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Previous renormalization group analyses that for chaotic systems near their critical points, the crossover time from classical to 
quantum behaviors scales with the Planck constant h as tma~It -C We argue that the same scaling relation also holds for typical 
two-degrees-of-freedom and time-independent chaotic Hamiltonian systems. Our analysis makes use of a self-similar Markov- 
chain model which was previously used to qualitatively explain the algebraic decay law in Hamiltonian systems. 

The quan tum mechanical  propert ies  of  dynamica l  
systems whose classical behaviors  are chaot ic  have 
a t t racted studies for many  years ( [  1 ], reference 
therein. References on quan tum chaos can also be 
found in, e.g., ref. [2] ). The major  characteristic that 
dist inguishes a quan tum mechanical  system from its 
corresponding classical system is that  in quan tum 
mechanics,  the system has a finite wavelength or 
equivalently,  f inite h. Here we use the symbol  h to 
denote  the Planck constant  nondimens iona l ized  by 
normal iz ing to characteris t ic  length and m o m e n t u m  
values, so that h ~ 0  corresponds to the classical limit, 
and  1 >> h >  0 corresponds to the semiclassical  re- 
gime. When  the wavelength is set to zero, the system 
is classical. In a classically chaotic system, a part icle 
can spend an arbitrari ly long t ime resolving finer and 
finer phase-space structures. For  the same system 
considered quan tum mechanical ly  in the semiclas- 
sical regime, however, the phase-space structures with 
volume less than O ( h  N) (where N is the number  of  
degrees of  f reedom)  cannot  be resolved. Thus, i f  we 
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init ial ize an ensemble of  particles in the phase space 
and evolve them under  the dynamics,  there comes a 
t ime tmax after which the phase-space structures re- 
solved by classical orbits  are quantum mechanical ly 
not resolved. Therefore, one might expect that  the 
classical mechanics might  be relevant for t < tmax but  
that the evolut ion for t~> tmax is entirely governed by 
quan tum mechanics.  We then say that  at tmax, there 
is a crossover from classical behaviour  to quantum 
behavior.  As the wavelength becomes longer (or  h 
becomes larger) ,  one expects that  the quan tum ef- 
fects will take over  earlier, i.e. tmax will become 
smaller. (We should note that  quan tum effects (e.g. 
weak local izat ion)  are also possible for t < t . . . .  . Thus 
our tmax is an upper  bound  past  which quantum ef- 
fects are dominan t . )  

It was shown by Fishman,  Grempel  and Prange 
[3 ] that  for a dynamical  system near its critical pa- 
rameter  value (e.g., Fe igenbaum point  in a Hamil -  
tonian per iod-doubl ing cascade, or the paramete r  
value at which the last KAM surface is des t royed) ,  
tmax scales with h like 

t m , x ~ h  - u  , (1)  

where/~ is a scaling exponent.  By using a renormal-  
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ization group theory, they were able to calculate the 
scaling exponent ~ for the system near the critical 
points. In particular, they found that for the system 
near the Feigenbaum point p~6.04,  while for a 
Hamiltonian system near a critical point in which 
the last bounding KAM surface is destroyed ~ ~ 3.05. 
However, it is difficult to apply the renormalization 
group theory to chaotic Hamiltonian systems not near 
their critical points. The objective of this Letter is to 
show that the same scaling relation ( 1 ) can be es- 
tablished using a self-similar Markov-chain model 
(as we will describe below). This model was used to 
qualitatively explain [ 4 ] the algebraic decay law [ 5 ] 
in classical two-degrees-of-freedom, time-indepen- 
dent chaotic Hamiltonian systems. Because this 
model is only heuristic, we cannot expect it to pre- 
dict the value of the exponent ~. Nonetheless, the 
scaling relation ( 1 ) derived from it applies to typical 
two-degrees-of-freedom, time-independent chaotic 
Hamiltonian systems. Thus, our goal is only to lend 
credance to the proposition that the scaling relation 
( 1 ) holds not only for dynamical systems near their 
critical points, but also for typical Hamiltonian sys- 
tems that exhibit algebraic decay. 

The phase space of a typical Hamiltonian system 
consists of KAM islands and chaotic regions. The 
KAM islands exist in all scales and typically they form 
island-around-island phase-space structure. Hence, a 
particle initialized in the chaotic region may spend 
an arbitrarily long time penetrating the island- 
around-island structure. Orbits contributing to longer 
times penetrate more deeply into this structure. A 
physical consequence is that particles decay algebra- 
ically [5] from some pre-defined (large) phase-space 
region containing the island-around-island structure. 
To be specific, imagine that there is some large re- 
gion surrounded by an outermost KAM island curve 
and that outside this island there is a connected cha- 
otic region. We then draw a large circle which con- 
tains the large island at its center and which also en- 
closes a substantial part of the outer chaotic region. 
Now initialize a large number No of randomly cho- 
sen initial conditions in the connected chaotic region 
outside the large islands and evolve them under the 
dynamics. If a particle leaves the circle, we regard it 
as being lost from the system. Let N ( t )  denote the 
number of particles inside the circle at time t; then 

one typically observes [ 5 ] that N(t)  ~ t-~, where z 
is the decay exponent. 

A self-similar Markov-chain model was intro- 
duced in ref. [4] to heuristically explain the alge- 
braic decay in two-dimensional Hamiltonian map 
systems. (We henceforth restrict consideration to 
such systems.) The Markov-chain model is charac- 
terized by states and transition probabilities between 
adjacent states. The states in the model correspond 
to phase-space regions of a typical Hamiltonian sys- 
tem (with KAM surfaces) with different scales. The 
states are denoted by integers: 0, 1, ..., where "0" 
specifies a reference state in which the particles are 
considered to have escaped, and "1", "2", ... corre- 
spond to the largest chaotic region in between KAM 
islands, the second largest chaotic region in between 
KAM islands, etc. A Markov chain is defined to be 
self-similar if the transition probability Po from the 
state i to state j has the scaling property 

p~+kj+k=ekpo , (2) 

where e is a scaling constant. Another property of the 
Markov chain is that the probability of a transition 
f romj  to j +  1 differs from the probability of the re- 
verse transform by a factor p (constant): 

pj.j+ l/pj+ l.j = p . (3) 

In this paper, following the treatment of Hanson, 
Cary and Meiss [4], we consider the general nearest- 
neighbor interacting self-similar Markov chain. For 
such a model, the transition probability matrix has 
the form 

Ply = ag 6~_ 1 ,j "~- bi ~ij ~- Ci 8i + 1,j , ( 4 ) 

where the self-similarity property eq. (2) implies 

ai=ae  ~, b~=be i, c i=ce ~. (5) 

We set an appropriate time scale so that b~ = -  1. 
Equation (3) implies c /a  = fie. Use of particle con- 
servation Yjpo=O gives 

1 1 1~ 
a =  - -  b= - - - (6) 

~(1 +/~e) ' ~'  1+#~" 

When the transition probabilities are small, the Mar- 
kov-chain model can be modified to have continu- 
ous time: 
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d~ 
- ~ N~pu, (7) 

dt 

where Nj is the mean number of  particles in state j. 
Substituting eqs. (4),  (5) and (6) into eq. (7), we 
obtain the following equation for Nj, 

~_, I-Z-~ ~.+ i . (8) 

It can be seen from eq. (8) that self-similarity im- 
plies that time is effectively rescaled by ~ when j is 
increased by unity. 

To proceed, we consider the first passage time dis- 
tribution Ru(t),  which is the probability that a par- 
ticle in state i at time zero first reaches the state j at 
time t. An important quantity is Rio(t), which is the 
probability of a particle entering the chain in state 1 
at time zero and leaving the chain in state 0 at time 
t. The physical significance of Rm(t)  is that the states 
i=  1,2,...,~, can be imagined as being deep in the 
Cantori [6 ] sequence, so that a particle enters the 
chain by first being in state 1 and leaves the chain 
when it arrives at state 0. Thus, Rio gives the statis- 
tics of  leaving the chain given that the particle enters 
the chain at t = 0. Clearly, Rio (t) consists of the fol- 
lowing two components: ( 1 ) the direct first passage 
time distribution from state 1 to state 0 Rldo (t) and, 
(2) the sum of all the probabilities that the particle 
reaches some high state i (i = 2 ..... oo) at some earlier 
time ti (ti~t) and then arrives at state 0 at time t. 
The direct first passage time distribution R~o (t) is 
the probability that a particle in state l first reaches 
state 0 at time t without having been in another state 
between times zero and t. This probability is given 
by [4 ] R~o (t) =P~o exp(p~ ~t). We denote Rii,io(t) to 
be the probability that the particle enters the chain 
at time zero, reaches some high state i at some earlier 
time t~ and then reaches the state 0 at time t (tj < t). 
Rli,io(t) can be written as Rli, io( t )=Rl i ( t )~Rio( t ) ,  
where ® denotes the convolution operation. Using 
these notations, R,o(t) can then be expressed as 

R,o(t)=R~o(t)+ ~ R,i.io(t). (9) 
i = 2  

It was shown [4,7] analytically that Rl0(t) decays 
algebraically for large t, as expected for typical cha- 
otic Hamiltonian systems. 

Since R~o (t) decays exponentially, for large time 

its contribution to Rio(t) is negligible. Hence, for 
large time, the major contribution to Rio(t) comes 
from different Rl,,~o(t). In particular, particles stay 
in the system for a long time by crossing Cantori with 
a smaller scale. The longer the time is, the more 
deeply particles penetrate into the chaotic region ad- 
jacent to KAM tori. To see this, we have numerically 
solved eq. (8) using a Markov chain with 30 states. 
We then solve for Rio(t)  and for the different 
Ru,~o(t)'s. Figure 1 shows, on a logarithmic scale, 
plots of  Rio(t) and R~,,io(t) ( i=5,  10, 15, 20) for 
E=0.4 and fl=0.95. From fig. 1, we see that Rio(t) 
decays algebraically with time, as expected. More- 
over, in different times scales, different R,~,~o(t) 
makes the major contribution to Rio(t). In partic- 
ular, Rli, io(l) with larger i contributes to Rio(t) in 
larger time. Physically, this means that for a given 
state i, there comes a time after which the particle 
can resolve this state or higher. 

In the Markov-chain model, the phase-space area 
in state i scales like ~A t, where A < 1 is some scaling 
constant. At finite wavelength, the minimum phase- 
space area that the particle can resolve ~ h. Hence, 
this finite h determines the highest accessible state N 
in the chain. In particular, we have h ~ A N and hence 

N ~  I log(h) l .  (10) 

Our goal is to find the scaling relation between the 
crossover time tmax and h (or N). Given a highest 
accessible state N, there comes a time tma~ after which 

I I I 

-5 : / ~ ~  Rio(t) 

/ 
"~" / R15.5o(t)/~Rl(1O),(1o)o (t) 
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Fig. 1. Plots ofR,o(t)and R,~uo(t) (i--5, I0, 15, 20)ona loga- 
rithmic scale for ~=0.4 and//=0.95 in a Markov chain of total 
30 states. 
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Rli,io(t)Rlo(t) t=tm~ =0.01 . ( 1 1 ) 
the contribution of  Rl~,io(t) (i>~N) to Rio(t) be- 
comes significant. Physically, this means that for 
t <  tm~,, the particle has not reached phase-space re- 
gions with scale finer than h. Hence, for t < t,~,, the 
particle mot ion is governed by classical mechanics, 
while for t >t tma~, the particle can resolve phase-space 
regions finer than h, which is prohibited by the un- 
certainty principle. Hence, for t>~tmax, the particle 
mot ion obeys quantum mechanics. Therefore, t ~ ,  is 
the crossover time from classical to quantum behav- 
ior. To determine tm~,, it is required that the con- 
tribution o f  R l i.io (t)  to R 1o ( t )  at t = tm~ is negligible, 
i.e. the probability that the particle reaches state N 
or higher and then arrives at state zero is negligible. 
Therefore, we have adopted the following rough cri- 
terion for determining the crossover time tm~,, 

The precise value of  the fight-hand side is not im- 
portant  for our conclusion. 

Figure 2a shows the sealing relation of  log tm~ with 
N numerically determined from eqs. ( 2 ) -  (9) and 
the criterion ( 11 ) for the same parameter  values o f  
E and fl as in fig. 1. From figs. 1 and 2a we have 

log t m ~ ~ N ~  Ilog(h) I = - l o g ( h ) .  (12) 

h i3  

We have also checked several different combinations 
o f  parameters ~ and ,6 in the Markov-chain model. 
The resulting scaling relations are shown in figs. 2b -  
2d. In particular, the scaling relation associated with 
particle transport near a critical noble torus is shown 
in fig. 2b. For  all the cases we have considered, the 
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Fig. 2. In a Markov chain of total 30 states, the sealing of log tm~ with the highest accessible state N ( ~ I log hi ) for (a) e = 0.4, fl= 0.95, 
(b) e=0.381966, #=0.1390449 (particle motion near a critical noble toms), (c) e=0.381966, fl= 1 and (d) el0.5, #=0.2. 
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scal ing re la t ion  (12 )  holds.  E q u a t i o n  (12 )  is equ iv -  

a lent  to the  scal ing re la t ion  o f  eq. ( 1 ). 

In  conc lus ion ,  we have  es tab l i shed  the  scal ing re- 

l a t ion  be tween  the  q u a n t u m  c rossove r  t i m e  and  the  

P lanck  cons t an t  h by using the  M a r k o v - c h a i n  m o d e l  

to descr ibe  the  par t ic le  t r anspor t  in two-degrees-of-  

f r eedom,  t i m e - i n d e p e n d e n t  chao t ic  H a m i l t o n i a n  

systems.  A l though  ou r  a p p r o a c h  does  no t  y ie ld  the  

specif ic  scal ing exponen t ,  ou r  analysis  ind ica tes  tha t  

the scal ing re la t ion  ( 1 ) holds,  no t  only  for  sys tems 

nea r  the i r  cr i t ical  points ,  bu t  also for  typica l  H a m -  

i l ton ian  sys tems ~1 

#1 In a recent paper [8] the authors found that for hyperbolic 
phase-space regions, the scaling relation between the time for 
which the semiclassical theory holds and the Planck constant 
appears to be a power law, in contradiction to the logarithmic 
law which can be obtained using an argument similar to that 
of our paper. However, we emphasize that their argument is 
for the case where hyperbolicity and strong stretching produce 
highly linear stretched-out phase-space structures. Since we are 
dealing with orbits approaching to KAM surfaces, linear 
stretching is weak and the dynamics is strongly nonhyper- 
bolic. We believe that in such cases our argument, based on 
the Planck constant action area, is qualitatively correct. This 
is reinforced by the fact that the result ( 1 ) is also obtained in 
the renormalization analysis of Fishman et at. [3]. 

Th is  w o r k  was suppor ted  by the  D e p a r t m e n t  o f  

Energy (Sc ien t i f ic  C o m p u t i n g  Staff, Off ice  o f  En- 
ergy Resea r ch ) .  
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