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Abstract

Chaotic saddles are nonattracting dynamical invariant sets that can lead to a variety of physical phenomena. We report
Ž .our finding and analysis of a type of discontinuous global bifurcation metamorphosis of chaotic saddle that occurs in

high-dimensional chaotic systems with an invariant manifold. A metamorphosis occurs when a chaotic saddle, lying in the
manifold, loses stability with respect to perturbations transverse to the invariant manifold. The fractal dimension of the
chaotic saddle increases abruptly through the bifurcation. We illustrate our finding by using a system of coupled maps.
q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 05.45.qb

Bifurcations of dynamical chaotic invariant sets,
i.e., how qualitative changes of the invariant sets
occur as a system parameter changes, have been a
central and important issue in the study of chaotic
systems. There are two types of chaotic invariant sets
that occur commonly in situations of physical inter-
est: chaotic attractors and nonattracting chaotic sad-
dles. The former are responsible for the sustained
random behavior observed in a large variety of deter-
ministic processes, and the latter are responsible for
phenomena related to transient chaos such as associ-

w xated with fractal basin boundaries 1 and chaotic
w xscattering 2 . It is known that almost all discontinu-

ous changes of a chaotic attractor are due to crisis
w x3 : a dynamical event that can cause a sudden
destruction or a sudden enlargement of the chaotic
attractor. There has been a large literature on crisis
Ž w x .see Ref. 4 , references therein . There has also been
work on bifurcation of chaotic saddles. For instance,
two chaotic saddles can collide with each other as a
system parameter changes through a critical value,
resulting in physically observable phenomena such

w xas basin boundary metamorphosis 5 and enhance-
w xment of chaotic scattering 6 . More recently, a ho-

moclinic bifurcation has been identified after which
a chaotic saddle acquires new pieces that were lo-

0375-9601r99r$ - see front matter q 1999 Published by Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00479-X



( )T. Kapitaniak et al.rPhysics Letters A 259 1999 445–450446

cated at a finite distance from the saddle and were
not part of the chaotic saddle before the bifurcation
w x7 .

In this Letter, we present a type of discontinuous
bifurcation of chaotic saddles that occur in dynami-
cal systems with an invariant manifold. This bifurca-
tion is fundamentally different from those previously

w xreported 5–7 . Before the bifurcation, there is a
low-dimensional chaotic saddle in the invariant man-
ifold and, trajectories on the chaotic saddle are stable
with respect to perturbations that are transverse to
the invariant manifold. As a system parameter
changes, the transverse stability of the chaotic saddle
changes. At the bifurcation, the chaotic saddle is
neutrally stable in the transverse direction. After the
bifurcation, the chaotic saddle becomes transversely
unstable and it acquires infinitely more new pieces
outside the invariant manifold, which were not exis-
tent before the bifurcation. As a consequence, the
fractal dimension of the chaotic saddle increases
abruptly at the bifurcation. Because of this sudden
dimension increase, we call the bifurcation a meta-
morphosis of the chaotic saddle 1. We note that
systems with an invariant manifold occur in a large
variety of high-dimensional processes 2: it can arise
in systems with a natural symmetry or in systems of
coupled oscillators. Thus, metamorphoses of chaotic
saddles reported here are in principle a high-dimen-
sional phenomenon, whereas to our knowledge, all
previously reported bifurcations of chaotic saddles
are for low-dimensional chaotic systems.

1 The terminology metamorphosis is inspired from the phe-
w xnomenon of basin-boundary metamorphosis 5 in which a chaotic

saddle collides with another one, leading to a sudden enlargement
of the fractal basin boundary and consequently a sudden increase
in the fractal dimension of the basin boundary. However, the
mechanism for a metamorphosis of a chaotic saddle described in
this paper is different from that of the basin boundary metamor-
phosis. In that case, both saddles were present before the bifurca-
tion. Our metamorphosis is more like a blowout bifurcation of
chaotic saddles, a bifurcation documented previously only for

w xchaotic attractors 13 .
2 While there is at present no formal definition of high-dimen-

sional chaos, we use the following notion that seems to gain wide
acceptance by researchers in the chaos community: high-dimen-
sional chaotic systems are systems with more than one positive
Lyapunov exponent, and low-dimensional chaotic systems are
those with only one positive Lyapunov exponent.

To illustrate our findings, we present our results
using the following class of high-dimensional chaotic
systems that naturally admit an invariant manifold –

w x 3the coupled map lattices 8 :
N

i i jx s f x qe g h x , is1, . . . , N ,Ž . Ž .Ýnq1 n i j n
js1

1Ž .

where x is a D-dimensional vector, f and h arei

D-dimensional vector functions, e is a parameter
characterizing the coupling strength, and g denotesi j

the elements of the coupling matrix. For such a
system, of great importance is the synchronization

Ž . 1 2 Nstate manifold MM defined by x sx s . . . sx .
If the elements of the coupling matrix satisfies Ý gj i j

s0, then the synchronization state is a solution of
Ž .Eq. 1 . In this case, if the system starts from an

initial condition in MM, the state of the system re-
mains synchronized in the absence of random noise.
The synchronization manifold MM is thus an inÕari-
ant manifold for the system. It has dimension D,
while the full dynamics lies in a manifold of dimen-
sion N=D.

We consider a fairly general situation where the
Ž .map f x describing the dynamics in the invariant

manifold can exhibit typical nonlinear behaviors,
e.g., a period-doubling cascade to chaos and the
existence of periodic windows in the chaotic regime.
We focus on the situation where there is a chaotic
saddle in the invariant manifold, which occurs when
Ž .f x falls in one of the infinite number of periodic

windows where there is also an attracting periodic
orbit that coexists with the chaotic saddle. There is
thus transient chaos in the invariant manifold: a
trajectory starting from a random initial condition in
the invariant manifold wanders in the vicinity of the
chaotic saddle for a finite amount of time before
settling into the stable periodic orbit. For initial
conditions off the invariant manifold, there are four

Ž .possibilities: 1 being attracted to the periodic at-
Ž .tractor directly; 2 being repelled from the periodic
Žattractor directly possibly going to another attractor
. Ž .in the phase space ; 3 being attracted to the chaotic

3 We stress that our result holds for any high-dimensional
chaotic systems with an invariant manifold.
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saddle, exhibiting transient chaos, and then asymp-
Ž .toting to the periodic attractor; and 4 being repelled

Žaway from the chaotic saddle possibly going to
. Ž . Ž .another attractor . Whether situations 1 and 3 or

Ž . Ž .2 and 4 occur depends on the transverse stabili-
ties of the periodic attractor and the chaotic saddle.

To quantify the transverse stability of a trajectory
Ž .either chaotic or periodic in MM, we follow Pecora

w xand Carroll 9 and examine the following variational
Ž .equation of Eq. 1 :

N
i i i i jd x sDf x d x qe g Dh x d x , 2Ž .Ž . Ž .Ýnq1 n n i j n n

js1

where Df and Dh denote the Jacobian matrices of
the vector functions f and h, respectively. On MM,

1 N Ž .where x s . . . sx sx, Eq. 2 can be written
concisely as:

d X s I mDf x qe gmDh x Pd X ,Ž . Ž .nq1 N n

3Ž .

Ž 1 N .Twhere d Xs d x , . . . ,d x , and I denotes theN

N=N identity matrix. Assuming that the coupling
matrix G is diagonalizable, we write: gsTy1G T

Ž .with GsDiag g , . . . ,g , where T denotes the0 Ny1

similarity transform. In the k th eigenspace of g, we
have:

k kd y s DF x qeg DH x Pd y ,Ž . Ž .nq1 k n

ks0,1, . . . , Ny1, 4Ž .

where d y i sÝ T id x j. Since Ý g s0, the cou-j j i j i j

pling matrix g has at least one zero eigenvalue
which we take to be g s0, the corresponding equa-0

tion determines the stability of a trajectory orbit in
MM. The remaining Ny1 equations determine the

Ž .stability of the trajectory in the D Ny1 directions
� 4`transÕerse to MM. Let x be a trajectory on then ns1
� Ž .4 pchaotic saddle and let x i denote the stableis1

Ž . w Ž .x Žperiodic attractor, where x iq1 s f x i is

. Ž . w Ž .x1, . . . , py1 and x 1 s f x p . The transverse
stabilities of the chaotic saddle and the periodic
attractor are then determined by the singular values
of the following matrix products, respectively:

`

Df x qeg Dh x ,Ž . Ž .Ł n k n
ns1

and
p

DF x i qeg Dh x i ,� 4Ž . Ž .Ł k
is1

ks1, . . . , Ny1. 5Ž .
In the transverse subspaces, typically we have g /0k

so that the chaotic saddle and the periodic attractor
can be transversely stable or transversely unstable,
depending on the coupling e . Overall, the transverse
stabilities are determined by Ls and L p, the largestT T

transverse Lyapunov exponent of the chaotic saddle
Ž .and the periodic attractor computed from Eq. 5 .

We now argue that a metamorphosis of the chaotic
saddle can occur when Ls passes through zero fromT

the negative side as the coupling e changes. We
recall that a chaotic saddle is globally nonattracting
and it has a basin of attraction of vanishing volume
in the phase space. Nonetheless, a conditionally
inÕariant measure can still be defined on the saddle 4.
Consider a trajectory on the chaotic saddle in MM

with respect to the conditionally invariant measure:
call it a conditional trajectory. By continuity, a
trajectory in the vicinity of MM in the transverse
subspaces is also a conditional trajectory. For Ls -0,T

the conditionally invariant measure on the chaotic
saddle is transverse stable. That is, the chaotic saddle
tends to attract nearby conditional trajectories in the
transverse directions. In this case, the chaotic saddle

4 A conditionally invariant measure on a chaotic saddle can be
w xdefined as follows 10 . Imagine that we enclose the saddle by a

cube C in the phase space and we sprinkle a very large number
Ž .N 0 of initial conditions uniformly in the cube. The number of

Ž . Ž . yt rttrajectories that still remain in C is: N t f N 0 e , where t is
Ž .the average lifetime of the chaotic saddle. Let N h,t,C be the0

number of trajectories that are in C at time h t, where 0-h-1.
The conditionally invariant measure is defined to be:

N h ,t ,CŽ .0
m C s lim lim .Ž .0 N tŽ .t™q` Ž .n 0 ™`
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Ž . s Ž .Fig. 1. For rs3.63 in the logistic map a period-6 wondow , the transverse Lyapunov exponent of the chaotic saddle L solid line andT
p Ž .the period-6 attractor L dashed line versus the coupling strength e .T

is confined within the invariant manifold and it is
isolated from the remaining of the phase space. For
Ls )0, the conditionally invariant measure on theT

chaotic saddle becomes unstable. In this case, a
conditional trajectory in the neighborhood of the
chaotic saddle is typically repelled away from it
asymptotically. Since the trajectory is conditional, it
remains conditional under the dynamics even though
it is no longer confined within MM. The correspond-
ing measure that supports the trajectory must be
conditional and, hence, it defines a chaotic saddle
that extends beyond the invariant manifold MM in the
transverse subspaces. As a consequence, a sudden
enlargement, or a metamorphosis, of the chaotic
saddle occurs as Ls becomes positive. The newlyT

acquired infinite pieces of the chaotic saddle do not
exist before the metamorphosis: they are created at
the metamorphosis when the chaotic saddle in MM

becomes transversely unstable.
What is the change in the fractal dimension d ofs

the chaotic saddle through a metamorphosis? Since
MM has a dimension D, before the metamorphosis, the
chaotic saddle has dimension dy-D. After thes

metamorphosis, the saddle gains infinite new pieces
and it extends in all subspaces which are transversely
unstable. Thus, typically we expect the increase in
the fractal dimension of the chaotic saddle to be
Dd ;mdy, where m is the number of transverselys s

unstable directions.

We now present numerical evidence for metamor-
phoses of chaotic saddles. In order to be able to
numerically compute and visualize chaotic saddles 5,
we consider the following system of two coupled
logistic maps, which is a two-dimensional version of

Ž .Eq. 1 :

x srx 1yx qe y yx ,Ž . Ž .nq1 n n n n

y sr y 1yy qe x yy , 6Ž . Ž . Ž .nq1 n n n n

where r is the parameter in the logistic map. We
choose r so that the logistic map falls in one of the
infinite number of periodic windows 6. The syn-
chronization manifold MM is one-dimensional, so is
the transverse subspace. The transverse Lyapunov

5 The primary reason that we choose to illustrate our results
using two dimensional maps is that for such systems, there exists

Ž .a procedure, the Proper-Interior-Maximum triple PIM-triple pro-
w xcedure 11 , for computing an arbitrarily long trajectory on a

chaotic saddle with high precision. We are not aware of any
procedure that can be utilized to compute trajectories on chaotic
saddles in higher dimensions.

6 Ž .Dynamics of Eq. 6 , where r is chosen to yield a chaotic
attractor in the synchronization manifold, was studied recently
w x12 .
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� 4`exponent for a conditional trajectory x on then ns1

chaotic saddle in MM is given by:
M

s < <L s lim ln r 2 x y1 y2eŽ .ÝT n
M™` ns1

Ž p .note that L can be computed similarly . We fixT

rs3.63 for which the logistic map exhibits a period-
6 window in which there is a chaotic saddle and a

s Ž .period-6 attractor. Fig. 1 shows L solid line andT
p Ž .L dashed line versus the coupling strength e for eT

in the interval y1.8-e-y0.6, where we see that
the chaotic saddle is transversely stable for y1.65f
e -e-e fy0.96 and transversely unstable in the1 3

remaining of the interval. Metamorphoses of the
chaotic saddle thus occur when e decreases through
e and e increases through e . The period-6 attrac-1 3

Ž .Fig. 2. For e sy1.05 a before the metamorphosis and e sy0.9
Ž .b after the metamorphosis, a long trajectory on the chaotic
saddle.

Fig. 3. Information dimension of the chaotic saddle versus e as e

increases through the metamorphosis. Apparently, there is an
abrupt jump in the dimension at the metamorphosis.

tor, however, is transversely stable for y1.61fe2

-e-e fy0.76. The fact that the chaotic saddle4

and the period-6 attractor are transversely stable in
different parameter intervals has intricate implica-

w xtions for the basin structure of the system 12 . Our
focus, however, is on the matamorphosis of the

Ž . Ž .chaotic saddle. Fig. 2 a and 2 b show, for
esy1.05Qe and esy0.9Re , respectively, a3 3

long trajectory on the chaotic saddle. Apparently,
w Ž .xbefore the metamorphosis Fig. 2 a the chaotic

Žsaddle is confined to MM the diagonal in the xyy
.plane . It therefore has a fractal dimension which is

w Ž .xless than 1. After the metamorphosis Fig. 2 b , the
chaotic saddle appears to spread in the entire plane
off MM with infinitely many new pieces. At the
metamorphosis, there is a sudden enlargement of the
chaotic saddle, which can be best seen in the plot of

Ž .the fractal information dimension versus e as e

varies through the transition point e , as shown in3

Fig. 3. The fractal dimension jumps, in a rather
abrupt fashion, from d f0.8 before the metamor-s

phosis to d f1.72 after the metamorphosis, whichs

is consistent with the plots of the chaotic saddles in
Ž . Ž .Fig. 2 a and 2 b .

In summary, we outline a mechanism for meta-
morphoses of nonattracting chaotic sets in chaotic
systems. The metamorphosis discovered and ana-
lyzed in this Letter is a high-dimensional phe-
nomenon that can be expected in systems such as
coupled map lattices or coupled ordinary differential
equations, which arise naturally when one discretizes
a nonlinear partial differential equation.
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