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Phase characterization of experimental gas–liquid two-phase flows
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We propose a method to characterize and distinguish flow patterns in experimental two-phase (e.g., gas–
liquid) flows. The basic idea is to calculate the instantaneous phase from the signal and to extract scaling
behaviors associated with the phase fluctuations. The effectiveness of the method is demonstrated and
its applicability is articulated.

© 2010 Elsevier B.V. All rights reserved.
Gas–liquid two-phase flows arise commonly in a variety of
physical, engineering, and industrial applications such as filtration,
lubrication, spray processes, natural gas networks, and nuclear re-
actor cooling, etc. Understanding the nonlinear and complex dy-
namics underlying gas–liquid flows is a significant but challenging
problem. In this regard, a primary task is to characterize and quan-
tify the various flow patterns that often appear complex. Generally,
the patterns arising from two-phase flows depend on a number
of factors including the type of gas–liquid combination, the flow
rate and direction, the shape, size, and inclination of the conduit.
A common practice in the field is to examine the fluctuating prop-
erties associated with two-phase flows, which can be experimen-
tally assessed from measurements such as the local pressure and
the instantaneous two-phase mixture ratio [1,2]. Existing methods
aiming at characterizing the fluctuations include those based on
the power-spectral density (PSD) for pressure drop [3] and tran-
sient x-ray attenuation techniques [4,5]. Standard time-series anal-
ysis methods from nonlinear dynamics and chaos [6] have also
been exploited [7–10].

At the present, the dynamical mechanisms generating various
patterns in gas–liquid two-phase flows are elusive, due to the com-
plex and nonlinear interplay among many factors such as fluid tur-
bulence, phase interfacial interaction, and local relative movement
between phases, etc. To our knowledge, a systematic theoretical

* Corresponding author.
E-mail address: zhongkegao@tju.edu.cn (Z.-K. Gao).
0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2010.08.005
framework to predict the flow patterns is non-existent. The pur-
pose of this Letter is to introduce a instantaneous-phase based
method to characterize typical patterns from experimental gas–
liquid flows. Our idea is that the phase fluctuations associated with
time series are caused by the intrinsic dynamics and can there-
fore yield important information about the underlying flow that
existing, non-phase based methods are incapable of revealing. In
particular, given a set of experimentally measured conductance-
fluctuating signals, we first use the empirical-mode decomposi-
tion (EMD) method pioneered by Huang et al. [11] to extract the
phase fluctuations. To uncover any robust scaling behavior hidden
in the phase fluctuations, we use detrended fluctuation analysis
(DFA) [12]. Our main finding is that, for each of the three dis-
tinct patterns arising typically in experimental two-phase flows,
a scaling exponent can be extrapolated from the phase fluctua-
tions. For different flow patterns, the values of the exponent are
statistically distinct, indicating the effectiveness of the combined
EMD/DFA method to characterize and distinguish complex two-
phase flow patterns.

Our data are conductance signals from vertically upward pipe of
inner diameter 125 mm in multi-phase flow-loop experiments at
Tianjin University. The experimental mediums are air and tap wa-
ter. The experimental system consists of the pipe, a vertical multi-
electrode array (VMEA) of conductance sensors [13], high-speed
video camera recorder (VCR), exciting-signal generating circuit, sig-
nal modulating module, data-acquisition device (PXI 4472, National
Instruments), and software for preliminary signal processing. The
VMEA component is shown in Fig. 1. The measurement system
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Fig. 1. (Color online.) VEMA sensor and three typical patterns experimentally
recorded from vertically upward gas–liquid two-phase flows: (a) bubble flow (Usw =
0.18 m/s, Usg = 0.01 m/s), (b) slug flow (Usw = 0.18 m/s, Usg = 0.12 m/s), and
(c) churn flow (Usw = 0.18 m/s, Usg = 0.61 m/s). The VEMA consists of eight al-
loy titanium ring electrodes axially separated and flush mounted on the inside wall
of the flowing pipe. E1 and E2 are exciting electrodes. C1–C2 and C3–C4 are two
pairs of upstream and downstream correlation electrodes denoted as sensor A and
sensor B, respectively. Based on the cross-correlation technique, we can extract the
axial velocity of the two-phase flow from fluctuating signals from sensors A and B.
H1–H2 is the volume-fraction electrodes denoted as sensor C. The measurement
circuit is embedded inside the instrument.

uses a 20 kHz sinusoidal voltage signal of amplitude 1.4 V to excite
the flow. The signal-modulating module consists of three submod-
ules: differential amplifier, sensitive demodulation and low-pass
filter.

A typical experimental run starts by generating water flow at a
fixed rate in the pipe and then gradually increasing the gas-flow
rate. When the gas and water flow rates reaches a pre-defined
ratio, a conductance signal is collected from VMEA and the flow
pattern is visualized by the high-speed VCR. Fig. 1 shows three
typical patterns from the water–gas flows. The water- and gas-flow
rates are between 0.02 m/s and 0.27 m/s and from 0.0045 m/s to
2.94 m/s, respectively. The sampling frequency is 400 Hz, and the
data recording time for one measurement point is 60 s.

Let b(t) be a measured conductance-fluctuating signal. To see
the need for the EMD method, we first perform the Hilbert trans-
form:

b′(t) = P .V .

[
1/π

+∞∫
−∞

b
(
t′)/(t − t′)dt′

]
(1)

where P .V . stands for the Cauchy principal value for integral. We
then construct the corresponding analytic signal as

ψ(t) = b(t) + ib′(t) (2)

Fig. 2(a) shows, for a signal from the bubble flow, a trajectory of
the analytic signal in its complex plane. We observe that there
exist multiple centers of rotation, so a properly defined phase vari-
able cannot be obtained from the analytic signal. It is thus neces-
sary to decompose the original signal b(t) into a number of modes
whose analytic signals correspond to proper rotations. Similar be-
haviors have been observed for slug and churn flows.

The EMD method was invented [11] to address this decomposi-
tion problem. The method has been applied to different problems
Fig. 2. (Color online.) Trajectory in the complex plane of the analytic signal from a
bubble flow (Usw = 0.18 m/s, Usg = 0.01 m/s): (a) for the original signal and (b) for
the second intrinsic mode. (c) Phase function φk(t) corresponding to eight different
intrinsic modes from the bubble flow. The red dashed lines are the linear fitting of
phase functions. The extracted frequencies of these modes are w1 ≈ 84.66, w2 ≈
52.54, w3 ≈ 28.26, w4 ≈ 15.47, w5 ≈ 7.6, w6 ≈ 3.5, w7 ≈ 1.7, and w8 ≈ 0.29.

such as phase characterization of chaos [14] and laser signals [15].
The basic steps of the EMD method are: (1) construction of two
smooth splines connecting all the maxima and minima, respec-
tively, to get bmax(t) and bmin(t); (2) computation of

�b(t) ≡ b(t) − [
bmax(t) + bmin(t)

]
/2 (3)

and (3) repetitions of steps (1) and (2) for �b(t) until the result-
ing signal corresponds to a proper rotation. Denote the resulting
signal by C1(t), which is the first intrinsic mode. We then take the
difference

b1(t) ≡ b(t) − C1(t) (4)

and repeat steps (1)–(3) to obtain the second intrinsic mode C2(t).
The procedure continues until the mode CM(t) shows no apparent
variation (i.e., it has fewer than two local extrema). Result from the
decomposition procedure can thus be represented by

b(t) =
M∑

k=1

Ck(t) (5)

where the intrinsic modes Ck(t) are nearly orthogonal to each
other [11]. By construction, each mode Ck(t) generates a proper
rotation in the complex plane of its own analytic signal

ψk(t) = Ak(t)eiφk(t) (6)

and the average rotation frequencies

wk = 〈
dφk(t)/dt

〉
(7)

obey the following order w1 > w2 > w3 > · · · > w M [11], where
the amplitude function Ak(t) and the phase function φk(t) can be
obtained from the analytic signal of kth intrinsic mode:

ψk(t) = Ck(t) + iC ′
k(t) = Ak(t)eiφk(t) (8)

for k = 1,2, . . . , M , where M is the number of intrinsic modes.
Correspondingly, a proper rotation for kth intrinsic mode can be
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Fig. 3. (Color online.) WVD results of bubble flow (Usw = 0.18 m/s, Usg = 0.01 m/s)
for (a) original signal; (b) 1st intrinsic mode; (c) 2nd intrinsic mode; (d) 3rd intrin-
sic mode. As can be seen, the frequency of original signal focuses on 1 Hz ∼ 6 Hz;
the 1st intrinsic mode possesses wider and higher frequency distribution (over
10 Hz) resulting from the dynamical and/or observational noise in an experimental
setting; the frequency of the 2nd intrinsic mode ranges from 1 Hz to 6 Hz within
the proper range; the frequency distribution of 3rd intrinsic mode becomes much
narrower and lower than that of the original signal.

obtained by plotting C ′
k(t) against Ck(t) in the complex plane of

ψk(t). As shown in Fig. 2, the average frequencies of the rotations
(the slopes) associated with various modes are distinct. The fluctu-
ations of the phase function can then be obtained as [14]

�φk(t) = φk(t) − wk(t)t (9)

The first mode has the highest frequency, which usually corre-
sponds to noise. We have examined that the second intrinsic mode
contains most relevant information about the original signals be-
cause its frequency obtained by using the Wigner–Ville distribution
[16,17] is in good agreement with that of the original signals, as
shown in Fig. 3. We thus focus on the second mode for further
analysis.

After obtaining the phase fluctuations, we use the DFA method
[12] to uncover the dynamical characteristics associated with long-
range correlation and diffusive. The procedure begins with a time
series X(t) of length N . First, we calculate the accumulated series

C(t) =
t∑

i=1

(
X(i) − 〈X〉) (10)

where 〈X〉 = (1/N)
∑N

t=1 X(t). Second, we divide C(t) into Nb non-
overlapping boxes of equal sizes L. In each box, the local trend
Cm

f it(t) = at +b is defined to be the ordinate of a linear least-square
fit of the data point in that box, where the index m indicates the
box number. The detrended fluctuation F (L) is then calculated fol-
lowing:

F (L) =
(

1

Nb

Nb∑
m=1

1

L

mL∑
t=(m−1)L+1

(
C(t) − Cm

f it(t)
)2

)1/2

(11)

This function measures the root mean squared fluctuations. If F (L)

vs. L exhibits linear relationship on the log–log graph, it indicates
the presence of scaling behavior

F (L) ∼ Lα (12)

where α is the DFA scaling exponent and it depends on the cor-
relation properties of the signal. Especially, the value of α marks
Fig. 4. (Color online.) DFA analysis of phase fluctuations of the second intrinsic mode
for three typical flow patterns: (a) bubble flow (Usw = 0.18 m/s, Usg = 0.01 m/s);
(b) slug flow (Usw = 0.18 m/s, Usg = 0.12 m/s); (c) churn flow (Usw = 0.18 m/s,
Usg = 0.61 m/s). (d) DFA scaling exponent distribution on semi-log scale of 50
phase fluctuations belonging to three patterns with increase of the gas superficial
velocity.

the borderline between stationary and non-stationary behavior: for
α � 1, one has non-stationary signals associated with sub-diffusive
(α < 3/2), diffusive (α = 3/2) or super diffusive (α > 3/2) behav-
ior. Fig. 4 shows the scaling F (L) ∼ Lα for three flow patterns from
50 experimental measurements. We see that the phase fluctua-
tions of bubble, slug and churn flows display super-diffusive, sub-
diffusive and Brownian-motion type of behaviors, respectively, in
the sense that the DFA scaling exponent for bubble, slug and churn
flow is 1.61±0.02, 1.42±0.04 and 1.51±0.02 (near 1.50), respec-
tively. Moreover, there appear to be phase transitions among three
flow patterns as the gas superficial velocity Usg is increased. We
also note that the scaling exponent α shows a non-monotonous
behavior in the transition from bubble flow to churn flow, indicat-
ing the dynamical complexity associated with two-phase flows.

Fig. 4 demonstrates that the DFA scaling exponents based on
phase fluctuations for three typical types of two-phase flow pat-
terns are located in three distinct regions without any overlap.
Note that there exists an abrupt transition of DFA exponent be-
tween bubble and slug flow, indicating that the dynamical features
of the two flow patterns are quite different, consistent with exis-
tent knowledge about the phase flows. These results demonstrate
that our phase-fluctuation based approach is capable of character-
izing and distinguishing the three typical flow patterns, especially
bubble flow from churn flow, a task that existing methods based
on complexity measures fail to work [18]. In the study of two-
phase flow, the numerical simulation of pressure drop (or void)
and the correlations closely correlate with the flow pattern. More-
over, the established flow model will vary with respect to distinct
flow patterns. Thus, characterizing the system dynamical character-
istics and further accurately identifying different flow patterns will
provide fundamental information for the study of inherent void
and pressure drop, e.g., the choose of the model for calculating the
inherent void or pressure drop. For a large class of signals mea-
sured from two-phase flow system, our method can extract the
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scaling exponents associated with dynamical characteristics and
further identify flow patterns in a fast and visual way.

In summary, we have proposed a novel approach based on
phase fluctuations and demonstrated its power to characterize and
distinguish typical patterns arising from gas–liquid two-phase flow
experiments. Technically our method contains two components:
EMD and DFA, the former being necessary for extracting proper
rotations and the latter for detection of robust scaling behavior in
the phase fluctuations. Due to the generality of the method, we
expect it to be useful for broader applications beyond multi-phase
flows.
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