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Complex networked systems ranging from ecosystems and the cli-
mate to economic, social, and infrastructure systems can exhibit
a tipping point (a “point of no return”) at which a total collapse
of the system occurs. To understand the dynamical mechanism of
a tipping point and to predict its occurrence as a system parame-
ter varies are of uttermost importance, tasks that are hindered by
the often extremely high dimensionality of the underlying system.
Using complex mutualistic networks in ecology as a prototype class
of systems, we carry out a dimension reduction process to arrive
at an effective 2D system with the two dynamical variables cor-
responding to the average pollinator and plant abundances. We
show, using 59 empirical mutualistic networks extracted from real
data, that our 2D model can accurately predict the occurrence of
a tipping point, even in the presence of stochastic disturbances.
We also find that, because of the lack of sufficient randomness in
the structure of the real networks, weighted averaging is necessary
in the dimension reduction process. Our reduced model can serve
as a paradigm for understanding and predicting the tipping point
dynamics in real world mutualistic networks for safeguarding polli-
nators, and the general principle can be extended to a broad range
of disciplines to address the issues of resilience and sustainability.

tipping points | mutualistic networks | dimension reduction |
complex systems | nonlinear dynamics

Avariety of complex dynamical systems ranging from ecosys-
tems and the climate to economic, social, and infrastructure

systems can exhibit a tipping point at which a transition from nor-
mal functioning to a catastrophic state occurs (1–8). Examples of
such transitions are blackouts in the power grids, emergence of
massive jamming in urban traffic systems, the shutdown of the
thermohaline circulation in the North Atlantic (9), extinction of
species in ecosystems (10–13), and the occasional switches of shal-
low lakes from clear to turbid waters (14). In fact, the transitions
are the consequence of gradual changes in the system, which can,
for example, be caused by a slow drift in the external conditions.
For example, human activities have caused global warming, lead-
ing to a continuous deterioration of the environment and con-
sequently, to species extinction. In an ecological network sub-
ject to such habitat changes, nodes and/or links in the network
can disappear. As the fraction of disappeared nodes and/or links
increases through a critical point, the whole system can reach a
point of no return—a tipping point past which the whole network
collapses, with all species populations simultaneously becoming
zero. To predict the tipping point in complex networked systems
is a problem of paramount importance and broad interest.

Given a complex dynamical system, it is of general interest
to understand the system dynamics near the tipping point, but
often, the high-dimensional nature of the system presents a chal-
lenge. In ecological science, a major problem is to determine
groupings or appropriate levels of aggregation (15, 16) to enable
mathematical and physical analyses of the system to gain insights
into the fundamental dynamics while neglecting certain details

within the groups or aggregates. For a networked system with
a large number of mutually interacting components and many
independent parameters, the corresponding phase space dimen-
sionality can be prohibitively high for any direct analysis that
aims to gain theoretical insights into the dynamical underpin-
nings of the tipping point. In such a case, the approach of dimen-
sion reduction can turn out to be useful. The purpose of this
paper is to apply dimension reduction to a class of bipartite
mutualistic networked systems in ecology to arrive at a 2D system
that captures the essential mutualistic interactions in the original
system. More importantly, it can be used to assess the likelihood
of the occurrence of a catastrophic tipping point in the system as
the environment continues to deteriorate.

In the development of nonlinear dynamics, dimension reduc-
tion has played a fundamental role. For example, the classic
Lorenz system (17), a system described by three ordinary differ-
ential equations (ODEs) with a simple kind of nonlinearity, is
the result of drastic reduction in dimension from the Rayleigh–
Bénard convection equations with an infinite phase space dimen-
sion. Study of the reduced model can lead to insights into dynam-
ical phenomena not only in the original system but also, beyond.
In this sense, the reduced model may be said to possess cer-
tain features of universality. With regard to tipping point dynam-
ics in complex networked systems, a recent work (18) treated
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mutualistic, bipartite networked systems and derived a 1D
reduced model. In particular, pollinator–plant networks in
nature can be regarded effectively as a bipartite network, where
any direct interaction in the network is between a pollinator
and a plant. Pollinators or plants among themselves, of course,
are also connected, albeit indirectly, where two pollinators are
regarded as connected if they interact with the same plant, and
the same applies to the plant–plant connections. This results in
two projection networks: one for the pollinators and another for
the plants. The reduced 1D model (18) applies then to either
of the projection networks. It was shown that the 1D model can
lead to a resilience function, a function describing the emergence
of a tipping point as a properly normalized system parameter is
changed continuously. The resilience function was speculated to
be universal in that it resembles the actual functions obtained
from a number of empirical pollinator–plant networks.

While the 1D model is simple and amenable to analysis, it
is from a projection network either of the pollinators or of
the plants. In the dimension reduction process, certain features
of the most fundamental dynamical property of the original
bipartite network are lost: mutualistic interactions. To take into
account these interactions, a reduced model needs to be simple
but not simpler: a 2D model is necessary to capture the bipar-
tite and mutualistic nature, with one collective variable for the
pollinators and another for the plants. Consequently, as a single
parameter of the system is varied, one can define two resilience
functions: one for the pollinators and another for the plants.

We proceed through a series of steps to analyze the data
and predict tipping points. (i) We develop a method to obtain,
for mutualistic networks of arbitrary size, a set of two nonlin-
ear ODEs, where the dynamical variables are the average abun-
dances of the pollinators and plants, respectively. The 2D system
contains two key parameters that can be fixed for any given real
bipartite mutualistic network. (ii) From the generic 2D model,
we calculate the average abundances both of the pollinators and
of the plants, each as a function of two key parameters that cap-
ture the variations among different empirical networks. Each
function gives a 2D surface in the 3D space of the average abun-
dance and the two parameters. Since for each real network, the
values of the two parameters are fixed, we calculate the values of
the average abundances. The remarkable finding is that, for the
59 available plant–pollinator networks from real data recorded
over the world, all of the actual average abundance values fall
on the 2D surface obtained from the reduced model, providing
support for its validity and generality. (iii) We calculate, for each
real network, two resilience functions by considering two types
of parameter variations: (a) the fraction of removed pollinators
and the associated fraction of removed links and (b) the decay
rate of individual species. The motivation behind the choice of
these parameters is that, because of the continuous deterioration
in the environment as a result of, for example, human activities,
certain pollinators would disappear and so would the associated
mutualistic interactions. In the case where a species manages to
survive, the increasingly hostile environment makes it difficult to
be sustained, leading to an increase in its decay rate.

The approach finally leads to a method for predicting tipping
points. For each real network, we compare the resilience func-
tions with those from the corresponding reduced 2D model and
find a good agreement (even in the presence of stochastic distur-
bances), indicating that the 2D reduced model captures the essen-
tial dynamics of the real systems and can thus be used for prob-
abilistic prediction of the occurrence of a tipping point as some
parameters reflecting the environmental deterioration change.

Results
Nonlinear Dynamical Networks of Mutualistic Interactions and a Gen-
eral Reduced Model in Two Dimensions. We investigate all mutu-
alistic pollinator–plant networks available from the Web of

Life database (www.Web-of-Life.es). There are altogether 59
networks, which cover a wide geographic range across differ-
ent continents and climatic zones. The structures of the net-
works are quite different from each other, as is the number
of species in each network. Despite the differences, the net-
work dynamics can be described by a set of first-order, non-
linear ODEs, with the total number of equations (the phase
space dimension) being the number of species in the net-
work (both pollinators and plants) (13, 19). Considering a
generic nonlinear dynamical system described by such ODEs
with arbitrary numbers of pollinators and plants, we articulate
a dimension reduction process to obtain an average system in
two dimensions. As will be shown, the 2D system can cap-
ture the essential dynamical features of all 59 real mutualistic
networks.

A generic mathematical model for mutualistic interactions
includes the following processes: intrinsic growth and intraspe-
cific and interspecific competition as well as mutualistic effects
of plants and pollinators. We use the letters P and A to denote
plants and pollinators, respectively. Let SP and SA be the num-
bers of plants and pollinators in the network, respectively, and
therefore, the phase space dimension of the whole system is
SP + SA. The model can be written as (13, 19)

dPi

dt
= Pi

α(P)
i −

SP∑
j=1

β
(P)
ij Pj +

SA∑
k=1

γ
(P)
ik Ak

1 + h
SA∑

k=1

γ
(P)
ik Ak

+ µP ,

dAi

dt
= Ai

α(A)
i −κi −

SA∑
j=1

β
(A)
ij Aj +

SP∑
k=1

γ
(A)
ik Pk

1+ h
SP∑

k=1

γ
(A)
ik Pk

+µA,

[1]

where Pi and Ai are the abundances of the ith plant and the
ith pollinator, respectively; α is the intrinsic growth rate in the
absence of intraspecific and interspecific competition as well as
any mutualistic effects. The factors that affect the intraspecific
and interspecific competition, such as light and nutrients for the
plants at the breeding sites for animals, are characterized by the
parameters βii and βij (i 6= j ), respectively. Typically, intraspe-
cific competition is stronger than interspecific competition (13,
19), and therefore, we have βii�βij . The parameters µP and µA

describe the immigration of plants and pollinators, respectively,
which typically assume small values and have little effect on
the network dynamics (13, 20). Mutualistic interactions tend to
increase the abundance (e.g., through the process where pollina-
tors provide service to plants, while the plants provide resources
to the pollinators). It is reasonable to assume that, when both
mutualistic partners have a high abundance, the beneficial effect
of the interactions on the population growth would saturate. The
saturation effect is characterized by the half-saturation constant
h . The parameter γ quantifies the strength of the mutualistic
interaction, where γ=0 indicates the absence of any such inter-
action in the network. In general, γ depends on the degree of the
node through

γij = εij
γ0

(Ki)
t , [2]

where γ0 =1 is a constant, εij =1 if there is an interaction
between i and j (otherwise, εij =0), Ki is the number of inter-
actions of the species that benefit from the interactions, and
t determines the strength of the tradeoff between the inter-
action strength and the number of interactions. If there is no
tradeoff (i.e., t =0), the network topology will have no effect
on the strength of the mutualistic interactions. In contrast, a
full tradeoff (t =1) means that the network topology will affect
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Fig. 1. Validity test of the reduced model in terms of the average pollina-
tor and plant abundances. In the 3D plot of an average species abundance
vs. the two average mutualistic interaction strengths, which are regarded as
two independent parameters, the reduced 2D model generates a surface for
(A) pollinator (red) and (B) plant (green) abundances. The blue dots are the
corresponding data points representing the stable steady states calculated
from 59 real world networks. For each network, the parameter values of
〈γA〉 and 〈γP〉 are calculated by an unweighted average. Other parameters
are h = 0.7, t = 0.5, β(A)

ii = β(P)
ii = 1, α(A)

i =α(P)
i = 0.3, µA =µP = 0.0001, and

γ0 = 1. The data points from all 59 real networks are in the vicinity of the
respective smooth surfaces from the 2D reduced system, providing prelimi-
nary validity support.

the species gain from the interactions. In the ecological real-
ity, the amount of tradeoff is somewhere between the two ex-
treme cases.

In SI Appendix, Note 1, we detail the steps of our dimension
reduction procedure, which leads to the reduced model

dPeff

dt
= αPeff − βP2

eff +
〈γP 〉Aeff

1+ h〈γP 〉Aeff
Peff + µ,

dAeff

dt
= αAeff − βA2

eff − κAeff +
〈γA〉Peff

1 + h〈γA〉Peff
Aeff + µ, [3]

where the dynamical variables Peff and Aeff are the effective or
average abundances of plants and pollinators, respectively; α
is the effective growth rate parameter for the network, β is a
parameter characterizing the combined effects of intraspecific
and interspecific competition, κ is the species decay rate in an
averaging sense, and the parameter µ accounts for the migra-
tion effects for the species. Of particular importance are the
two effective mutualistic interaction strengths, 〈γP 〉 and 〈γA〉,
associated with the plants and pollinators, respectively. These
two parameters can be obtained through different ways of aver-
aging. We use three averaging methods (SI Appendix, Note 1):
(i) unweighted average, (ii) degree-weighted average, and (iii)
eigenvector-based average.

Does our reduced 2D system capture some basic properties of
real bipartite mutualistic networks? Treating the effective mutu-
alistic interaction strengths (〈γP 〉 and 〈γA〉) as two independent
parameters in the reduced model, we calculate the effective pol-
linator and plant abundances for each pair of the parameters.
In the 3D plot of an effective species abundance vs. 〈γP 〉 and
〈γA〉, we obtain a surface as shown in Fig. 1A for the pollinator
and in Fig. 1B for the plant. We can then calculate, for each real
network, the parameters 〈γP 〉 and 〈γA〉 as well as the average
pollinator and plant abundances, generating a data point in each
case. For the reduced model to be a reasonable representation
of the real network, the point must be close to the correspond-
ing smooth 2D surface. As shown in Fig. 1, the data points from
all 59 empirical real world networks (SI Appendix, Table S1) are
near the corresponding surfaces from the reduced model, pro-
viding preliminary evidence that the reduced model captures the
essential behavior of the real networks from a wide geographi-
cal range across continents and climatic zones. As we will show,
however, the detailed averaging process can play a role in the
model’s predictive power of the average abundances and the tip-
ping point.

Reducing the high-dimensional system (i) to the effective 2D
system (iii) entails an inevitable loss of detailed information
about the original system. However, since predicting the occur-
rence of the tipping point through the system resilience function
is our goal, the primary question is whether the reduced 2D sys-
tem has predictive power, despite the loss of certain details about
the dynamical evolution of the original system. In the following,
we present strong evidence that the answer to this question is
affirmative.

A resilience function is a relationship between the average
species abundance and some parameter with variations that
reflect the impact on the environment caused by, for exam-
ple, global warming or direct human activities, such as overuse
of pesticides (21–23), where a larger impact corresponds to a
higher value of the parameter. Since pollinators are more vul-
nerable to environmental changes than plants, we focus on two
parameters: (i) fn—the fraction of pollinators that have become
extinct because of environmental deterioration and (ii) κ—the
average pollinator decay rate. From the standpoint of plants,
the disappearance of a specific pollinator means the loss of a
number of links, as any pollinator typically interacts with sev-
eral plants. Thus, we will also consider the parameter fl , the
fraction of links destroyed as a result of the death of a frac-
tion fn of pollinators. With respect to κ, we note that the
parameter κi in the original system (i) characterizes the pol-
linator decay caused by a decrease in the pollinator growth
rate and/or an increase in the pollinator mortality rate. Con-
tinuous deterioration of the environment leads to a gradual
increase in the average decay rate κ. While we have studied all
59 mutualistic networks derived from real data, we report the
detailed validation results from 2 representative networks: net-
work A obtained from data recorded at Tenerife, Canary Islands

Fig. 2. Network structure of two empirical mutualistic networks from real
data. A and B correspond to network A. C and D correspond to network
B. The plants in A and C are marked as green, while the pollinators are
marked as red. B and D are the matrix representations of networks A and B,
respectively. The blue blocks indicate that the corresponding pollinator and
plant have a mutualistic connection. Column and row numbers correspond
to individual plant and pollinator species. Species are ordered according to
their number of interactions.

Jiang et al. PNAS | Published online January 8, 2018 | E641

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714958115/-/DCSupplemental/pnas.1714958115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714958115/-/DCSupplemental/pnas.1714958115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714958115/-/DCSupplemental/pnas.1714958115.sapp.pdf


0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

A
ef

f

SH
SL
UWAH
UWAL
DWAH
DWAL
EWAH
EWAL

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

P
ef

f

SH
SL
UWAH
UWAL
DWAH
DWAL
EWAH
EWAL

0 0.2 0.4 0.6 0.8 1
f
n

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

A
ef

f

0 0.2 0.4 0.6 0.8 1
f
l

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

P
ef

f

A

C D

B

Fig. 3. Resilient functions without tipping point. For networks A (A and
B) and B (C and D), pollinator abundance (A and C) vs. fn, the fraction of
removed pollinators, and plant abundance (B and D) vs. fl, the fraction of
removed mutualistic links corresponding to the value of fn in A and C. The
red curves in A and C and the green curves in B and D are the average
pollinator and plant abundances, respectively, from the original system. The
blue, black, and cyan curves in all of the panels are the abundances from the
reduced 2D system using averaging methods i–iii, respectively. The circles
and asterisks in all panels correspond to cases where the initial abundance
values are relatively high (10) and low (0.01), respectively. For each value of
fn (or fl), results from 100 statistical realizations are displayed. The parame-
ters are h = 0.7, t = 0.5, β(A)

ii = β(P)
ii = 1, α(A)

i =α(P)
i = 0.3, µA =µP = 0.0001,

γ0 = 1, and κ= 0. The notations SH and SL stand for the high and low ini-
tial values of the original average species abundance, respectively. UWAH,
UWAL, DWAH, DWAL, EWAH, and EWAL denote unweighted average high,
unweighted average low, degree-weighted average high, degree-weighted
average low, eigenvalue-weighted average high, and eigenvalue-weighted
average low, respectively.

(24) and network B from an empirical study at Hestehaven,
Denmark (25). Network A has 38 pollinators and 11 plants, and
there are 106 mutualistic interactions. Network B has 42 pollina-
tors and eight plants, with 79 mutualistic interactions. The struc-
tures of the two networks are shown in Fig. 2 A and C, respec-
tively, whereas their matrix representations are shown in Fig. 2 B
and D, respectively.

Resilience Functions in Systems Without a Tipping Point. We first
examine the case where the system does not exhibit any tipping
point. For each value of fn , there are many possible network
structures, rendering necessary a description based on statistical
ensemble averaging. (Representative individual resilience func-
tions are shown in SI Appendix, Fig. S1.) Fig. 3A shows, for net-
work A, four types of pollinator abundances vs. fn (each with 100
statistical realizations): one from the original network (Fig. 3A,
red) and three from the reduced model with different averaging
methods (Fig. 3A, blue, black, and cyan corresponding to aver-
aging methods i–iii, respectively). We see that averaging method
i leads to abundance variations that are in good agreement with
those from the original network, while systematic deviations exist
for the results from averaging methods ii and iii, although they
agree with each other. Fig. 3B shows, for network A, the cor-
responding plant abundance vs. fl , where the results from the
original network are displayed in Fig. 3B, green. The averaging
process i leads again to average abundance variations in agree-

ment with those from the original network. The results for net-
work B are shown in Fig. 3 C and D. We see that, for both net-
works in the parameter setting studied, the remaining pollinators
and plants never come close to extinction, even when the fraction
of removed pollinators approaches one. The reason is precisely
mutualistic interactions: even if there is only one remaining pol-
linator, at least one plant will be connected with this pollinator.
Because of the mutualistic interactions, both the pollinator and
plant will survive, and the network system does not exhibit a tip-
ping point. In this parameter regime, the small migration rate
has no effect on system dynamical features, such as the absence
of a tipping point. The main message of this example is that the
reduced model is capable of capturing the abundance variation
patterns of both pollinators and plants in the original networked
systems.

A phenomenon in Fig. 3 is that, as fn is increased so that more
pollinators are removed, the average plant abundance decays
faster with fl than the average pollinator abundance with fn . The
reason is that removing one pollinator typically entails remov-
ing a number of mutualistic links, which have a more devastating
effect on the plant abundance as a whole.

Power of the Reduced Model in Predicting Tipping Points. We now
consider parameter regimes where the mutualistic network sys-
tem exhibits a tipping point. An examination of the individ-
ual resilience functions (SI Appendix, Fig. S2) for networks A
and B reveals that, as fn for pollinators (or the corresponding
fl for plants) is increased toward unity, there exists a critical
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Fig. 4. Resilient functions with a tipping point. For networks A (A and
B) and B (C and D), ensemble-averaged pollinator abundance (A and
C) vs. fn, the fraction of removed pollinators, and ensemble-averaged
plant abundance (B and D) vs. fl, the fraction of removed mutualis-
tic links corresponding to the value of fn in A and C. The legends are
the same as in Fig. 3. The notations SH and SL stand for the high and
low initial values of the original average species abundance, respectively.
UWAH, UWAL, DWAH, DWAL, EWAH, and EWAL denote unweighted
average high, unweighted average low, degree-weighted average high,
degree-weighted average low, eigenvalue-weighted average high, and
eigenvalue-weighted average low, respectively. The parameters are h = 0.2,
t = 0.5, β(A)

ii = β(P)
ii = 1, α(A)

i =α(P)
i =−0.3, µA =µP = 0.0001, γ0 = 1, and

κ= 0. Before fn (or fl for plants) reaches unity, a tipping point associated
with total collapse of the system occurs at which the species abundances are
diminished.
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Fig. 5. Predicting tipping point triggered by an increase in pollinator mor-
tal (decay) rate. For networks A (A and B) and B (C and D), resilience func-
tions exhibit a tipping point as the pollinator decay rate κ is continuously
increased. The red and green curves are the average pollinator (A and C)
and plant (B and D) abundances from the original networks, while the
blue, black, and cyan curves in all of the panels are the results from the
reduced system using averaging methods i–iii, respectively. The parameters
are h = 0.6, t = 0.5, β(A)

ii = β(P)
ii = 1, α(A)

i =α(P)
i = 0.3, µA =µP = 0.0001, and

γ0 = 1. Note that the network structure remains intact, as no pollinator is
removed. As for the case of removing pollinators, the reduced system with
averaging method ii or iii is able to predict the onset of the tipping point
correctly. Note the occurrence of a hysteresis behavior (predicted by our
mathematical analysis).

point past which the species abundances collapse to almost zero,
signifying a tipping point. The corresponding ensemble-averaged
resilience functions are shown in Fig. 4. For both networks,
the 2D model tends to generate abundance values that devi-
ate from the corresponding true values from the original sys-
tem. In particular, for the reduced model derived through aver-
aging method i, the abundance values are somewhat smaller
than those from the original system, while the opposite behav-
ior occurs for the reduced model with averaging method ii or iii.
These deviations are expected, considering the drastic approx-
imations used in deriving the reduced model. While all three
types of average in the reduced model generate results indicat-
ing the occurrence of a tipping point, a key issue is the accu-
racy of the predicted parameter value where a tipping point
is reached. In particular, if a reduced model does indeed pos-
sesses predictive power for the tipping point, it should predict
its occurrence at the correct critical point in the original net-
work. In this regard, we see that the reduced model with aver-
aging method i fails to predict the location of the tipping point,
whereas the 2D model with averaging method ii or iii yields
the true critical point. Since methods ii and iii are based on
some sort of weighted averaging process (i.e., with respect to
nodal degrees and eigenvectors), the results in Fig. 4 point at
the importance of imposing weighted averaging process in the
dimension reduction process. This conclusion holds not only
for the two networks in Fig. 4 but also, for other networks
studied.

While structural change in the network, such as gradual
removal of nodes (pollinators), can trigger a tipping point, there
are alternative scenarios, such as parameter changes. Here, we
consider the situation where the mutualistic network structure
remains intact, but the death rate of the pollinator increases

because of environmental deterioration. Specifically, we increase
the pollinator decay rate κ from zero and calculate the species
abundances from the original network and from the three aver-
ages of the reduced system. The results are shown in Fig. 5.
We see that, similar to the case where the network structure
is altered through continuous removal of pollinators (compare
with Fig. 4), the reduced model through averaging method ii or
iii has a remarkable predictive power for the tipping point in
that the predicted critical value of κ at which the species abun-
dances collapse to zero agrees well with that from the origi-
nal system.

In our computations, we set a relatively small value for the
migration rate for all pollinator species: µ=0.0001—the same
value used in previous studies (13, 20). We find that changing this
value in a small range has no effect on the tipping point dynamics.
Especially before the occurrence of a tipping point, the species
abundances are high, so that the changes caused by migration
are negligible. After the tipping point, the injection of a small
number of species will not be able to restore the abundances on
the network scale.

Role of Network Randomness in the Reduced Model. Our exten-
sive computations of the large number of empirical mutualistic
networks indicate that a 2D reduced system obtained through
degree- or eigenvector-weighted average can correctly predict
the tipping point, while the reduced system with unweighted
averaging fails to do so. One plausible reason is the lack of suffi-
cient randomness in the network structure. In fact, despite the
large variations in their size and structure, the real networks
are not quite as random. For a purely random network, either
unweighted or weighted averaging has the same effect on the
reduced model. To test this proposition and to further show the
importance of weighted averaging in the dimension reduction

Fig. 6. Reduced system for purely random mutualistic networks. For an
ensemble of artificial networks with 80 pollinators, 40 plants, and 960
completely randomly distributed mutualistic links, (A) the average polli-
nator abundance vs. fn and (B) the average plant abundance vs. the cor-
responding parameter fl. In both panels, four types of average abun-
dances are displayed: one from the original network (the red curve in A
and the green curve in B) and three from the reduced model. In par-
ticular, the blue, black, and cyan traces in both panels are the effective
abundances from the reduced model with unweighted, degree-weighted,
and eigenvector-weighted averaging, respectively. The circles and asterisks
curves in both panels indicate the cases where the initial species abun-
dance is high (10) or low (0.01), respectively. The yellow curves repre-
sent the individual realizations for the original system and three types of
reduced systems. For each value of fn (or equivalently, fl), 100 network
realizations are used. The parameters are h = 0.4, t = 0.5, β(A)

ii = β(P)
ii = 1,

α(A)
i =α(P)

i =−0.3, µA =µP = 0.0001, and γ0 = 1. The remarkable feature
is that, if the original mutualistic network is random, all three types of
reduced model can predict correctly the tipping point, regardless of the
specific averaging process used in deriving the model. The key message is
that the failure of the reduced model through unweighted averaging can
be attributed to the lack of sufficient randomness in the real mutualistic
networks.
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Fig. 7. Predictive power of reduced model in the presence of noise.
For networks A (A and B) and B (C and D), ensemble-averaged pollina-
tor abundance (A and C) vs. fn and ensemble-averaged plant abundance
(B and D) vs. fl. The legends are the same as in Fig. 3. The notions SH
and SL stand for values of the original average species abundance, respec-
tively. UWAH, UWAL, DWAH, DWAL, EWAH, and EWAL denote unweighted
average high, unweighted average low, degree-weighted average high,
degree-weighted average low, eigenvalue-weighted average high, and
eigenvalue-weighted average low, respectively. The parameters are h = 0.2,
t = 0.5, β(A)

ii = β(P)
ii = 1, α(A)

i =α(P)
i =−0.3, µA =µP = 0.0001, γ0 = 1, and

κ= 0. Independent white Gaussian noises of strength 0.1 are added to the
full evolutionary equations of the species.

process for real networks, we study artificial random mutualistic
networks. Concretely, we construct an ensemble of model net-
works of 80 pollinators and 40 plants with 960 mutualistic links
randomly distributed between the pollinators and the plants and
obtain a 2D system through the three averaging processes. As
shown in Fig. 6, not only are the three averaging processes able to
predict accurately the tipping point, but the differences between
the effective abundances that they produced and the actual abun-
dance are small.

Robust Predictive Power of the Reduced Model Against Stochastic
Disturbances (Noises). Is our reduced model capable of predicting
the tipping point when stochastic disturbances are present in the
original network? To address this question, we test the predic-
tive power of the reduced model by considering stochastic abun-
dance and parameter fluctuations. First, we assume that there is
additive, independent white Gaussian noise in the dynamic equa-
tion for the abundance of each species. The results are shown in
Fig. 7, where the color legends are the same as those in Fig. 3.
We see that, despite the additive noise, the reduced model still
predicts correctly the tipping point, where the performance of
the model derived using the degree- and eigenvalue-averaging
methods is better than that of the model based on unweighted
averaging. Second, we study the case where there is randomness
in the intraspecific competition rate as motivated by the consid-
eration that, in reality, the intensity of intraspecific competition
varies from one species to another. The results are shown in
Fig. 8. We see that, despite the large variations in the species
abundances caused by the parameter perturbation, the reduced
model based on a weighted average method (averaging method
ii or iii) is still capable of predicting the correct tipping point as
in Fig. 4.

Effects of Interspecific Competition. So far, we have neglected
interspecific competitions, as they are generally much weaker
than intraspecific competition. Mathematically, interspecific inter-
actions can be modeled through nonzero off-diagonal elements
in the competition matrices βP and βA in Eq. 1, which change
the structures of these matrices. It is thus useful to investigate
the effects of interspecific competition. Our computations reveal
that the 2D reduced model captures all essential features of the
mutualistic networked systems, even in the presence of interspe-
cific competition, as shown in Figs. 9 and 10, for the cases where
tipping points are absent and present, respectively.

Fig. 9 is obtained under the same setting as that of Fig. 3,
except that interspecific competition is now included. Compar-
ing Fig. 9 with Fig. 3, we see that the competition results in
somewhat lower pollinator and plant abundance, which is intu-
itive. For small values of fn , the number of pollinators is large,
and therefore, the interspecific competition among the pollina-
tors is relatively strong. In this case, the species abundances are
markedly lower than the corresponding values in the absence
of interspecific competition. As fn is increased, the number of
species is reduced, resulting in increasingly weak interspecific
competition and consequently, smaller reductions in the abun-
dances. As the strength βij of the interspecific competitive inter-
action is increased, simulations of both the original networked
and the 2D reduced systems give lower species abundances.
The remarkable feature is that, when interspecific competition
is taken into account, the 2D reduced system can still reliably
predict the species abundances, with the unweighted averaging
scheme giving the best result, while the degree- and eigenvector-
weighted schemes predict correctly the trend of the abundance
variations.
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Fig. 8. Robustness of reduced model under random parameter fluctua-
tions. For networks A (A and B) and B (C and D), ensemble-averaged polli-
nator abundance (A and C) vs. fn and ensemble-averaged plant abundance
(B and D) vs. fl. The legends are the same as in Fig. 3. The notions SH
and SL stand values of the original average species abundance, respectively.
UWAH, UWAL, DWAH, DWAL, EWAH, and EWAL denote unweighted aver-
age high, unweighted average low, degree-weighted average high, degree-
weighted average low, eigenvalue-weighted average high, and eigenvalue-
weighted average low, respectively. The parameters are h = 0.2, t = 0.5,
α(A)

i =α(P)
i = − 0.3, µA =µP = 10−4, γ0 = 1.0, and κ= 0. Random param-

eter fluctuations occur in the intraspecific competition rates: β(A)
ii = β(P)

ii ∈
U(0.7, 1.3), where U stands for uniform distribution.
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Fig. 9. Effect of interspecific competition on species abundance in the
absence of a tipping point. For networks A (A and B) and B (C and D),
ensemble-averaged pollinator abundance (A and C) vs. fn and ensemble-
averaged plant abundance (B and D) vs. fl. The legends are the same as
in Fig. 3. The notions SH and SL stand for the high and low initial values of
the original average species abundance, respectively. UWAH, UWAL, DWAH,
DWAL, EWAH, and EWAL denote unweighted average high, unweighted
average low, degree-weighted average high, degree-weighted average low,
eigenvalue-weighted average high, and eigenvalue-weighted average low,
respectively. The intraspecific and interspecific competitions are incorpo-
rated into the modeled through β(A)

ii = β(P)
ii = 1 and βA

ij = βP
ij = 0.01, respec-

tively. The parameters are h = 0.7, t = 0.5, αA
i =αP

i = 0.3, µA =µP = 10−4,
γ0 = 1.0, and κ= 0. The interspecific competition reduces the abundances
but has no significant effect on their overall trends of variation.

Fig. 10 shows the effects of interspecific competition in the
parameter regime where there is a tipping point. Comparing Fig.
10 with Fig. 4, we see that, with the inclusion of interspecific
competition, the 2D reduced model derived from the degree-
or eigenvector-weighting scheme predicts the tipping point accu-
rately, which is similar to the case where such competition is
absent. The mere effect of a reasonable amount of interspecific
competition is simply reduced abundances. (For sufficiently large
values of the interspecific interaction strength, both the original
and the reduced 2D models agreeably give the result of species
extinction.)

Occurrence of a Tipping Point in the 2D Parameter Space. Both
structural change (removal of certain pollinator species) and
parameter change (increase in κ) can lead to a tipping point.
It is useful to examine the occurrence of a tipping point in
the 2D parameter space (fn , κ), as both types of changes can
be expected in realistic systems (21). We calculate the critical
parameter value for the tipping point through both the origi-
nal system and the reduced model. A representative result for
network A is shown in SI Appendix, Fig. S3 for κ∈ [0, 0.64]
and fn ∈ [0, 0.974]. (The corresponding result for network B is
presented in Fig. S4.) The general observation is that, while
there are variations in the location of the tipping point in
the fn direction, the location variations in the κ direction are
relatively smooth. In fact, our reduced model incorporating
either the degree- or the eigenvector-averaging method gives
an accurate prediction of the tipping point in the parameter
plane.

A Mathematical Analysis of the System Dynamics with an Explana-
tion of the Emergence of a Tipping Point. The 2D reduced model
provides mathematical insights into the emergence of a tipping
point. The relevant quantities are the steady-state values of the
species abundances. Setting dPeff /dt =0 and dAeff /dt =0, we
can obtain the algebraic equations for the steady-state solutions
(SI Appendix, Note 3).

We first consider the parameter regime in which the system
does not exhibit a tipping point (e.g., Figs. 1 and 3). In this case,
we have α> 0, and the physically meaningful steady-state solu-
tions are given by

P ′ ≈ 1

β

[
α+

〈γP 〉A′

1 + h〈γP 〉A′

]
,

A′ ≈ 1

β

[
α− κ+

〈γA〉P ′

1 + h〈γA〉P ′

]
. [4]

The solutions of Eq. 4 can be conveniently expressed in terms of
the following algebraic equation for A′:

q1A
′2 + q2A

′ + q3 =0, [5]

where the coefficients q1, q2, and q3 are given by

q1 ≡ −(h〈γP 〉+ h〈γA〉〈γP 〉+ h2α〈γA〉〈γP 〉),
q2 ≡ −β2 − hαβ〈γA〉+ hαβ〈γP 〉+ 〈γA〉〈γP 〉,

+ 2hα〈γA〉〈γP 〉+ h2α2〈γA〉〈γp〉
− κ(hβ〈γP 〉+ h〈γA〉〈γP 〉+ h2α〈γA〉〈γP 〉),

q3 ≡ αβ + α〈γA〉+ hα2〈γA〉 − κ(β + hα〈γA〉).
For κ=0, we have q1< 0 and q3> 0. Of the two solutions of Eq.
5, one is positive, and another is negative. The abundance values
of A′ in Figs. 1 and 3 are then approximately the value of the
positive solution.

We next consider the parameter regime, in which the mutu-
alistic system exhibits a tipping point (Fig. 4) (i.e., α< 0). For
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Fig. 10. Effect of interspecific competition on tipping point dynamics. For
networks A (A and B) and B (C and D), ensemble-averaged pollinator abun-
dance (A and C) vs. fn and ensemble-averaged plant abundance (B and D)
vs. fl. The intraspecific and interspecific competitions are incorporated into
the model the same way as in Fig. 9. The parameters are h = 0.2, t = 0.5,
α(A)

i =α(P)
i =−0.3, µA =µP = 10−4, γ0 = 1.0, and κ= 0. While interspecific

competition somewhat reduces the species abundances, the emergence of
the tipping point is not affected.
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κ=0, from the stability analysis in SI Appendix, Note 3 for an
initial state with high abundances, we have α+(〈γP 〉)A′/(1 +
h〈γP 〉A′)> 0 and α − κ + (〈γA〉P ′)/(1 + h〈γA〉P ′)> 0 in the
parameter region where the abundance values are large (i.e.,
before the tipping point). In this case, the steady-state solutions
are given by SI Appendix, Eqs. S14 and S16. After the tipping
point has been reached, the steady-state solutions are given by SI
Appendix, Eqs. S15 and S17. In this case, the physically meaning-
ful solutions are A′ u µ and P ′ u µ, which correspond to the
extinction state. The mathematical conditions under which the
tipping point occurs are thus q2

2 −q1q3 =0. In general, the occur-
rence of a tipping point is caused by the changes in the quantities
〈γA〉 and 〈γP 〉.

For a tipping point induced by an increase in the species decay
rate κ (Fig. 5), we have α> 0. Before the tipping point, the value
of κ is small, and we have α − κ + (〈γA〉P ′)/(1 + h〈γA〉P ′)> 0
and α+ (〈γP 〉A′)/(1+ h〈γP 〉A′)> 0. In this case, we can obtain
the approximate steady-state solution from Eq. 5. For larger
values of κ, the solutions of Eq. 5 become complex, which
are physically unrealistic. The condition for the onset of com-
plex solutions is q2

2 − 4q1q3< 0. The approximate critical value
κC1 for the occurrence of the tipping point can then be calcu-
lated from the relation q2

2 − 4q1q3 =0. However, there exists
another critical value, denoted as κC2, which can be seen as
follows.

As the value of κ approaches κC2, the following inequality
holds: α − κ+(〈γA〉P ′)/(1 + h〈γA〉P ′)< 0, under which the
steady-state solutions are given by SI Appendix, Eqs. S14 and S17.
In particular, we have

P ′ ≈ 1

β

[
α+

〈γP 〉A′

1 + h〈γP 〉A′

]
and

A′ ≈ µ.

Since µ� 1, we have P ′ ≈ α. The critical value of κ for the
emergence of this steady state can be obtained from

α− κC2 +
〈γA〉P ′

1 + h〈γA〉P ′ =0.

The value of κC1 is typically larger than that of κC2, which gives
an interval of κ, in which the system exhibits bistability or a hys-
teresis behavior, as shown in Fig. 5.

Overall, the 2D reduced model thus provides a mathematical
paradigm by which a number of distinct dynamical phenomena
in mutualistic interacting networks can be understood. For exam-
ple, as pollinators are removed one after another from the system
(i.e., as fn is gradually increased), for α< 0, the quantities 〈γA〉
and 〈γP 〉 change in such a way that the system exhibits a tipping
point without any hysteresis behavior. However, as the species
decays faster (i.e., as the value of κ is increased), a hysteresis can
arise. While the value of h can affect the critical parameter val-
ues and abundances, it has little effect on the occurrence of a
tipping point.

The analysis leads to insights into the effect of varying the
value of the parameter h , the half-saturation constant. The rea-
son that we choose different values of h for different parameter
setting is to ensure that the system exhibits a tipping point as
the value of κ or f is varied. From the mathematical analysis, for
cases where a tipping point occurs, h will affect the critical values

of κ, 〈γA〉, and 〈γP 〉, whereas varying fn can cause the values of
〈γA〉 and 〈γP 〉 to change. From a mathematical standpoint, the
type of mutual interactions in our model belongs to Holling type
II (26, 27). From an ecological point of view, the half-saturation
constant h characterizes the relaxation time of the species after
each mutual interaction, with strength that is described by the
parameter γ. The effect of varying h on the system dynamics is
thus characteristically different from those caused by variations
in κ and f .

Discussion
Complex dynamical systems exhibiting a tipping point are wide-
spread, and it is of interest to understand the dynamical mech-
anism of the tipping point and to develop predictive tools. To
accomplish these goals, a viable solution is dimension reduc-
tion. We focus in this paper on bipartite mutualistic networks,
not only as a concrete example to show the use of dimension
reduction but also, because of the fundamental values of safe-
guarding pollinators to human survivability (28). In a mutualistic
network system, a tipping point typically exists. As the environ-
ment continues to deteriorate, the system can drift toward the
tipping point, where the catastrophic phenomenon of pollinator
collapse will occur. The backbone that supports the functioning
of such a network is mutualistic interactions between the pol-
linators and plants. To understand the role of the interactions
with respect to the emergence of a tipping point, both species
of the bipartite network must be retained in a reduced model.
That is, the minimum dimension of the reduced system should
be two [a 1D reduced model (18) is inadequate to describe mutu-
alistic interactions]. With this in mind, we carry out a dimen-
sion reduction process by resorting to different types of aver-
aging methods for species abundances. In particular, given an
empirical mutualistic network, we carry out averaging processes
to arrive at a 2D model with two collective dynamical variables:
one for the pollinators and another for the plants. The average
can be either unweighted or weighted. We show that our 2D
reduced model captures the essential features of all 59 available
real world mutualistic networks, not only in terms of the aver-
age abundances but more importantly, in terms of the occur-
rence of the tipping point, even in the presence of stochastic
disturbances. We also find that, because of the lack of suffi-
cient randomness in real mutualistic networks, a weighted aver-
age (e.g., based on degrees or eigenvectors) is necessary for the
reduced model to exhibit a tipping point at the same critical
parameter value as with the original network. Our 2D model can
thus serve as a generic paradigm for understanding the tipping
point dynamics in real world mutualistic networks. For example,
the 2D model can be exploited to investigate a variety of non-
linear dynamical phenomena in mutualistically interacting net-
worked systems, such as bifurcations (29), basin structures (30,
31), crises (32), and transient chaos (33–38), which would other-
wise be infeasible with the original systems because of their high
dimensionality.
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