maps [1-3]. Consider a
situation where the phase space is composed of a central
island region bounded by some outermost KAM surfaces
and a region of chaotic motion outside these KAM sur-
faces. Imagine that we surround the outermost KAM
surfaces by a large circle situated in the chaotic region.
We then place a large number of initial conditions in
some small chaotic region located between the outermost
KAM surface and the large circle. If the particle crosses
to the outside of the large circle we regard the particle as
having escaped the region containing the central island.
Let N (¢) denote the number of particles that have not yet
escaped at time ¢, then N(¢) vs ¢ is roughly fit by an
overall algebraic decay law for large ¢,

N()~t77, (1)

where z is the decay exponent with a value estimated
around 1.2—-1.5 [1,2]. [Note that the survival probability
P(t) for an initial condition is proportional to N (t).]
Similar algebraic decay laws with characteristically larger
decay exponents are also found in four- and six-
dimensional symplectic maps with KAM surfaces [5]. It
is further conjectured that this behavior is true for sys-
tems of even higher dimensionality [S]. In the light of
such numerical evidence, the algebraic decay law Eq. (1),
as opposed to the more rapid exponential decay exhibited
by hyperbolic systems, is thought to be characteristic of
the stickiness effect of the KAM surfaces. (It should be
pointed out, however, that chaotic systems with no KAM
surfaces may also exhibit algebraic decay behavior
reflecting long-term correlation among orbits. One exam-
ple of such systems is the Bunimovich stadium mentioned
earlier in which the dynamics is completely chaotic. The
origin of the long-term correlation in this system is con-
sidered to be due to the existence of a certain infinite class
of neutrally stable periodic orbits in the phase space
[6,7].) Theoretical models [8,9] have been proposed to
explain the numerically observed algebraic decay law Eq.
(1). A fundamental assumption of these models is that a
particle in phase space executes a random walk between
families of self-similar chains of islands. Such models in
general yield an algebraic relationship between N (¢) and
t, with the value of the decay exponent depending on the
number of self-similar families of islands included in the
calculation.

In many situations of interest the Hamiltonian system
under investigation depends on some control parameters
of the system. An important problem, therefore, is to dis-
cover what qualitative changes can happen to the system
as a single scalar parameter is continuously varied and
how such changes are manifested through experimentally
observable quantities. In the context of this paper, the
systems of particular interest are those that are nonhy-
perbolic at one set of parameter values and hyperbolic at
another set of parameter values. In such systems the par-
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ticle decay process changes its character from algebraic
to exponential with the smooth variation of a parameter.
Our main interest in this paper is to investigate the mech-
anism underlying the change of the decay exponent.
Some consideration along this direction was given by
Grassberger and Kantz [3] where they examined the de-
viation of the calculated Lyapunov exponent from its true
value. Their calculation showed an algebraic deviation as
a function of time. They attributed such behavior to the
stickiness effect of the KAM surfaces. They further com-
puted the parameter dependence of the decay exponents
and found substantial fluctuations in the exponent. How-
ever, no detailed reasoning was furnished in their paper
to explain the phenomenon.

In this paper we study the decay exponent z as defined
in Eq. (1) and its dependence on some control parameter.
Using a mode system which exhibits unbounded chaotic
dynamics (i.e., chaotic scattering) we show that the ex-
ponent z fluctuates substantially as a function of the con-
trol parameter. The origin of such fluctuations can be un-
derstood in terms of the continual process of KAM sur-
face breakup in phase space. To heuristically illustrate
our theoretical consideration we utilize a two-
dimensional model in which phase space is assumed to
have a central island encircled by some outermost KAM
surface and a chaotic region outside the KAM surface
containing smaller island chains. For particles initialized
in the chaotic region, their escape process will take place
on a wide range of time scales. More specifically, based
on the respective dynamical behavior in phase space, the
entire time interval can be divided into two subintervals,
namely, 0<t <t, and ¢t >¢;. For those particles that es-
cape before t =t, it is likely that their motions are not
impacted by any KAM surfaces along their trajectories.
Thus the portion of the N(¢) vs ¢ curve for t <t is ex-
ponential rather than algebraic. (In other words, these
orbits only experience the hyperbolic component of the
invariant set.) For the particles which stay longer than
t =t, in the region, their corresponding trajectories may
spend substantial amount of time near some accessible
K AM surfaces. Hence the curve N () vs ¢ is algebraic for
t >t,. From an observational point of view, the more
dominant the island chains are in the chaotic region, the
more time the particles spend near them, thus slower is
the escape process. ‘“‘Slower” here is quantified by smaller
decay exponent z in Eq. (1). This intuition is consistent
with the theoretical picture proposed in Ref. [9] where
the value of the calculated decay exponent decreases as
the number of island chains included in the calculation
increases. As a system parameter varies, KAM islands
are destroyed continuously so that the area occupied by
the regular components in the chaotic region decreases.
(It is also possible that entire island chains are destroyed
in this process.) This picture suggests that the decay ex-
ponent z will increase as the system parameter increases.

The above argument holds true up to the point where
some KAM surfaces undergo transformations from being
absolute barriers to partial barriers called Cantori [10].
After this event takes place, an entire new region of phase
space becomes accessible to the exploration by the chaot-
ic orbits. The decay exponent z drops drastically after
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this point. A particularly interesting finding we report in
this paper is that after the breakup of the outermost
KAM surfaces surrounding the central island, another
time scale t, > ¢, becomes important for the system. For
particles that have escaped in the time interval ¢, <t <t,,
their trajectories lie entirely outside the newly created
Cantori. Therefore, the exponent z measured over this
intermediate interval is still roughly the same as that be-
fore the breakup of the corresponding KAM surfaces.
The particles that stay longer than ¢t =¢,, however, will
explore the region enclosed by the newly created Cantori,
thereby causing the exponent z to be markedly smaller
than the one measured over the interval £; <t <t¢,. Thus
the curve N(t) vs t exhibits two scaling regions with
different decay exponents [11]. The time scale where this
crossover takes place coincides with the typical time for a
chaotic trajectory to penetrate the newly created Cantori.

This consideration can be repeatedly applied as the pa-
rameter further increases, thereby explaining the fluctua-
tions displayed by the exponent z. As the system ap-
proaches hyperbolicity, the interval 0 <t <t¢; becomes
larger and larger reflecting the fact that the island struc-
tures in phase space become less and less significant. In
the limit, we have ¢t;— c, and the system becomes com-
pletely hyperbolic. It should be pointed out that due to
the limited range of numerical and experimental resolu-
tion and the observation time, the observational hyper-
bolicity, as signified by exponential decay in survival
probability, will effectively set in earlier than the
mathematically defined hyperbolicity.

A crossover between two algebraic decay regimes was
also observed in a one-dimensional model of kicked hy-
drogen Rydberg atoms [12]. Again, the dynamics can be
classified into three regions: (i) 0=t <t,, (ii) t; =t <t,,
and (iii) ¢ >¢,. While the decay in region (i) is nongener-
ic, two different decay exponents are observed in regions
(ii) and (iii). The algebraic decay in region (iii) is due to
the stickiness effect discussed above. The algebraic decay
in region (ii), however, is due to a completely different de-
cay mechanism which results in an algebraic decay in the
absence of KAM islands [12].

It is a generally acknowledged notion that the algebra-
ic decay in the presence of KAM surfaces should be a
universal phenomenon with a single exponent. This no-
tion is partly derived from the numerical works of Kar-
ney [1] and Chirikov and Shepelyansky [2]. In our
opinion this may indeed be the case given the hierarchical
island structure in phase space. But to attain such a
universal exponent one needs a prohibitively long time to
perform the needed numerical calculations. In the case
of actual experiments the required long period of obser-
vation time becomes even more unrealistic. On the other
hand, the algebraic decay behavior itself is found to occur
on relatively short time scales. The value of the decay ex-
ponent measured over the time interval accessible to nu-
merical experiments is influenced by the presence of dom-
inant island structures. In this regard the variations of
the exponent can, in fact, be utilized to reflect the major
qualitative changes in the system. For this reason we be-
lieve that the phenomena occurring on short time scales,
such as these investigated in this paper, should be given
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appropriate emphasis and considerations.

Finally we remark that parallel situations occur in sys-
tems with more than two degrees of freedom. In such
systems a typical particle wanders in a well-defined
phase-space region for a stretch of time before it hops to
the next region along the Arnol’d web. This characteris-
tic behavior is thought to underlie the observed crossover
phenomena in the decay dynamics.

The organization of this paper is as follows. In Sec. II
we introduce our model system and demonstrate that this
system can exhibit nonhyperbolic chaotic scattering. In
Sec. III we present our main numerical results establish-
ing the theoretical picture depicted above. We conclude
this paper in Sec. IV.

II. THE MODEL SYSTEM AND BIFURCATION
TO CHAOTIC SCATTERING

The model system we use in this paper is a two-
dimensional area-preserving map derived from a scatter-
ing problem. The scattering problem in this case consists
of a point particle being scattered by an infinite array of
nonoverlapping, elastic scatterers (Fig. 1) [13]. These
scatterers are placed in the plane at constant intervals D
along the y axis and each scatterer is represented by a cir-
cular potential V(r) that vanishes for r >R with
R <D /2 (nonoverlapping condition). In the present
study we choose V' (r) to be an attractive potential, i.e.,
V(r)<0. If V(r) is repulsive, only trivial invariant orbits
can be formed in the potential region, thus rendering the
system inept of displaying intricate dynamics.

The nonoverlapping condition entails that the particle
trajectory is a straight line in the region between poten-
tial wells and suffers a deflection when the particle enters
some scatterer. Let O(/) be the deflection angle of the
particle trajectory caused by an individual scatterer. It
can be argued that ©(/) is a monotonically decreasing

FIG. 1. The system of an infinite array of nonoverlapping,
circular potentials.
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function of the angular momentum / (at least near / =0).
Assume that the particle mass is unity, then due to the
finite range of each scatterer, ©(/)=0 for />1_,, =uR,
where u is the particle velocity (constant) during free
motion. For a particle moving towards any of the
scatterers with an angular momentum / and velocity u, its
new velocity u’ after the scattering has the same magni-
tude as u but assumes a different direction. Let 3 and 8
be the angles that u and u’ make with respect to the nega-
tive y axis, measured counterclockwise. Then from Fig. 1
we have

B =B+6(). (2)
Note that (/) <0 for / >0. Now the particle may either
collide with the scatterer above (if u, = —u cos’>0) or

with the scatterer below (if uJ; <0). In either case, the
scattering is determined by the value of the angular
momentum relative to the new scatterer which we denote
by /’. Simple geometry shows that !’ can be expressed as

I'=1+(Du)sgn( cosf’)sinf3’ . (3)

Clearly the next scattering takes place only if |I'| <[ ,,.
Otherwise the particle will continue to move along a
straight-line trajectory leaving the array of scatterers and
will never return. Such particles will be regarded as hav-
ing escaped in the subsequent discussions.

Symbolically, the two-dimensional map Eqgs. (2) and (3)
can be represented as

B, I")=M(B,1) . 4)
Phase space for M is defined by the domain
[0,27) X[ =1 paxs I max J» Which is a cylinder. [Here we

have used the property that 3 is an angular variable, thus
Eq. (2) can be considered as taking place on a circle.] It
can be easily verified that M is area preserving.

To examine the evolution of the system shown in Fig. 1
we first note that, in the absence of the scatterer array
[i.e., V(r)=0], no scattering takes place and particles
simply travel along straight-line trajectories. On the oth-
er hand, the numerical evidence we present in the next
section reveals an abundance of chaotic motion when
V(r)70. Thus a natural question arises: How does
chaos come about in this system? More specifically, set-
ting ¥, as the parameter denoting the depth of the poten-
tial well V' (r), what are the typical sequences of events
(“route”) that occur as V), is increased from V=0 to a
value where the scattering is chaotic? This is the ques-
tion we address in the remainder of this section.

For a given physical potential V' (r), the deflection an-
gle ©(/) is likely to be a complicated function of / (see
Sec. III). But, as indicated earlier, physical considera-
tions require that ©(/) is a monotonically decreasing
function of / for values of [ near / =0, and ©(0)=0. Thus
for the purpose below we assume that ©(/)= —kl, where
k is a nonnegative constant measuring the average slope
of the monotonic portion of the (/) vs I curve [13]. The
two-dimensional map Egs. (2) and (3) then becomes

B'=B—kl, (5)
'=1+(Du)sgn[ cos(B—kl)]sin(B—kl) . (6)
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This map has fixed points at (SB,/)=(0,0) and
(B,1)=(m,0), corresponding to orbits traveling along the
negative- and positive-y axis, respectively. Due to the
symmetry of the system we only need to analyze the
linear stability for one of the fixed points, say (,0).
Near (77,0) the linearized mapping reads

opB'=8B—kdl , (7

8!'=DudB+(1—Duk)dl . (8
The eigenvalues of this linear mapping are

Ay =[(2—Duk)+(D?*u*k*—4Duk)'?]/2 . 9)

When k =0, corresponding to ¥ (r)=0 in the potential,
we have A, =1. For 0<k <4/Du, however, the eigen-
values A, are complex and the fixed point is elliptic.
Rigorous mathematical work due to Robinson [14], New-
house [15], and Zehnder [16] reveals that, for nonintegr-
able systems, an elliptic fixed point is surrounded by lay-
ers of quasiperiodic orbits, other elliptic points, and most
importantly, hyperbolic points whose stable and unstable
manifolds form intricate homoclinic tangles (indicating
the existence of chaotic invariant sets). In this sense, the
transition to chaos occurs as soon as k becomes nonzero.
In physical terms, chaotic scattering takes place immedi-
ately after we introduce an array of attractive potentials
in the plane, regardless of the depth of each individual
potential. Figures 2(a) and 2(b) schematically illustrate
the above consideration. When k =0 the fixed point is
the only component of the invariant set [Fig. 2(a)]. Figure
2(b) shows the fixed point and the associated KAM tori
for k slightly above zero. In this case the chaotic regions
are exponentially small and they exist between and out-
side the KAM tori. It is worth noting that this route to

2n *
k=0
fixed point
B i < 4 @
fixed point
0 N}
_/max 0 /max
/
2n ¥
%0<k<<1
KAM tori
B nt <4 ()
. (N
_/max 0 /max
/

FIG. 2. Schematic illustration of the phase-space structure
for (a) k =0, and (b) 0< k <<1.
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chaotic scattering is qualitatively different from the ones
studied in the literature [17,18].

Beyond the initial bifurcation to chaos, phase space
contains a mixture of KAM surfaces and chaotic com-
ponents. Further increment of k leads the system to
complete hyperbolic dynamics [13].

III. NUMERICAL RESULTS
ON PARTICLE-DECAY DYNAMICS

In this section we present our main results establishing
the mechanism underlying the dependence of the decay
J

1 1

o(l)=2sin"! —— | T 4sin!
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exponent on system parameters. For concreteness, we
choose V(r) to be a quadratic potential in the following
form:

2

Vin=—V,|1- 7;‘ for r<R , (10)

and V(r)=0 for r > R, where V|, 20 measures the depth
of the potential well. Using simple classical mechanics
we obtain for the deflection angle,

I?/R*—(E +V,)

V2ER |2

where E is the particle energy and the particle mass is
chosen to be 1. In our subsequent calculations, we fix all
the parameters in Eq. (11): ¥;,=0.2, E=0.5, and
R =1.0 (so I,,,,=1), and use the distance D between ad-
jacent potentials as the control parameter. For small D
values, the map Egs. (2) and (3), with ©(/) defined by Eq.
(11), displays a mixture of regular motion on KAM sur-
faces and chaotic motion between these surfaces. For
larger values of D, we did not find any KAM surfaces and
particles appear to escape from the scattering region ex-
ponentially. Below we restrict our attention to the form-
er range of D values.

To study the escape of particles, we proceed as follows.
First we choose a subregion in the chaotic region which
apparently does not intersect any KAM surfaces. We
then initialize N (0) particles uniformly in that subregion,
and count the number of particles N (z) that have not yet
escaped the system at time ¢. From these data we extract
the algebraic decay behavior by plotting log, N (¢) vs
log,ot. It can be seen that for D =3.7, the log-log plot
shown in Fig. 3. is reasonably well fit by a straight line
that extends over a few decades. The slope of the
straight-line fit yields the decay exponent which, for the
case in Fig. 3, is z=1.32. The initial conditions used to
generate Fig. 3 are placed at the lattice sites of a
20002000 uniform grid superposed on the subregion:
3.25<B=3.30and 0.95=<7<1.00.

As the parameter D varies, the decay exponent z fluctu-
ates as shown in Fig. 4. In what follows we carry out a
sequence of numerical experiments addressing the origin
of this fluctuation. More specifically, we examine the
phase-space structure and its associated dynamics for
two pairs of D values, D,=3.60,D,=3.62, and
D;=3.70,D,=3.72, respectively (see Fig. 4). Their cor-
responding decay exponents are denoted by z,, z,, z3, and
z4, respectively. For the first pair of D values we have
z, >z, while for the second pair we have z, <z;. Thus,
for increasing D values, the decay exponents increase for
the first pair of D values. They decrease for the second
pair. This is the reason for choosing the particular D
values quoted above.

The phase-space structures corresponding to the first
pair of D values, D, and D,, are shown in Figs. 5(a) and

, (11)
[(E + Vo) —2I*V,/R?]'? ] }

f

5(b), where we uniformly choose 144 initial conditions in
the region 3.1<fB<3.6 and 0.87 </ <0.92. (Note that
only parts of the phase space are shown in the figure
highlighting the regions relevant to our discussion.)
Some of the initial conditions lead to trajectories that lie
on KAM surfaces, while others wander in the region of
chaos. We have chosen to plot only the trajectories on
the KAM surfaces. A noticeable feature common to both
parameter values is that phase space is divided into two
distinct regions by KAM surfaces. While the region
denoted by B is enclosed within the KAM surfaces, the
other region, denoted by A, lies outside the surfaces. As
a result of this space partitioning, particles launched
from outside visit only region A before they exit the po-
tential. Region B in this case plays the role of the central
island in our model consideration (see Sec. I). The
particle-decay dynamics for both D, and D, is thus
determined by the structures present in region 4. As D
increases from D, to D,, the boundary between the two
regions deforms slightly but otherwise remains essentially
intact. In contrast, the area occupied by islands under-
goes reduction from Fig. 5(a) to 5(b). The effect of this
reduction is further demonstrated by plotting in its en-
tirety the connected chaotic component in region A4.
This can be done, for bounded systems, by plotting a long

6.5 1 1 1 1

D= D3= 3.70
5.5
4.5

3.51

log; N(t)

2.51

1.5

logqg tq
0.5 T T T

0 1 2 3 4 5
logypt

FIG. 3. log;oN(t) vs log,et plot for D =3.70.



4666 LAI DING, GREBOGI, AND BLUMEL 46

30 1 I — 4; J%;
2.5 -
s ¢
- O
2.0 ¢¢ <>¢
VA
S
1.57 $ ¢ & r
o ¢ ; ¢§ 7
: i ¢
1.0 A bk
of o 1? ¢
D, DyDg D
05 L7278 e [
35 36 37 38 39 40
D

FIG. 4. Algebraic-decay exponent z as a function of the pa-
rameter D for 3.5=D <4.0.

stretch of a chaotic trajectory. In the present system,
however, such a simple procedure is inadequate because a
typical trajectory exits the region before it traverses a
substantial portion of the chaotic set. A possible remedy
is to plot collectively the trajectories of many initial con-
ditions. In our experiments we prefer another more
elegant approach to obtain the unstable chaotic set. In
this approach we make use of an orbit-tracing technique

(a)

3.1+ T T T T
0.87 088 0.89 090 091 0.92

A (b)

T T T
0.89 090 091 0.92
/

|
.87 0.88

FIG. 5. Phase-space plots for (a) D; =3.60 and (b) D, =3.62.

called the proper interior maximum (PIM) -triple method
[19]. The application of this method yields an arbitrarily
long transitive orbit which approximates the chaotic set.
Its basic steps are as follows. First we pick a long line
segment in the chaotic region and uniformly sprinkle N
points, x;=(8;,1;), i =1,2,...,N, on the segment. Next
we evolve those N particles under the scattering dynam-
ics and calculate a delay time (the number of iterates a
particle survives before escaping the scattering region) for
each particle. In general a maximum delay time is at-
tained by some point x,, in the interior of the initial seg-
ment. Around this point we form a new refined interval:
(X, —1»Xpm +1)- Sprinkle again N points on this new line
segment and repeat the step above to obtain an even finer
interval. Iterate the procedure until we get a line seg-
ment whose length is less than a predetermined value, say
1077, We call this process a “refinement procedure” and
such a line segment with length less than 107 is called a
“refined line segment.” The middle point of this refined
line segment then lies approximately on the stable mani-
fold of the chaotic set. To get a numerical trajectory, we
simply iterate forward the refined line segment under the
dynamics. But due to the sensitivity to initial conditions,
the length of the line segment grows exponentially with
time. Therefore we need to stop the iteration when the
length exceeds 10~°, and perform the refinement pro-
cedure again to get a new refined segment. Hence, after
an initial transient, the subsequent iterates of the middle
point in the refined line segment shadows a transitive or-
bit on the chaotic invariant set. Sometimes it may so
happen that the initial line segment intersects some
KAM islands. In this case, the delay time for the point
inside the island is infinite. To avoid this situation we set
a critical time, say 10000 iterations. If the delay time of
a given point exceeds this critical time, we regard the
particle as being inside some KAM island and discard the
point consequently. Figures 6(a) and 6(b) display two long
trajectories generated by the PIM-triple method for D,
and D,. Evidently the sum of blank pockets in region 4,
representing areas occupied by islands, is markedly small-
er in Fig. 6(b) than that in Fig. 6(a). The implication in
physical terms is that, on the average, particles exit the
potential faster for D, =3.62 than for D, =3.60, thereby
furnishing an explanation to the observed relationship
z,>z,. Note that if the experiments were to be per-
formed for an infinitely long time the algebraic decay
may yield an overall exponent which is the same for both
parameter values.

We now turn to the second pair of D values, D3, and
D,. For D=D,, the decay exponent z attains a local
minimum: z,~0.88 (Fig. 4). The phase-space plots for
D; and D, show drastic differences [Figs. 7(a) and 7(b)].
In particular, we note that while the two regions 4 and B
in Fig. 7(a) are still visibly separated by KAM surfaces,
the boundary between the two regions in Fig. 7(b) ap-
pears to have been destroyed. This situation entails that
the chaotic component previously enclosed in region B is
now accessible to the exploration of particles initialized
in region A. In geometrical terms, the two chaotic re-
gions lying on different sides of the KAM surfaces have
been combined into a single connected chaotic set. To
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prove this latter point we again make use of the PIM-
triple method. The transitive orbits generated in this
case are shown in Figs. 8(a) and 8(b), for D; and D, re-
spectively. A close comparison with Figs. 7(a) and 7(b)
confirms that the connected chaotic set at D, encom-
passes the region enclosed within region B at D;.

It is known that Cantori, immediately after the break-
up of KAM surfaces, serve as effective barriers to particle
transport [10]. The typical time for a particle to
penetrate the Cantori thus constitutes a new time scale in
the system which we denote by ¢,. The presence of this
new time scale leads to observable consequences which
we shall discuss below. For particles that exit the poten-
tial in time less than ¢t =t,, the corresponding trajectories
lie entirely outside the newly created Cantori. This im-
plies that the exponent measured over the time interval
t, <t <t, should be roughly the same as that before the
breakup of KAM surfaces. Particles that stay longer
than ¢t =t,, however, are likely to penetrate the Cantori
and explore the chaotic component previously enclosed
within the KAM surfaces. For these particles their trajec-
tories encounter additional KAM island chains before
they finally exit. Reflected in the decay dynamics this
corresponds to a slower escape process, thus a smaller de-
cay exponent measured over the interval ¢ >¢,. The nu-
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FIG. 6.
D,=3.62.

PIM-triple trajectories for (a) D;=3.60 and (b)
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merical results for D; and D, are shown in Figs. 3 and 9,
respectively. There are clearly two regions of scaling be-
havior in Fig. 9. The exponent measured over the first in-
terval of scaling behavior ¢ <t¢, is z=1.27, while the ex-
ponent measured over the remaining interval z >1, is
z=~0.88. This confirms the theoretical consideration
given above. We note that the latter value of z is what we
use in Fig. 4. The crossover time ¢ =t, in Fig. 9 is rough-
ly 1200 iterates. As indicated, this time represents the
number of iterates for a typical trajectory to penetrate
the Cantori. To demonstrate this point we plot the tra-
jectories for two sets of judiciously chosen initial condi-
tions. One set yields trajectories which escape the poten-
tial before ¢t =t,. The other leads to orbits that stay
longer than ¢ =t,. Figures 10(a) and 10(b) show the
respective trajectories. One sees that the conclusion al-
luded to is self-evident.

In summary, we have shown that the number of surviv-
ing particles as a function of time decays algebraically for
our nonhyperbolic chaotic scattering system. The decay
exponent z measured over time intervals accessible to nu-
merical experiments is influenced by the total area occu-
pied by KAM island chains embedded in a chaotic com-

(a)

(b)

0.5 0.6 0.7 0.8 0.9

FIG. 7. Phase-space plots for (a) D;=3.70 and (b) D,=3.72.
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FIG. 8. PIM-triple trajectories for (a) D;=3.70 and (b)
D,=3.72.

ponent that is accessible to the scattering trajectory. The
area occupied by the island chains is, in turn, determined
by the creation and destruction of KAM surfaces. When
phase space undergoes a major metamorphosis [11],
which for our case is exemplified by the destruction of the
KAM surfaces enclosing a central island and subsequent
exposure of a new layer of KAM islands, the particle-
decay curve exhibits two regions of scaling behavior. The
interpretation afforded for this crossover phenomenon
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494 |

3.87 |

logyo N(t)

274

161
logyo ty

0.5+ T
0.5 1.5

Hogyg ty

25 35 45 5.5
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FIG. 9. logoN(2) vs log,ot plot for D,=3.72.
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FIG. 10. Two-particle trajectories corresponding to escape
time (a) t <7, and (b) t > ¢, (D =3.72).

suggests that, due to the continual nature of KAM sur-
face breakup on all scales, one should observe multiple
crossovers at different time scales. This conforms with
Fig. 6 in Ref. [1] which is a result of an extremely long
numerical simulation. But with the limited time frame
within which a typical experiment is carried out, only
crossover associated with major changes in phase space
falls into the window of observability. As a parameter
varies, along with island destructions there are also island
creations through saddle-center bifurcations. In most
cases, however, the sizes of the islands accompanying the
center are insignificant and thus its impact is only felt on
time scales beyond typical experimental resolution.
Finally we remark that systems with more than two de-
grees of freedom depart from low-dimensional systems in
that the energy surface is no longer isolated into regions
enclosed by KAM surfaces. The chaotic set in this case
forms a single integrated component on which a typical
particle can execute Arnol’d diffusion. If the energy sur-
face is unbounded, it is found that the particle decay
obeys algebraic laws [5]. Using a three-dimensional gen-
eralization of the potential in Fig. 1, we have observed
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features of the decay dynamics analogous to what we see
in low dimensions. In particular, the characteristic be-
havior of Arnol’d diffusion in which a particle hops for
one well-defined region in phase space into another close-
ly resembles the penetration of Cantori in two-
dimensional systems. This apparently leads to multiple
decay exponents measured over short intervals of time.
A detailed exposition of higher-dimensional dynamics
will be presented elsewhere.

IV. CONCLUSIONS

The results of this study show that a metamorphosis in
phase space exemplified by the destruction of KAM sur-
faces and subsequent exposure of a new layer of KAM is-
lands may manifest itself through variations in the decay
exponent. Conversely, this relationship can also be used
to interpret unexpected findings in physical experiments.
One of such examples is the study reported in Ref. [11]
where the authors consider a theoretical model of mi-
crowave ionization of hydrogen Rydberg atoms. Their
results indicate that, contrary to naive physical intuition,

the ionization rate, analogous to the decay exponent z in
our case, is not a monotonically increasing function of
the field strength. In many instances the increment of the
field strength actually leads to a decline of the ionization
rate. The reasons behind the finding are precisely what
we report in this paper, namely, the complicated
metamorphosis patterns in phase space.

Finally we stress that the phenomena examined in this
work mainly occur on time scales far shorter than that
required for observing universal dynamics. Nevertheless,
as the results show, this nonuniversal behavior can in fact
be utilized to reflect qualitative changes in the system. In
this regard, we submit that the phenomenology related to
our observability is an important problem which war-
rants further consideration.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
(Scientific Computing Staff, Office of Energy Research).
R.B. is grateful for financial support by the Deutsche
Forschungsgemeinschaft.

[1] C. F. F. Karney, Physica D 8, 360 (1983).

[2] B. V. Chirikov and D. L. Shepelyansky, Physica D 13, 394
(1984).

[3] P. Grassberger and H. Kantz, Phys. Lett. A 113, 167
(1985).

[4] H. Kantz and P. Grassberger, Phys. Lett. A 123, 437
(1987).

[5] M. Ding, T. Bountis, and E. Ott, Phys. Lett. A 151, 395
(1990).

[6] F. Vivaldi, A. Casati, and I. Guarneri, Phys. Rev. Lett. 51,
727 (1983).

[7] K.-C. Lee, Phys. Rev. Lett. 60, 1991 (1983).

(8] J. D. Hanson, J. Cary, and J. D. Meiss, J. Stat. Phys. 39,
327 (1985).

[9]J. D. Meiss and E. Ott, Phys. Rev. Lett. 55, 2741 (1985);
Physica D 20, 387 (1986).

[10] R. S. MacKay, J. D. Meiss, and I. C. Percival, Phys. Rev.
Lett. 52, 697 (1984).

[11]1Y. C. Lai, C. Grebogi, R. Bliimel, and M. Ding, Phys.
Rev. A 45, 8284 (1992).

[12] C. F. Hillermeier, R. Bliimel, and U. Smilansky, Phys.
Rev. A 45, 3486 (1992).

[13] G. Troll and U. Smilansky, Physica D 35, 34 (1989).

[14] R. C. Robinson, Am. J. Math. 102, 562 (1970).

[15] S. E. Newhouse, Am. J. Math. 99, 1061 (1975).

[16] E. Zehnder, Commun. Pure Appl. Math. 26, 131 (1973).

[17] S. Bleher, E. Ott, and C. Grebogi, Phys. Rev. Lett. 63, 919
(1989); S.Bleher, C. Grebogi, and E. Ott, Physica D 46, 87
(1990).

[18] M. Ding, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev.
A 42,7025 (1990).

[19] H. E. Nusse and J. A. Yorke, Physica D 36, 137 (1989).



