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fig. S1. Representative resilient functions in systems that do not exhibit a tipping point. For networks A [panels

(a,b)] and B [panels (c,d)], typical examples of resilient functions of pollinator abundance [panels (a,c)] versus fn,

the fraction of removed pollinators, and plant abundance [panels (b,d)] versus fl, the fraction of removed mutualistic

links corresponding to the value of fn in panels (a,c). The curves with red squares are from the original networked

system, while the curves with diamonds, triangles, and crosses are the corresponding individual resilient functions from

reduced 2D model with averaging methods 1-3, respectively. The parameters are h = 0.7, t = 0.5, β(A)
ii = β

(P )
ii = 1,

α
(A)
i = α

(P )
i = 0.3, µA = µP = 0.0001, γ0 = 1, and κ = 0.

2



fig. S2. Representative resilient functions in systems that exhibit a tipping point. For networks A [panels (a,b)]

and B [panels (c,d)], examples of resilient functions of pollinator abundance [panels (a,c)] versus fn, the fraction of

removed pollinators, and plant abundance [panels (b,d)] versus fl, the fraction of removed mutualistic links corre-

sponding to the value of fn in panels (a,c). The curves with squares are from the original networked system, while

the curves with diamonds, triangles, and crosses are the corresponding individual resilient functions from reduced 2D

model with averaging methods 1-3, respectively. Before fn (or fl for plants) approaches unity, total collapse of the

system can occur past a tipping point, at which the species abundances effectively become zero. The parameters are

h = 0.2, t = 0.5, β(A)
ii = β

(P )
ii = 1, α(A)

i = α
(P )
i = −0.3, µA = µP = 0.0001, γ0 = 1, and κ = 0.
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fig. S3. Tipping point in two-dimensional parameter space for network A. Panels (a,c) and (b,d) are for the

pollinators and plants, respectively. The circles and asterisks in panels (a) and (b) are results from the original model

with δκ = 0.1, and the cyan curves are results from the reduced model obtained through the eigenvector weighted

averaging method. The circles and asterisks curves in both panels indicate the cases where the initial species abundance

is high (10) and low (0.01), respectively. Each point on the red squared curve represents the ensemble averaged critical

fn value (with 100 realizations) for a fixed value of κ, where δκ = 0.01. The black and cyan square curves are

the average abundances predicted by the reduced models with degree-weighted and eigenvector weighted averaging,

respectively. Panels (c,d) indicate the critical curve of tipping point in the parameter plane. For each value of fn (or,

equivalently, fl) and κ, 100 network realizations are used. Other parameters are the same as those in Fig. 4 in the

main text. These results indicate that our reduced model with the weighted averaging method can accurately predict

the tipping point in the two-dimensional parameter space.
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fig. S4. Tipping point in two-dimensional parameter space for network B. Panels (a,c) and (b,d) are for the

pollinators and plants, respectively. The circles and asterisks in panels (a) and (b) are results from the original model

with δκ = 0.1, and the cyan curves are results from the reduced model obtained through the eigenvector weighted

averaging method. The circles and asterisks curves in both panels indicate the cases where the initial species abundance

is high (10) and low (0.01), respectively. Each point on the red squared curve represents the ensemble averaged critical

fn value (with 100 realizations) for a fixed value of κ, where δκ = 0.01. The black and cyan square curves are

the average abundances predicted by the reduced models with degree-weighted and eigenvector weighted averaging,

respectively. Panels (c,d) indicate the critical curve of tipping point in the parameter plane. For each value of fn (or,

equivalently, fl) and κ, 100 network realizations are used. Other parameters are the same as those in Fig. 9 in the

main text. These results indicate that our reduced model with the weighted averaging method can accurately predict

the tipping point in the two-dimensional parameter space.
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fig. S5. Predicting tipping point for one dozen representative mutualistic networks from the set of 59 real

networks. The red curves are the average pollinator and plant abundance, respectively, from the original system. The

blue, black and cyan curves in all the panels are the abundances from the reduced 2D system using the averaging

methods 1-3, respectively. The circles asterisks in all panels correspond to cases where the initial abundance value

relatively high (10) and low (0.01), respectively. For each value of fn (or fl), results from 100 statistical realizations are

displayed. The model parameters are h = 0.4, t = 0.5, β(A)
ii = β

(P )
ii = 1, α(A)

i = α
(P )
i = −0.3, µA = µP = 0.0001,

and γ0 = 1.
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SI Appendix Note 1: Derivation of the 2D reduced model

Our dimension reduction process is based on the following two assumptions. Firstly, the decay param-

eters for all the pollinators have an identical value: κi ≡ κ. There is a qualitative correspondence between

κ and the state of the environment in that a deteriorating environment for species implies an increased value

of κ. Thus, as κ is increased, extinction of species can occur. The tipping point of the system is defined as

the critical value of κ beyond which all species are extinct. Secondly, for structural perturbation, we assume

that pollinators die from the mutualistic network one after another as a result of increasingly deteriorating

environment. As the fraction of disappearing pollinators is increased, a total collapse of all the species can

occur. Due to the removal of the mutualistic links, a complete collapse of the plant species can occur at the

same time, defining a tipping point of the system as a result of structural perturbation on the network.

Given a high-dimensional mutualistic network, the reduced dynamical system contains two coupled

ODEs: one for the pollinators and another for the plants. The basic idea of dimension reduction is to

characterize the “information” about the network topology by an effective dynamical parameter. The process

consists of the following three steps.

Firstly, we obtain the effective (average) abundances of the plants and the pollinators. From Eq. (1) in

the main text, we have

α
(P )
i Pi ∼= αPeff and α

(A)
i Ai ∼= αAeff , (S1)

where Peff andAeff the effective abundances of the plants and the pollinators, respectively. Secondly, since

species do not out-compete each other when mutualistic partners are absent [1], intraspecific competitions

can be assumed to be stronger than the interspecific competitions, leading to

β
(P )
ii � β

(P )
ij and β

(A)
ii � β

(A)
ij . (S2)

For simplicity, we can totally neglect the interspecific competitions. The terms describing the species com-

petitions in Eq. (1) in the main text can then be written as

SP∑
j=1

β
(P )
ij PiPj ≈ β(P )

ii P 2
i
∼= βP 2

eff and
SA∑
j=1

β
(A)
ij AiAj ≈ β(A)ii A2

i
∼= βA2

eff . (S3)

To incorporate interspecific competitions into the model, we write the species competition terms in Eq. (1)
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in the main text as

SP∑
j=1

β
(P )
ij PiPj ∼=

SP∑
i=1

SP∑
j=1

β
(P )
ij

SP∑
i=1

1

P 2
eff = βP 2

eff , (S4)

SA∑
j=1

β
(A)
ij AiAj ∼=

SA∑
i=1

SA∑
j=1

β
(A)
ij

SA∑
i=1

1

A2
eff = βA2

eff .

Thirdly, for effectively representing the mutualistic interactions in the network, we first calculate the mutu-

alistic strength of every single species, as follows:

SP∑
j=1

γ
(A)
ij Pj =

SP∑
j=1

γ0
ktAi

εijPj ∼= γ0k
(1−t)
Ai

Peff and
SA∑
j=1

γ
(P )
ij Aj =

SA∑
j=1

γ0
ktPi

εijAj ∼= γ0k
(1−t)
Pi

Aeff . (S5)

We then calculate the average mutualistic interacting strength in the system. There can be a variety of

choices as to how the averaging process is carried out. Here we consider three methods: unweighted, degree

weighted, and eigenvector weighted. For the unweighted method, we have

〈γP 〉 =

SP∑
i=1

γ0k
1−t
Pi

SP∑
i=1

1

and 〈γA〉 =

SA∑
i=1

γ0k
1−t
Ai

SA∑
i=1

1

. (S6)

For the degree-weighted method, we have

〈γP 〉 =

SP∑
i=1

γ0k
1−t
Pi
× kPi

SP∑
i=1

kPi

and 〈γA〉 =

SA∑
i=1

γ0k
1−t
Ai
× kAi

SA∑
i=1

kAi

. (S7)

Where kPi and kAi are the numbers of mutualistic interacting links associated with Pi and Ai, respectively.

For the eigenvector-weighted method, we calculate the averaging quantities for pollinators and plants based

on the eigenvector associated with the largest eigenvalue of the respective projection networks. Let MP and

MA be the projection matrices of the plants and pollinators, respectively. We have

MP =MT ×M, VP = eigenvector(MP ) and MA =M ×MT , VA = eigenvector(MA), (S8)

where M is the m× n matrix characterizing the original bipartite network with m and n being the numbers

of pollinators and plants, respectively), VP and VA are the components of the eigenvector associated with the
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largest eigenvalue of MP and MA, respectively. We then get

〈γP 〉 =

SP∑
i=1

γ0k
1−t
Pi
× V (i)

P

SA∑
i=1

V
(i)
P

and 〈γA〉 =

SA∑
i=1

γ0k
1−t
Ai
× V (i)

A

SA∑
i=1

V
(i)
A

, (S9)

where V (i)
P and V (i)

A are the ith component of VP and VA, respectively.
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SI Appendix Note 2: Description of the 59 real mutualistic networks

Index # Pollinators # Plants Linkage Network Location

1 101 84 0.04 Cordón del Cepo, Chile

2 64 43 0.07 Cordón del Cepo, Chile

3 25 36 0.09 Cordón del Cepo, Chile

4 102 12 0.14 Central New Brunswick,

Canada

5 275 96 0.03 Pikes Peak, Colorado, USA

6 61 17 0.14 Hickling, Norfolk, UK

7 36 16 0.15 Shelfanger, Norfolk, UK

8 38 11 0.25 Tenerife, Canary Islands

9 118 24 0.09 Latnjajaure, Abisko, Sweden

10 76 31 0.19 Zackenberg

11 13 14 0.29 Mauritius Island

12 55 29 0.09 Garajonay, Gomera, Spain

13 56 9 0.2 KwaZulu-Natal region, South

Africa

14 81 29 0.08 Hazen Camp, Ellesmere Island,

Canada

15 666 131 0.03 DaphnÃ, Athens, Greece

16 179 26 0.09 Doñana National Park, Spain

17 79 25 0.15 Bristol, England

18 108 36 0.09 Hestehaven, Denmark

19 85 40 0.08 Snowy Mountains, Australia

20 91 20 0.1 Hazen Camp, Ellesmere Island,

Canada

21 677 91 0.02 Ashu, Kyoto, Japan

22 45 21 0.09 Laguna Diamante, Mendoza,

Argentina
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Table S1 – continued from previous page

Index # Pollinators # Plants Linkage Network Location

23 72 23 0.08 Rio Blanco, Mendoza, Ar-

gentina

24 18 11 0.19 Melville Island, Canada

25 44 13 0.25 North Carolina, USA

26 54 105 0.04 Galapagos

27 60 18 0.11 Arthur’s Pass, New Zealand

28 139 41 0.07 Cass, New Zealand

29 118 49 0.06 Craigieburn, New Zealand

30 53 28 0.07 Guarico State, Venezuela

31 49 48 0.07 Canaima Nat. Park, Venezuela

32 33 7 0.28 Brownfield, Illinois, USA

33 34 13 0.32 Ottawa, Canada

34 128 26 0.09 Chiloe, Chile

35 36 61 0.08 Morant Point, Jamaica

36 12 10 0.25 Flores, AÃores Island

37 40 10 0.18 Hestehaven, Denmark

38 42 8 0.24 Hestehaven, Denmark

39 51 17 0.15 Tenerife, Canary Islands

40 43 29 0.09 Windsor, The Cockpit Country,

Jamaica

41 43 31 0.11 Syndicate, Dominica

42 6 12 0.35 Puerto Villamil, Isabela Island,

Galapagos

43 82 28 0.11 Hestehaven, Denmark

44 609 110 0.02 Amami-Ohsima Island, Japan

45 26 17 0.14 Uummannaq Island, Greenland

46 44 16 0.39 Denmark

47 186 19 0.12 Isenbjerg
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Table S1 – continued from previous page

Index # Pollinators # Plants Linkage Network Location

48 236 30 0.09 Denmark

49 225 37 0.07 Denmark

50 35 14 0.18 Tenerife, Canary Islands

51 90 14 0.13 Nahuel Huapi National Park,

Argentina

52 39 15 0.16 Tundra, Greenladn

53 294 99 0.02 Mt. Yufu, Japan

54 318 113 0.02 Kyoto City, Japan

55 195 64 0.03 Nakaikemi marsh, Fukui Prefec-

ture, Japan

56 365 91 0.03 Mt. Kushigata, Yamanashi

Pref., Japan

57 883 114 0.02 Kibune, Kyoto, Japan

58 81 32 0.12 Parc Natural del Cap de Creus

59 13 13 0.42 Parque Nacional do Catimbau

table S1. The 59 real pollinator-plant networks are from web-of-life (http://www.web-of-life.es). For each

network, the linkage is normalized with respect to the corresponding fully connected (all-to-all) network for

which the linkage is 100%.
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SI Appendix Note 3: Steady state solutions of the pollinator and plant abun-

dances

The steady state solutions of the reduced model can be obtained by setting dPeff/dt = 0 and dAeff/dt =

0, which gives

f(P ′, A′) = αP ′ − βP ′2 + 〈γP 〉A′

1 + h〈γP 〉A′
P ′ + µ = 0, (S10)

g(P ′, A′) = αA′ − βA′2 + 〈γA〉P ′

1 + h〈γA〉P ′
A′ + µ = 0,

where A′ and P ′ denote the effective pollinator and plant abundances in the steady state, respectively. The

Jacobian matrix evaluated at a steady-state solution is

J =

 α− 2P ′β + h〈γP 〉A′

1+h〈γP 〉A′ − h2〈γP 〉2A′P ′

(1+h〈γP 〉A′)2 + h〈γP 〉P ′

1+h〈γP 〉A′

− h2〈γA〉2A′P ′

(1+h〈γA〉P ′)2 + h〈γA〉A′

1+h〈γA〉P ′ α− 2A′β − κ+ h〈γA〉p′
1+h〈γA〉P ′

 . (S11)

We solve Eq. (S10) to get

P ′ =
1

−2β
[−(α+

〈γP 〉A′

1 + h〈γP 〉A′
)± ((α+

〈γP 〉A′

1 + h〈γP 〉A′
)2 + 4βµ)1/2], (S12)

A′ =
1

−2β
[−(α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
)± ((α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
)2 + 4βµ)1/2].

The physically meaningful solutions of P ′ and A′ have positive values. Because of the parameter setting

|α| � µ = 0.0001, we have

βµ� |α+
〈γP 〉A′

1 + h〈γP 〉A′
| or |α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
|.

The approximate solutions of P ′ and A′ are then given by

P ′ ≈ 1

−2β
[−(α+

〈γP 〉A′

1 + h〈γP 〉A′
)± (|α+

〈γP 〉A′

1 + h〈γP 〉A′
|+ 2βµ)], (S13)

A′ ≈ 1

−2β
[−(α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
)± (|α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
|+ 2βµ)].

For α+ (〈γP 〉A′)/(1 + h〈γP 〉A′) > 0, we have the following two approximate solutions of P ′:

P ′1 ≈ −µ, (S14)

P ′2 ≈ 1

β
(α+

〈γP 〉A′

1 + h〈γP 〉A′
),

where P ′1 corresponds to the result in Eq. (S13) with the + sign and P ′2 with the − sign. The corresponding

solutions A′1 and A′2 can be obtained accordingly.
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For α+ (〈γP 〉A′)(1 + h〈γP 〉A′) < 0, we have

P ′1 ≈ 1

β
(α+

〈γP 〉A′

1 + h〈γP 〉A′
), (S15)

P ′2 ≈ µ.

For α− κ+ (〈γA〉P ′)(1 + h〈γA〉P ′) > 0, we have

A′1 ≈ −µ, (S16)

A′2 ≈ 1

β
(α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
).

For α− κ+ (〈γA〉P ′)(1 + h〈γA〉P ′) < 0, we have

A′1 ≈ 1

β
(α− κ+

〈γA〉P ′

1 + h〈γA〉P ′
), (S17)

A′2 ≈ µ.
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