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Abstract

Superlong chaotic transients have been discovered in numerical simulations of model spatiotemporal chaotic dynamical
systems. The presence of such transients poses a fundamental difficulty for observing the asymptotic state of the system. In
this paper, we investigate the effect of small random noise on the lifetime of the chaotic transient. It is found that the averaged
transient lifetime scales algebraically with the amplitude of the noise, with a near-zero exponent. This indicates that the
transient lifetime is almost independent of the noise amplitude and, consequently, the presence of noise is not advantageous
in attempts to reduce the transient lifetime. Therefore, we expect supertransients to be common in spatially-extended chaotic

systems.

Transient chaos is ubiquitous in chaotic dynamical
systems [ 1,2].In such a case, trajectories starting from
random initial conditions wander chaotically for some
period of time before settling into a final nonchaotic
attractor. Previous studies have established that tran-
sient chaos is due to the existence of chaotic saddles
in phase space [1]. Chaotic saddles are nonattract-
ing chaotic sets that have distinct dynamic properties
[3,4]. When there is a chaotic saddle in the phase
space, trajectories originating from random initial con-
ditions usually wander in the vicinity of the chaotic
saddle for a finite amount of time before escaping the
chaotic saddle and settling into the asymptotic attrac-
tor, thereby giving rise to the phenomenon of transient
chaos. Studies have also revealed that the averaged
lifetime of the chaotic transient can be related to the
dynamic characteristics, such as the fractal dimension
and Lyapunov exponents, of the chaotic saddle [3]. A

common feature of low-dimensional chaotic transients
is that their lifetime is usually short.

Chaotic transients also occur in spatiotemporal dy-
namical systems which are high-dimensional. These
transients differ from most low-dimensional chaotic
transients in that the lifetime of chaotic transients
in spatiotemporal systems is usually extremely long
(“supertransients”) [5-7]. Crutchfield and Kaneko
first observed in numerical experiments that spatially
extended systems exhibit chaotic transients: transients
long enough so that the observation of the system’s
asymptotic attractor is practically impossible [5].
More recently, Hastings and Higgins demonstrated
the existence of complex transient dynamics in simple
discrete-time, spatially extended ecological models
for a species with alternating reproduction and disper-
sal [7]. They observed that with sufficiently strong
nonlinearity, the time required for the system to settle
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into the asymptotic attractor is usually very long, ap-
proaching thousands of generations. These results are
consistent with the observed behavior in populations
of certain biological species [7].

The presence of supertransients poses a fundamen-
tal difficulty for observing asymptotic dynamics of the
system in reasonable time scales. Dynamically, super-
transients mean that the corresponding chaotic saddle
is extremely “sticky”: trajectories wander in the neigh-
borhood of the chaotic saddle for an extremely long
time before escape. In practice, however, the existence
of environmental noise is inevitable. Thus one might
hope that under the influence of random noise, it would
be easier for trajectories to escape the chaotic saddle
and, consequently, the transient lifetime might be de-
creased as the noise amplitude increases. Motivated
by this, in this paper we investigate, computationally,
the effect of small-amplitude random noise on the life-
time of the supertransients in spatiotemporal systems.
It is found that the transient lifetime 7 scales with the
noise amplitude o in the following algebraic form,

T~o T, [@))

where 77 > 0 is the algebraic scaling exponent. A sur-
prising finding is that 5 is very close to zero, mean-
ing that the transient lifetime decreases only incre-
mentally even if the noise amplitude is increased over
many orders of magnitude. The implication is that su-
pertransients are a robust phenomenon in spatiotem-
poral chaotic systems and, consequently, it may never
be possible to observe the “real” asymptotic state of
such systems within practical time scales even when
noise s present.

We consider the following diffusively coupled lo-
gistic map lattice [8],

X = (1= (8+ ah)1f(x)
+ 18+ oh) [FGE) + F(TD],
i=1,...,N, (2)

where f(x) = ax(1 — x) is the one-dimensional lo-
gistic equation, i and n denote discrete spatial site
and time, N is the number of coupled maps, and &
is the coupling strength. To model the influence of
noise, we add a term oh, to the coupling strength,
where o is the noise amplitude, and 4, ([h,| < 1) is
a random number with uniform probability distribu-

x(8)
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Fig. 1. Time series from a random initial condition for the diffu-
sively coupled logistic map (2) for N =20, « =4, and 6 = 0.8.
The trajectory behaves chaotically for an extreme long time (over
103 iterations) before settling into the final attractor.

tion. The coupling exists only among nearest neigh-
bors (diffusively coupling). Periodic boundary condi-
tions, i.e., x! = x¥*! are assumed. The noiscless form
(o =0) of Eq. (2) was first proposed by Kaneko [8]
as a simple model for investigating the phenomenol-
ogy of spatiotemporal chaos. It is perhaps the most
extensively studied model spatiotemporal dynamical
system in the literature so far. We choose the following
set of parameter values: a =4, § = 0.8 and N = 20.
Fig. 1 shows, when o = 0, a time series obtained at
site 8 resulting from an arbitrary initial condition. The
trajectory exhibits very long chaotic behavior (about
10° iterations) before settling into a final nonchaotic
attractor. In general, for different initial conditions,
the length of the chaotic transient is different. The av-
erage transient lifetime 7 can be defined as follows.
Suppose that at £ = 0 we choose Ny initial conditions,
where Ny is large. Evolve these N initial conditions
under the dynamics. Let N(¢) be the number of tra-
jectories that are still chaotic at time ¢. Then due to
the ergodic nature of the chaotic saddle, N(¢) decays
exponentially with time [1],

N(t) = Noexp(—t/7). (3)

For the parameter setting of Fig. 1, Eq. (2) exhibits a
long transient with 7 =~ 51800 when o =0 [9].

To assess a different type of coexisting dynamical
invariant sets under the influence of noise, we com-
pute the maximum Lyapunov exponent A, for a large
number of uniformly chosen initial conditions. Using
finite time steps, exponents computed using different
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Fig. 2. Snapshots of histograms of the maximum Lyapunov exponent A; at (a) £ = 104, (b) r=5x 10%, (¢) r=10%and (d) r =2 x 10°
when the noise amplitude is o~ = 107%, These histograms are computed using a uniform grid of 32 x 32 initial conditions chosen on a
two-dimensional section (x(8) and x(9)) of the 20-dimensional phase space. There are two peaks, one at A; & 0.36 and the other at
A = 0. The former corresponds to a chaotic transient which decays as time progresses, and the latter represents a quasiperiodic attractor.

initial conditions are different. A histogram of these
exponents can then reveal the existence of a different
type of dynamical invariant sets. In particular, a peak
at A; > 0 indicates a chaotic set, which can be either
a chaotic attractor or a chaotic saddle. As time pro-
gresses, a peak at a positive value of A; would either
sustain, which indicates a chaotic attractor, or decay.
A decaying peak at A; > 0 implies the existence of a
chaotic saddle. There can also be peaks at A} = 0 or
Ay < 0, which usually correspond to quasiperiodic or
periodic attractors, respectively. To compute the aver-
age transient lifetime for the chaotic saddle, it is nec-
essary to construct snaphsots of histograms of A; and
count the number of trajectories that are still chaotic at
time ¢. In our numerical experiments, a 32 X 32 grid of
initial conditions was chosen in the two-dimensional
region defined by 0 < x(8) < 1and 0 < x(9) < 1,
while valuesof x{(j) (j=1,...,N,j # 8,9) of these
initial conditions are fixed. Values of A; for these 1024

initial conditions were then computed with 10000 pre-
iterations. Histograms of A; at successive time steps
t = 10000n (n = 1,2,...,20) were constructed. In
general, these computations are very intensive, and we
have utilized the massively parallel connection ma-
chines CMS5 to compute A; for many initial conditions
in a parallel fashion.

Figs. 2a-2d show, for ¢ = 10~%, histograms ob-
tained at ¢ = 10*,5x 10%, 10° and 2 x 10°, respectively.
At t = 10, there are two peaks: One at A; = 0 and
another at A; & 0.36. The height of the peak at A; =
0.36 decreases with time. This indicates that the peak
at A1 =~ 0.36 corresponds to a chaotic saddle. The peak
at A; = 0 represents a quasiperiodic attractor. As time
progresses, trajectories escape the chaotic saddle and
approach asymptotically to the quasisperiodic attrac-
tor. It is found that the quasiperiodic attractor contains
several components, and its extent in phase space is
quite small. Thus the value of x(8) in the time series
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Fig. 3. Plots of N(t), number of chaotic trajectories with A; > 0.3
at time 7, on a semi-log plot for o = 10-4 (a) and o = 10—8
(b). In both cases, the decay of N(¢) is exponential. The average
transient lifetimes are 4554942142 for o = 10~% and 5618142948
for o = 108,

on the quasiperiodic attractor appears to be constant,
as shown in Fig. 1. Figs. 3a and 3b show the number
of chaotic trajectories N(r) versus 7 in a semi-log plot
for o = 10~* and o = 1078, respectively, where a tra-
jectory is counted as chaotic at time ¢ if A; > 0.3 at ¢.
Both plots can be fitted by a straight line, the slopes of
which determine 7. It is found that 7 = 45549 4- 2142
for o = 10™* (Fig. 3a) and 7 = 56181 + 2948 for
o = 10~% (Fig. 3b). Fig. 4 shows a plot of 7 versus
o on a logarithmic scale, where o varies over eight
decades. This plot can roughly be fitted by a straight
line, indicating the scaling relation (1). The scaling
exponent is found to be n = 0.015 £+ 0.010, a value
that is very close to zero.

A near-zero scaling exponent 7 indicates that the
length of supertransients will not decrease substan-
tially even if the amplitude of the noise increases by
several orders of magnitude. To appreciate this, as-
sume 77 = 0.015. Then in order to reduce the transient
lifetime by a factor of two, it is necessary to amplify

‘ n = 0.015 £ 0.010
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Fig. 4. Plot of the transient lifetime 7 versus the noise amplitude
o on a logarithmic scale. The plot can be fitted by the scaling
relation (1), with a scaling exponent n = 0.015 4+ 0.010. The
closeness of 7 to zero suggests that the transient lifetime will not

decrease substantially even if the amplitude of the noise increases
over many orders of magnitude.

the noise amplitude by a factor of 10(1°8102)/0015

10?° - an increase over 20 orders of magnitude! There-
fore, we expect supertransients to be persistent in prac-
tical environments where noise is inevitable.

The origin of noise-independent supertransients can
be understood by examining dynamical properties of
the chaotic saddle which is responsible for the super-
transients. We find that the stable manifold measure of
such a chaotic saddle has a fractal dimension that is ar-
bitrarily close to the phase-space dimension [9]. As a
consequence, random perturbations, regardless of their
magnitude, have almost equal probability of “kicking”
out a trajectory on the chaotic saddle, thereby causing
7 be to near zero [9].

In conclusion, our computational studies on simple,
but well accepted model spatiotemporal chaotic sys-
temns suggest that superlong chaotic transients sustain
when random noise with amplitude varying through
many orders of magnitude is present. Therefore, we
expect supertransients to be common in spatiotempo-
ral dynamical systems which are highly relevant mod-
els in fields such as fluid mechanics, biology, ecology
and many others as well.
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