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Understanding synchronization induced by “common noise”
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Abstract

Noise-induced synchronization refers to the phenomenon where two uncoupled, independent nonlinear oscillators can achieve synchroniza-
tion through a “common” noisy forcing. Here, “common” means identical. However, “common noise” is a construct which does not exist in
practice. Noise by nature is unique and two noise signals cannot be exactly the same. How to justify and understand this central concept in noise-
induced synchronization? What is the relation between noise-induced synchronization and the usual chaotic synchronization? Here we argue and
demonstrate that noise-induced synchronization is closely related to generalized synchronization as characterized by the emergence of a func-
tional relation between distinct dynamical systems through mutual interaction. We show that the same mechanism applies to the phenomenon of
noise-induced (or chaos-induced) phase synchronization.
 2005 Published by Elsevier B.V.

PACS: 05.45.Xt; 05.45.-a
In the past twenty years, chaotic synchronization, including
complete synchronization, generalized synchronization, phase
synchronization and lag synchronization, has been intensively
investigated. Among them, generalized synchronization dis-
covered by Rulkov et al. [1–4] is an interesting phenomenon.
It refers to the existence of some functional relation between
coupled but nonidentical chaotic oscillators. To detect gener-
alized synchronization, Abarbanel et al. proposed the interest-
ing idea of considering an auxiliary response system and ex-
amining the conditional stability of typical trajectories in the
driven system [2]. In particular, suppose one wishes to deter-
mine whether there is a generalized synchronization between
two uni-directionally coupled oscillators, say A and B , the
drive and driven system, respectively. One can imagine an aux-
iliary response system B ′, which is identical to B and subject
to the same driving signal, and asks whether there is synchro-
nization between B and B ′. Abarbanel et al. showed that an
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affirmative answer would imply a generalized synchronization
between A and B . Note that the pioneering work on chaotic
synchronization by Pecora and Carroll [5] focused on synchro-
nization between identical subsystems under a common forcing.
The auxiliary response-system approach is equivalent to treat-
ing B ′ as the replica of subsystem B in a single dynamical
system that comprises A and B . Whether subsystems can be
synchronized is determined by the sign of the conditional Lya-
punov exponents evaluated for typical trajectories in any of the
subsystems under the forcing. Another interesting synchroniza-
tion phenomenon is the chaotic phase synchronization [12]. It
occurs in certain chaotic systems where suitable phases can
be defined. In phase synchronization, the phases between two
chaotic oscillators can be locked while their amplitudes remain
chaotic and uncorrelated. Compared with generalized synchro-
nization, phase synchronization is a weaker form since there is
no functional relation between the amplitudes of the two cou-
pled oscillators.

Parallel to the chaotic synchronization mentioned above, the
phenomenon of noise-induced synchronization, i.e., synchro-
nization among uncoupled nonlinear oscillators under “com-
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mon (or identical) noise”, has also been intensively studied. The
first work along this line was carried out by Maritan and Ba-
navar over a decade ago [6]. This seemingly counter-intuitive
phenomenon has since attracted a continuous interest [7–9],
partly because it is another powerful demonstration of “noise-
induced order” as a result of the interplay between nonlinear
dynamics and stochastic processes, in addition to stochastic
resonance [10] and coherence resonance [11]. More recently,
the phenomenon has been extended [9] to chaotic phase syn-
chronization [12] by Zhou et al. who demonstrated numerically
and experimentally that phase coherence between uncoupled
chaotic oscillators in a statistical sense can be established by
“common noise”. They further proposed that the phenomenon
is due to the existence of distinct phase-space regions where
infinitesimal vectors experience expansion and contraction, re-
spectively, as a result of the common noisy forcing. Very re-
cently, the noise effect on the fully synchronous regime of glob-
ally coupled chaotic systems has been investigated [13].

So far, chaotic synchronization and synchronization induced
by “common noise” have appeared to be two almost indepen-
dent research domains. Whether or not these two types of syn-
chronization in chaotic systems can be understood in an unified
framework is of particular interest. In this Letter, we argue that
noise-induced synchronization can be understood naturally as a
manifestation of generalized synchronization. Therefore, these
two types synchronization phenomena can be unified conceptu-
ally. To state our result, we use the representative setting where
two nonlinear oscillators are driven by a common random or
chaotic forcing,

dx
dt

= f1
[
x, ξ(t)

]
,

(1)
dy
dt

= f2
[
y, ξ(t)

]
,

where x(t) and y(t) are the dynamical variables of the two
oscillators that are governed by vector fields f1 and f2, re-
spectively, and ξ(t) denotes the common stochastic or chaotic
forcing. To study complete synchronization or phase synchro-
nization, we assume [9] f1 ≈ f2. In general, synchronization
can be achieved only when there is an interaction (communica-
tion) between the oscillators. Since there is no direct coupling
between x and y, the interaction must be provided by the com-
mon forcing ξ(t), noisy or chaotic. If the forcing is sufficiently
strong, both oscillators tend to follow its evolution to some
extent, thereby indirectly establishing an interaction between
them. Synchronization between x and y then implies a gener-
alized synchronization between x and the random or chaotic
forcing ξ (by the auxiliary response-system criterion for gen-
eralized synchronization [2]), and vice versa. Quantitatively,
the equivalence between noise-induced (or chaos-induced) syn-
chronization and generalized synchronization can be demon-
strated by computing the conditional Lyapunov exponents for
the driven systems. A negative largest conditional Lyapunov ex-
ponent indicates generalized synchronization between the drive
and either of the driven systems, which again signals synchro-
nization between the driven systems. A remarkable finding is
that the same method applies to noise-induced or chaos-induced
phase synchronization, where the driven systems are neces-
sarily nonidentical. In this case, we find that noise-induced
or chaos-induced phase synchronization occurs only when the
forcing is strong enough so that both the originally null condi-
tional Lyapunov exponents become negative.

We first consider noise-induced (or chaos-induced) synchro-
nization between two uncoupled chaotic oscillators. Our driven
systems are the following classical Lorenz oscillator:

dx1,2

dt
= 10(y1,2 − x1,2),

dy1,2

dt
= r1,2x1,2 − y1,2 − x1,2z1,2 + ξ(t),

(2)
dz1,2

dt
= x1,2y1,2 − (8/3)z1,2,

where r1 and r2 are the intrinsic parameters of the Lorenz os-
cillators, and ξ(t) is the common noisy or chaotic forcing. To
be able to compare the results from different types of driving
signals, we choose

(3)ξ(t) = D
η(t) − 〈η(t)〉

σ
,

where D is the normalized amplitude of the noisy (or chaotic)
forcing, η(t) is a Gaussian random process or a chaotic signal,
and σ is the standard deviation of η(t). To demonstrate the gen-
erality of our result, we shall use four different types of forcing:
Gaussian random signal, chaotic signals from the Rössler, the
Lorenz, and the Mackey–Glass system. Fig. 1 shows for r1 =
r2 = 28, the largest conditional Lyapunov exponent (LCLE)
of the Lorenz oscillator Eq. (2) versus the amplitude for four
types of noisy or chaotic forcing. The common feature is that
there is generalized synchronization in all four cases, insofar as

Fig. 1. The LCLE of Lorenz system Eq. (2) for r = 28 under chaotic or noisy
forcing. Four different types of driving signals are used: (1) Gaussian ran-
dom signal (solid trace), (2) chaotic Rössler system (dotted trace) given by
ẋ = −(y + z), ẏ = (x + 0.15y), and ż = 0.2 + z(x − 8.5), (3) chaotic Lorenz
system (light-dashed trace) given by ẋ = 10(y − x), ẏ = 35x − y − xz, and
ż = xy − (8/3)z, and (4) chaotic Mackey–Glass system (heavy-dashed trace)
given by ẋ = −0.1x(t) + 0.2x(t − 100)/[1 + x(t − 100)10]. In all four cases,
generalized synchronization as characterized by a negative LCLE occurs for
sufficiently large forcing amplitude.
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Fig. 2. Evidence of chaos-induced (a, b) and noise-induced (c, d) synchroniza-
tion between two uncoupled Lorenz chaotic oscillators in Eq. (2). In (a) and (b),
the forcing is a chaotic Rössler signal. Chaos-induced synchronization occurs
for D = 90 > Dc ≈ 75. In (c) and (d), the forcing is a Gaussian random signal.
We see that noise-induced synchronization occurs for D = 40 > Dc ≈ 35.

Fig. 3. The LCLEs of two parametrically different Lorenz system Eq. (2) driven
by one common signal which is either Gaussian random noise (a) or from
chaotic Rössler system (b) as described in the caption in Fig. 1. For each case,
an indirect relation has been established between two driven systems when both
the LCLEs become negative.

the forcing amplitude is sufficiently large so that the LCLE be-
comes negative. Evidence for noise-induced or chaos-induced
synchronization is shown in Fig. 2, where Figs. 2(a) and (b)
show the y-variables of the two Lorenz oscillators under chaotic
Rössler forcing of two different amplitudes. From Fig. 1, we see
that for this type of forcing, generalized synchronization occurs
for D > Dc ≈ 75 (the dotted trace). Fig. 2(a) shows that chaos-
induced synchronization has not occurred for D = 70 < Dc, but
it does for D = 90 > Dc [Fig. 2(b)]. Figs. 2(c) and (d) show a
similar situation for noise-induced synchronization, where the
forcing is a Gaussian random signal.

What happens if there is a mismatch between the two os-
cillators under common noisy or chaotic forcing? In this case,
the conditional Lyapunov exponents under the forcing can be
calculated for each oscillator. Fig. 3 shows the LCLEs of two
Fig. 4. Direct evidence of generalized synchronization between two uncoupled
Lorenz chaotic oscillators in Eq. (2) driven by common chaotic signals. (a) The
LCLEs of two driven systems. (b) The MFNN parameter versus the forcing
amplitude.

Lorenz systems with r1 = 28 and r2 = 35 driven by a common
noisy or chaotic signal. As the forcing amplitude is increased,
the LCLEs of the two driven systems become negative one af-
ter another, indicating that both driven systems have achieved
generalized synchronization with the drive system. This implies
a generalized-synchronization relation between the two driven
systems. In fact, in Eq. (1), dynamical systems x and y can
be regarded as two chaotic oscillators bidirectionally coupled
through the common forcing ξ(t). Thus the synchronization be-
tween two different chaotic systems driven by a common noisy
or chaotic signal can be understood as generalized synchroniza-
tion in mutually coupled chaotic systems [14].

We now provide direct evidence to show that generalized
synchronization can be achieved between two mismatched
chaotic systems driven by a common chaotic signal. In this
example, the drive system is the Rössler system described in
the caption of Fig. 1. The two driven systems are two Lorenz
systems [Eq. (2)] with r1 = 35 and r2 = 28, respectively. The
forcing term ξ(t) in Eq. (2) is replaced by the feedback type
−D(y1,2 − yd), where yd denotes the y variables in the driving
Rössler system. In Fig. 4(a), the LCLEs of two driven systems
versus the forcing amplitude are plotted. It is seen that both
LCLEs become negative when the forcing amplitude is large
enough. In this regime, generalized synchronization between
the two driven systems occur. In order to show this relation
directly, we apply the mutual false nearest neighbor (MFNN)
method proposed in Ref. [1]. The MFNN parameter pm is de-
fined as

(4)pm =
〈 |yn − yn(NND)|
|xn − xn(NND)|

|xn − xn(NNR)|
|yn − yn(NNR)|

〉
.

Here n is the time index. xn is an arbitrary point in the phase
space of the drive system and yn is its corresponding image
in the response system. The nearest phase space neighbor of
xn has time index n(NND) and the nearest phase space neigh-
bor of yn has time index n(NNR). The 〈·〉 denotes the average
of reference point on the attractor. This parameter will be of
the order of unity if generalized synchronization exists between
two systems. Otherwise, it is much larger than unity. The re-
sult of MFNN calculation is shown in Fig. 4(b). We see that
for D > 1 where both LCLEs are negative, the values of pm

are of the order of unity. This represents direct evidence that
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generalized synchronization has been established between two
different chaotic systems driven by a common chaotic signal.

We finally consider chaos-induced and noise-induced phase
synchronization. Noise-induced phase synchronization has
been studied in Ref. [9], where it is shown that phase syn-
chronization in a statistical sense can be achieved between two
chaotic oscillators in the presence of common noise. However,
perfect phase synchronization as characterized by a zero differ-
ence between the oscillating frequencies, cannot be achieved
because of noise. Here, we show that such phase synchro-
nization can be achieved between two Rössler oscillators with
different natural frequencies when they are driven by a com-
mon chaotic signal. We use a pair of phase-coherent Rössler
oscillators given by

dx1,2

dt
= −(ω1,2y1,2 + z1,2),

dy1,2

dt
= (ω1,2x1,2 + 0.15y1,2) + ξ(t),

(5)
dz1,2

dt
= 0.2 + z1,2(x1,2 − 8.5),

where ω1,2 are parameters. We choose ω1 = 0.97 and ω2 =
1.03 so that the two oscillators are not identical. Fig. 5(a)
shows, when the common driving signal ξ(t) comes from an-
other chaotic Rössler oscillator [described by Eq. (5) but with
ω = 1.0], the mean frequency difference �Ω between the two
driven oscillators versus the forcing amplitude D. We see that
chaos-induced phase synchronization occurs for D > Dc ≈ 0.4
where �Ω vanishes. The mean frequency differences between
the drive and the two driven oscillators versus D are shown in
Fig. 5(b). Fig. 5(c) shows the two sets of LCLEs for the two
driven oscillators. We observe that �Ω = 0 apparently requires
that both the null conditional Lyapunov exponents from the two

Fig. 5. Chaos-induced phase synchronization between two uncoupled chaotic
Rössler oscillators, (a) the mean frequency difference �Ω between the two
driven oscillators versus the forcing amplitude D, (b) the mean frequency dif-
ferences between the drive and the two driven oscillators versus D, (c) two sets
of LCLEs (one from each driven oscillator) versus D, and (d) phase-coherent
attractor in the driven oscillator in the synchronized regime.
oscillators be negative. Fig. 5(d) shows that the driven oscillator
remains phase-coherent under the forcing.

In summary, we have argued that noise-induced synchro-
nization and the more recent phenomenon of noise-induced
phase synchronization can be reasonably understood from the
standpoint of generalized synchronization. Both types of syn-
chronization can be predicted based on the signs of the condi-
tional Lyapunov exponents. In particular, noise-induced phase
synchronization requires all null conditional exponents be neg-
ative. These phenomena are relevant in a variety of contexts
and may have potential applications [6,7,9]. Our findings not
only unify two seemingly independent domains of synchroniza-
tion, i.e., the usual chaotic synchronization and noise-induced
synchronization, but also can avoid the conceptual difficulty of
“common noise” which is frequently used in the study of noise-
induced synchronization.
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