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We propose a negotiation strategy to address the effect of geography on the dynamics of naming
games over small-world networks. Communication and negotiation frequencies between two agents are
determined by their geographical distance in terms of a parameter characterizing the correlation between
interaction strength and the distance. A finding is that there exists an optimal parameter value leading
to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis
are provided to substantiate our findings.
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1. Introduction

Naming Game is a model to describe, at a quantitative level,
how a multi-agent system can converge toward consensus with
respect to the use of a semiotic convention, a fundamental prob-
lem in the evolution of human language [1,2]. Models of semi-
otic dynamics have helped the development of new types of web
tools, such as http://del.icio.us and http://www.flickr.com. Users of
these webs share information by tagging items such as pictures
and web-sites links. Due to theoretical and practical importance
of semiotic dynamics, the study of naming game has received in-
creasing attention, particularly in understanding how (linguistic)
conventions originate, spread, evolve and compete over time in a
population of agents [3–5]. A striking finding from previous re-
search is that global consensus can emerge via local pairwise ne-
gotiations without any central coordination [1,2]. Since in naming
game an ultimate convergence state can be reached from a multi-
opinion state, the dynamics associated with the game is essentially
different from that of opinion [6].

A minimal model of Naming Game based on principles of sta-
tistical physics was proposed by Baronchelli et al. [7]. This model,
while being a simplified version of the original model, can gener-
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ate various phenomena observed in experiments. Quite recently,
the minimal naming-game model was explored from the per-
spective of complex networks [8–10] with a focus on the effects
of topological properties on semiotic dynamics. In network sci-
ence, it has been known that, compared to regular lattices, small-
world and scale-free networks can facilitate the achievement of
final consensus [11–14]. In addition, results differing from regu-
lar lattices [15] and mean-field framework [7] have been reported.
Some modified versions of the minimal naming-game model have
been proposed to better characterize the convergent behavior from
multi-opinion state and understand the topological effects on con-
sensus dynamics, such as asymmetric negotiation strategy [16] and
connectivity-induced weighted words [17]. In other studies, some
typical features of human sociality have been incorporated into
naming games, such as finite-memory [18], local broadcast [5], and
reputation [19].

In this Letter, we investigate geography-induced communica-
tion and negotiation in the minimal naming-game model. To our
knowledge, geographical effects have not been considered in the
studies of consensus from multi-opinion state, although geograph-
ical distance plays a significant role in many types of communica-
tions and interactions. For instance, physical signals in the trans-
mission process may be weakened by long geographical distance,
and communication can thus be restrained by the increase of dis-
tance. On the other hand, in some networked systems, long-range
connections are important to maintaining systems’ functioning, so

http://dx.doi.org/10.1016/j.physleta.2010.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://del.icio.us
http://www.flickr.com
mailto:runran@mail.ustc.edu.cn
http://dx.doi.org/10.1016/j.physleta.2010.12.007


364 R.-R. Liu et al. / Physics Letters A 375 (2011) 363–367
these connections should be strengthened. Motivated by these con-
siderations, we introduce a modified naming-game model to incor-
porate the effect of geographical distance. In particular, we con-
sider agents on a geographically embedded small-world network,
where the geographical distance between any pair of nodes can be
meaningfully defined. We then propose a geography-based negoti-
ation strategy to model communication and negotiation in multi-
agent systems in a fairly general manner. Interaction strengths
among agents are determined by the geographical distances among
them in terms of a controlling parameter. Communication fre-
quency can be tuned to be positively or negatively correlated with
the distance. Our main finding is the existence of an optimal pa-
rameter value that leads to the fastest convergence toward global
consensus, implying that a proper correlation between geograph-
ical distance and negotiation frequency is key to achieving fast
consensus. This is of both theoretical and practical importance be-
cause fast convergence not only favors information sharing among
agents, but can also help save resources for information storage
(as in web servers). Perspectives such as the evolution of different
names, dependence of the maximum total names on the parame-
ter, and scaling properties of convergence time, are also explored
to explain the emergence of the optimal convergence. A theoretical
analysis is provided to support the numerical results.

2. Model

We consider a class of two-dimensional small-world networks
that can be considered as modified networks from the Newman–
Watts [20] and the Watts–Strogatz models [21]. Our small-world
networks are generated as follows. Initially, a two-dimensional reg-
ular lattice of n × n nodes with periodic boundary conditions is
created. Specifically, each node i carries a particular pair of inte-
gers (xi, yi) to represent its coordinates on the lattice. Small-world
property is introduced by adding shortcuts among vertices at ran-
dom, where duplicated connections are forbidden. This procedure
is repeated until m shortcuts have been added. The average degree
of connections 〈k〉 thus is 〈k〉 = (4N + 2m)/N . Based on the coor-
dinates, the geographical distance Li j between two arbitrary nodes
i and j is defined as

Li j = |xi − x j| + |yi − y j| < n, (1)

where (xi, yi) and (x j, y j) are the coordinates of i and j, respec-
tively, and | · | represents absolute value [22]. By this definition,
the geographical distance between a node and its nearest neigh-
bors is always 1, while a pair of nodes connected by a shortcut has
a longer geographical distance. The geographical distance is also
called lattice (‘Manhattan’) distance [23,24].

We now describe our modified minimal model of naming
game incorporating a geography-induced negotiation scheme. In
the game, N identical agents located on a network observe a single
object and try to communicate its name with others. Each agent is
assigned an internal inventory or memory to store an unlimited
number of different names or opinions. Initially, each agent has an
empty memory. The system then evolves as follows:

(i) At each time step, a hearer j is chosen at random and then the
hearer chooses one agent from its neighbors (the set of nodes
connected to j) as the speaker, the probability that agent i
is chosen is proportional to Lβ

i j , where Li j is the geographical
distance between nodes i and j and β is a tunable parameter.

(ii) If the speaker i’s inventory is empty, it invents a new name
and records it. Otherwise, if i already knows one or more
names of the object, with equal probability it randomly choose
one name from its inventory. The invented or selected word is
then transmitted to the hearer.
Fig. 1. (Color online.) Convergence time tc as a function of the geographical pa-
rameter β for different values of m with network size 50 × 50 (left panel) and for
different network sizes with fixed average degree of connections 〈k〉 = 4.8 (right
panel). Each data point is obtained by averaging over 1000 runs on each of ten dif-
ferent network realizations.

(iii) If the hearer j already has this transmitted name in its in-
ventory, negotiation is regarded as successful, and both agents
keep this common name and delete all other names in their
memories; otherwise, the negotiation fails, and the new name
is included in the memory of the hearer without any deletion,
i.e., learns the new word. By repeating the above process, the
system evolves.

The geography-induced negotiations refers to the manner of an
agent choosing a neighbor as a speaker to communicate according
to the geographical distance between them. If β < 0, the nearest
neighbors have more chances to be chosen as a speaker; If β > 0,
the neighbors connected by shortcuts are more likely to be cho-
sen as a speaker. For β = 0, the model reduces to the previously
studied naming-game model [12]. Thus, by tuning the value of β ,
it is possible to address the roles of shortcuts in the dynamics of
language game.

3. Simulation results

In the naming-game model, the system can reach an absorbing
state in which all agents share one exclusive word after a period of
time. The specific time is defined as convergence time tc , which is
a key measure for the convergence efficiency of the system and is
of practical importance. Generally, the fast collective agreement on
naming objects plays a significant role in the cooperation or com-
munication among individuals for not only intelligent agents but
also human beings. We first study the dependence of the conver-
gence time tc on the geographical parameter β . The left panel of
Fig. 1 shows tc as a function of β for different numbers of added
shortcuts m. It can be seen that the convergence time tc is a non-
monotonic function of β . In each case, there is an optimal value of
β leading to fastest convergence. This result demonstrates that a
proper correlation between geographical distance and negotiation
frequency plays the key role in achieving the optimal consensus.
Another observed phenomenon is that the optimal value βopt is
negatively correlated with the number of shortcuts m. In addition,
we also find that, for β quite larger than βopt , e.g., β = 1.2, tc asso-
ciated with larger values of m can be greater than that with lower
values of m (see for instance, m = 250, m = 500, and m = 1000).
This seems to contradict to intuition that more edges usually better
facilitate convergence towards global consensus. We will explain
this abnormal phenomenon later. These results indicate that the
shortcuts play a significant role for the global convergence, espe-
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Fig. 2. (a, b) Evolutions of Nd(t), the number of different names, and the total
number of names Nw (t), respectively, for different values of β . The line segments
indicate the asymptotic power-law decays. The size of all networks is 50 × 50 and
the number of shortcuts is m = 500.

cially for sparse-shortcut cases. The right panel in Fig. 1 shows the
dependence of tc on β for different network sizes at fixed aver-
age degree of connection 〈k〉 = 4.8. We find that larger network
sizes result in longer convergence time but the values of βopt are
approximately unchanged. That is, βopt is independent of the net-
work size.

In order to understand the role of geography-induced negoti-
ations in achieving consensus, we study the time evolutions of
basic quantities such as the number Nd(t) of different words in
the system and the number of total words, Nw(t), where Nd(t) re-
flects the number of word clusters at time t , within which agents
share the same word, as shown in Fig. 2. Specifically, each word
cluster is contained within boundaries of agents with more than
one word (on average, between one and two). When β is nega-
tive, few shortcuts are used and consensus is reached through a
coarsening process on a two-dimensional lattice [15]. As Ref. [15]
points out, the characteristic length of a word cluster’s boundary
ξ(t) grows as

√
t on a two-dimensional lattice, and the size of

a cluster grows as t , so Nd(t) decays as t−1 for negative values
of β . For β = 0, the system exhibits coarsening at first, but the
shortcuts induce an abrupt jump toward consensus when the word
cluster’s average characteristic length of the boundary is compara-
ble to the typical distance between nodes with shortcuts [5,11]. If
the negotiation frequency along shortcuts is relatively low, agents
can frequently interact with their nearest neighbors. This favors
the establishment of local consensus at the early stage, but not
global consensus. The links corresponding to long geographical dis-
tances usually connect two different word clusters, so enhancing
the interaction frequency of agents at the ends of shortcuts can
increase the convergence performance. However, if the interaction
frequency is too high, agents can hardly interact with their nearest
neighbors, which prevents the formation of word clusters. As a re-
sult, the decay of Nd(t) slows down at the coarsening stage. Due to
the fact that the high interaction frequency along long range links
can inhibit the formation of local word cluster, so as to disfavor
convergence, the presence of more long range links associated with
large values of β can induce larger values of tc , although more
links usually are better for reaching consensus. This can explain
the abnormal phenomenon in Fig. 1 that larger number of added
links (e.g. m = 1000) for β = 1.2 results in longer convergence time
than that for smaller number of added links (e.g., m = 250).

Fig. 2(a) demonstrates the decay of Nd(t) for β = −1. Simi-
lar results can be observed for other large negative values of β .
Fig. 2(b) shows the total number Nw(t) of names as a function of
the rescaled time t/N . At the coarsening stage, the total number of
words can be expressed as the number of nodes N plus the num-
Fig. 3. (Color online.) The maximum number of total names of agents Nmax
w versus

the parameter β for different values of m. We see that Nmax
w reaches its maximum

for β ≈ 0.1. Comparison between the numerically obtained maximum value of Nmax
w

and theoretical predictions is shown in the inset, where 1000 runs for each of ten
different network realizations are used to obtain the average value of (Nmax

w )max .
The size of all networks is 50 × 50.

Fig. 4. Convergence time tc as function of network size N for different values of β .
We observe the scaling tc ∼ Nγ . The values of γ are 2.10, 1.85, 1.37, 1.30 and 1.76
for β = −1, β = −0.3, β = 0, β = 0.3 and β = 1, respectively. Data points are ob-
tained by averaging over 1000 runs on each of ten different network realizations.
The number of shortcuts m is set to be 0.2 × N for each data set.

ber of nodes with more than one word (on average, between one
and two) [5], i.e.,

Nw(t) − N ∼ N

ξ(t)2
× ξ(t) ∼ N√

t
. (2)

For β = −1, our simulation results shows that Nw(t) − N decays
as t−0.42 at the coarsening stage. Fig. 2(b) demonstrates that the
parameter β has a significant effect on the maximum total mem-
ory of agents, Nmax

w . It is thus insightful to compute the relation
between β and Nmax

w , as shown in Fig. 3. We find that, when the
number of shortcuts is large, the values of β for which Nmax

w is
maximized coincide with the optimal value βopt . An increase in the
maximum value of Nmax

w as m is increased corresponds to a faster
convergence toward global consensus. In the next section, we pro-
vide theoretical predictions for the value βopt and the maximum
values of Nmax

w .
We have also investigated the scalings of the convergence time

and the maximum total memory with respect to the network size.
We first fix 〈k〉 for each network to obtain the dependence of tc

and Nmax
w on the network size N . Fig. 4 shows tc as a function of

N for different values of β . The algebraic scaling is robust and the
value of the scaling exponent depends on the value of β . Fig. 5
displays Nmax

w as a function of N for different values of β . Similar
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Fig. 5. Maximum total memory Nmax
w used by agents as function of network size

N for different values of β . We see that Nmax
w scales linearly as N . The number of

shortcuts m is set to N for each data set.

to the results in the previous model [7], Nmax
w scales linearly with

the size of the network, but the rate of increase depends on β .

4. Theoretical treatment

Assuming that each agent i interacts with one neighbor j, the
probability for repeating such an interaction is

Pr = 1

N

( Lβ

i j∑N
l=1 Ail L

β

il

+ Lβ

i j∑N
l=1 A jl L

β

jl

)
, (3)

where Aij are elements of the network adjacency matrix. For
small-world networks, nodes at the ends of long-range links usu-
ally have larger degrees, so the distance between an arbitrary pair
of nodes i and j can be estimated by their degrees, i.e., Li j ∼ ki
and Li j ∼ k j . The repetition probability can thus be approximated
as

P ij
r = 1

N

(
kβ

i∑N
l=1 Ailk

β

l

+ kβ

j∑N
l=1 A jlk

β

l

)
. (4)

For a small-world network, degree-to-degree correlation is absent,
so the sum in Eq. (4) can be simplified as

N∑
l=1

Ailk
β

l = ki

kmax∑
k′=kmin

P
(
k′∣∣k)

k′β

= ki

kmax∑
k′=kmin

k′1+β P (k′)
〈k〉 = ki〈k1+β〉

〈k〉 , (5)

where the conditional probability P (k′|k) = k′ P (k′)/〈k〉 and the
identity

kmax∑
k′=kmin

k′1+β P
(
k′) = 〈

k1+β
〉

(6)

have been used. We then have

P ij
r = 〈k〉

N〈k1+β〉
(
kβ−1

i + kβ−1
j

)
. (7)

The success rate in the steady range can be obtained by summing
over all nodes i and j, as

S =
N∑

P ij
r = 2〈k〉〈kβ−1〉

〈k1+β〉 . (8)

i, j=1
During the evolution, there are two factors contributing to the
change in Nw(t): one is success of a negotiation through an in-
teraction between two agents, which will result in the deletion
of names in both agents; the other is failure, which will result in
one name being included in the hearer’s memory. Since the small-
world networks are homogeneous with respect to node degrees,
we can assume that the memory of agents are approximately iden-
tical, i.e., Nw/N . We have examined that the assumption is valid
for relatively large m given network size N , e.g., m � 250 for
N = 2500. The evolution of Nw can thus be expressed as

dNw(t)

dt
= −S(t) · 2

[
Nw(t)

N
− 1

]
+ [

1 − S(t)
]
, (9)

where the first term on the right-hand side represents the contri-
bution of the success to the change in Nw , while the second term
is due to failure. Since we found that the maximum value Nmax

w of
Nw(t) arises when the success rate stays in steady state, the quan-
tity Nmax

w can be obtained by inserting the steady value of S into
Eq. (9) and setting

dNw(t)

dt
= 0, (10)

which yields

Nmax
w = N

2

(
1 + 〈kβ+1〉

2〈k〉〈kβ−1〉
)

. (11)

As β → ∞ or β → −∞, we have 〈kβ+1〉 ≈ 〈kβ−1〉 and, hence,

Nmax
w (β → ∞) ≈ Nmax

w (β → −∞) = N

2

(
1 + 1

2〈k〉
)

. (12)

The maximum value of Nmax
w can be expected in the vicinity of

β = 0, giving rise to the largest ratio of 〈kβ+1〉 to 〈kβ−1〉. The
maximum value of Nmax

w can then be approximated by consider-
ing 〈kβ+1〉 ≈ 〈k〉β+1 and 〈kβ−1〉 ≈ 〈k〉β−1. We obtain

(
Nmax

w

)
max ≈ N

2

(
1 + 〈k〉

2

)
. (13)

Since for small-world networks, 〈k〉 = (4N + 2m)/N , so the maxi-
mum value of Nmax

w as a function of m can be expressed as

(
Nmax

w

)
max ≈ 3N + m

2
. (14)

Theoretical predictions, as represented by Eqs. (13) and (14), agree
well with numerical simulations, as shown in Fig. 3. In particular,
the maximum value of Nmax

w occurs for β ≈ 0. For large value of m,
the value of β for the fastest convergence can thus be predicted
by Fig. 3, since when the maximum value of Nmax

w is attained, the
convergence to global consensus is the fastest.

5. Conclusion

In summary, we have proposed and studied a naming-game
model on small-world networks embedded in Euclidean geographi-
cal space. Negotiation frequency between two agents is determined
by their geographical distances in terms of a controlling parame-
ter, β . We find that there exist optimal values of β that can lead to
the fastest convergence toward global consensus. This finding un-
veils that a proper correlation between geographical distance and
communication frequency can optimize the achievement of final
consensus; while biased communication in local or global connec-
tions can hamper or even prevent convergence in the agreement
dynamics. We have qualitatively explained the dependence of the
convergence time on β , in terms of the evolutions of the num-
ber of different names and of the total maximum memory used
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by agents. In the intermediate range of β , we found a peak of
the total maximum memory, where the fastest convergence occurs
for relatively large numbers of shortcuts. Numerical results of the
total maximum memory can be predicted theoretically, providing
insight into the mechanism for the fastest convergence. We have
also found robust scaling behaviors for the convergence time and
the maximum total memory. Geographical effects are common in a
variety of real communication networks, and we expect our work
to provide new insights into agreement dynamics and other related
dynamical processes on such networks.
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