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Abstract

We propose a scheme to generate binary code for baseband spread-spectrum communication by using a chain
chaotic maps. We compare the performances of this type of spatiotemporal chaotic code with those of a conventional
frequently in digital communication, the Gold code, and demonstrate that our code is comparable or even superior to the G
code in several key aspects: security, bit error rate, code generation speed, and the number of possible code sequen
field of communicating with chaos faces doubts in terms of performance comparison with conventional digital commu
schemes, our work gives a clear message that communicating with chaos can be advantageous and it deserves furth
from the nonlinear science community.
 2004 Elsevier B.V. All rights reserved.
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The field of communicating with chaos starts w
the work of Pecora and Carroll on synchronization
chaotic systems[1] and that of Hayes et al. on enco
ing information using symbolic dynamics[2,3]. Since
then there has been a tremendous amount of e
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in this area in the hope that a new communicat
scheme may arise with potential for implementat
in realistic applications. Representative works inclu
that by Kocarev et al. who used the idea of mask
to hide information in chaotic signals[4], by Cuomo
and Oppenheim who demonstrated that a messag
indeed be transmitted by using chaotic synchron
tion [5], and by Parlitz et al. who considered chao
modulation in combination with the traditional spread
.
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, as
spectrum communication technique for transmitt
binary information[6,7]. The important issue of se
curity was also considered[8–16]. In terms of the
symbolic dynamics approach[2,3], various scheme
were proposed and the nonlinear dynamics of the c
ing process were studied[17–20]. For recent progress
see Ref.[21].

As conventional digital communication technol
gies have become fairly advanced and widesprea
a burning issue facing researchers in communica
ing with chaos is how it compares with the existi
schemes in terms of performances. The purpos
this Letter is address one issue that is essentia
any digital communication scheme, conventional o
chaos-based: pseudo-random code generation. Con
ventionally, code generation is accomplished by us
linear shift-register generators that generate binary
quences such as the Gold code for spread-spec
communication[22]. Such sequences are pseud
random, and the idea is to convolute the sequen
with the wave signal that carries the information
be transmitted. At the receiver, the original inform
tion is recovered by a despreading process, whic
achieved by correlating the received spread signal w
a synchronized replica of the code signal. Becaus
the pseudo-randomness of the code, the transmittin
signal usually has a bandwidth that is much grea
than the minimum bandwidth necessary to send
information, rendering the signal secure and no
resistant. This spread-spectrum technique has bec
the cornerstone of many modern digital communi
tion systems, including the global positioning syste
[23]. As we can see, the key to spreading the sp
trum of the communication signal is a proper pseu
random code.

In this Letter, we propose a scheme based o
class of spatio-temporal chaotic dynamical syste
to generate pseudo-random code for spread-spec
communication. In particular, we use a chain of u
directionally coupled chaotic maps[24,25] to gener-
ate binary code sequences. This type of coupled-
system was originally proposed for encryption of
formation but here we address the problem of c
generation for spectrum spreading. We choose the
tem because it has fast speed and robust synchro
tion properties, thereby being capable of facilitati
the final despreading process at the receiver end
shall present analysis and numerical evidence that
-

spatio-temporal chaoticcode can be comparable
even superior to conventional pseudo-random co
such as the Gold code in several key aspects: sec
bit error rate, code generation speed, and the num
of possible code sequences. Since these results
been obtained by comparing our code directly a
quantitatively with the Gold code, they are encour
ing in the sense that they may help reinforce the sp
ulation that chaos-based communication schemes
be advantageous, a belief that stimulated many w
on communicating with chaos in the nonlinear-scienc
community.

We use the following class of unidirectionally co
pled chaotic maps to generate binary codes:

xi(n + 1) = (1− εi)f
[
xi(n)

] + εif
[
xi−1(n)

]
,

(1)i = 1,2, . . . ,m,

where m is the number of coupled maps,f (x) =
4x(1 − x) is the chaotic logistic map, andεi is the
coupling strength that can potentially be used as
secret keys for secure communication[26,27]. While
both space and time are discrete in Eq.(1), the dy-
namical variablesxi are continuous. Givenxi(n), to
generate a sequence of binary numbersKi(n), we use
the following procedure:

Mi(n) = int
[
xi(n) × 10µ

]
mod

(
2ν

)
,

(2)Ki(n) = binary
[
Mi(n)

]
,

where ν is the number of bits of the source info
mation, andµ is an integer chosen such that 10µ is
on the order of the inverse of the computer precis
The boundary condition is given byx0(n) = K(n)/2ν ,
where K(n) = int[xm(n) × 10µ] mod (2ν). We see
thatMi(n) represents the number of insignificant d
its of xi(n) and Ki(n) is simply the binary version
of Mi(n). For a given coupled-map lattice, Eq.(2)
generates, for each map,ν bits of binary data at eac
iteration. Regarding each map as a code generat
lattice of m coupled maps thus represents a para
set ofm code generators. This is shown schematic
in Fig. 1. For spread-spectrum communication, ea
user can be assigned a map in the lattice, and
code sequenceKi (i = 1, . . . ,m) of lengthN can be
used as a basis function for modulation (in genera
basis is constructed by several iterations since eac
eration only contributesν bit codes for each lattice)
A possible modulation scheme can be, for instance
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Fig. 1. Black diagram of the binaryspatiotemporal chaotic code ge
erator.

follows: if the binary information bit to be transmi
ted is I i = 1, the modulated bit isSi = Ki , while if
I i = 0, Si = −Ki is chosen.

To recover the transmitted information on the
ceiver end, an identical chain of synchronized c
pled maps is needed. For simplicity, at the first st
we assume that the transmitter and receiver are
chronized by having the same parameters and in
conditions. Binary information can be recovered
the process of coherent demodulation using corr
tors at the receiver end[22]. In our coupled-map lattice
scheme, each lattice site on the receiver end can a
ally be regarded as a correlator.

Some basic properties of a pseudo-random code
auto- and cross-correlations, balance, run-length
tribution, and frequency spectrum. We now disc
these properties for our chaotic code. (1) Given t
binary sequencesKi(N) and Kj(N), the auto- and
cross-correlations are defined, respectively, as follo

Cii(τ ) =
∑N

l=1 Ki(l)Ki(l + τ )∑N
l=1[Ki(l)]2 and

(3)Cij (τ ) =
∑N

l=1 Ki(l)Kj (l + τ )∑N
l=1[Ki(l)]2 .

In general, it is desirable to have as small values
possible for the correlations (except forτ = 0 in the
autocorrelation) to ensure security and to overcome
terferences in a multi-user environment. As shown
Fig. 2(a) and (b), our chaotic codes have these de
able properties, where in the simulation, codes w
length ofN = 27 − 1 bits are used. (2) The balan
property measures the probability for observing z
(or one) in a code which, in the ideal case, sho
be 1/2 so that the codes are as random as poss
-

Simulation results of the two probabilities for ze
and one are shown inFig. 2(c), where we see tha
as the code length is increased, both probabilities
proach 1/2. (3) For a purely random binary sequen
the probability for observing a symbol consecutivelyL

times decreases withL according to 2−L. Our chaotic
binary code actually possesses this property, as sh
in Fig. 2(d). (4) Finally, the power spectral density o
purely random sequence has the following form[28]:

(4)S(f ) = t

(
sinπf t

πf t

)2

,

wheret is the actual time duration of one bit of cod
sequence.Fig. 3shows an example of the power spe
tral density of a chaotic binary code, wheret = 1/N

andN = 214 is the length of the example sequen
For comparison, the densityS(f ) in Eq. (4) is also
plotted (the upper trace). We see that the density of
chaotic code follows closely that of a purely rando
sequence. These results suggest that chaotic c
generated by coupled map lattices satisfy the b
requirements for secure, spread-spectrum commun
tion.

We now consider a multi-user environment, whe
interference and noise are the major sources of err
a spread-spectrum communication[22], and demon-
strate that the error performance of our chaotic bin
sequences is comparable to the Gold code that is
sidered optimal and used commonly in many m
ern digital communication systems. LetSu(t) be the
pulse-amplitude modulation information signal of t
uth user:

Su(t) =
∞∑

s=0

Su
s gT (t − sT ),

whereSu
s ∈ {−1,+1} are the binary symbols that e

code the information,gT is a rectangular pulse whic
is 1 within [0, T ] and 0 outside, andT is the duration
of each information bit. SupposeN is the length of the
binary sequence used to modulate one information
With binary sequencesyu

l (l = 1, . . . ,N ) generated by
Eqs.(1) and (2), we can construct the spreading bas

Qu(t) =
∞∑

s=0

Qu
s (t)gT (t − sT ) with

(5)Qu
s (t) =

(s+1)N∑
yu
l gT/N

(
t − l

T

N

)
,

l=sN+1
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Fig. 2. For the chaotic code generator Eqs.(1) and (2)with µ = 10 andν = 6, (a), (b) autocorrelation and cross-correlation of binary seque
of lengthN = 27 − 1 bits, respectively. The results were averaged using 10 realizations. (c) Probabilities of observing the numbers o
in a binary code (the balance property), and (d) exponential decay in the probability to observe a number of consecutive zeros (the run-le
distribution). All indicate that chaotic codes are comparable to classical codes in terms of the basic properties required for spread-sp
communication.
The

and
e
s

Fig. 3. For Eqs.(1) and (2)with µ = 10 andν = 6, a typical power
spectral density of the generated chaotic code (the lower trace). Also
shown is the density from a purely random sequence (the upper
trace).

wheregT/N is 1 within [0, T /N] and 0 outside,l is
the location of the bits in the spreading sequence.
output spreading signal for symbolSu

s can be written
as

(6)Su
s (t) = Su

s Qu
s (t) =

(s+1)N∑
l=sN+1

Su
s yu

l gT/N

(
t − l

T

N

)
.

In the simple case where there is only a single-user
noise is absent, the symbolSu

s can be recovered at th
receiver end by correlatingSu

s (t) with the same basi
Qu

s (t):

Φu
s = 1

T

(s+1)T∫
sT

Qu
s (t)Su

s (t) dt

(7)= Su
s

(s+1)N∑
l=sN+1

∣∣yu
l

∣∣2 = NSu
s .
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In a multi-user environment, the interference cau
by thevth user at theuth receiver is

Ψ uv
s = 1

T

(s+1)T∫
sT

Qv
s (t)S

u
s (t) dt

(8)= Su
s

(s+1)N∑
l=sN+1

yu
l yv

l .

Say there areU users sharing the same channel. Si
the binary chaotic sequences generated are rando
practical time scales that are typically much long
than the correlation time of the underlying chao
process, the interference term acting on theuth user
can be regarded as a sum of zero mean, indepen
random variables[29]:

(9)
(
σu

)2 = E
[(

Ψ u
s

)2] = E

[(
U∑

v �=u,v=1

Ψ uv
s

)2]
,

whereE[.] is the mean value of all symbols transm
ted. Since the signal-to-interference ratio for theuth
user is proportional to(Φu

s /σu)2, by choosing 0 as th
decision criterion we can write the bit-error-rate as

(10)Perr = Q
(
Φu

s /σu
)
,

whereQ(x) = 1/
√

2π
∫ ∞
x

e−y2/2 dy is the error func-
tion. In the presence of noise, the bit error rate
comes

(11)Perr = Q
[
Φu

s /
(
σu + σ

)]
,

whereσ is the variance of the additive Gaussian wh
noise.

Eq. (9) indicates that the variance of multi-user i
terference becomes large as the number of use
increased.Fig. 4(a) shows, forN = 27−1 andm = 60
in Eq. (1), the bit error rate as a function of the num
ber (U ) of users. For comparison, we plot the sa
relation but for the classical Gold sequences ge
ated using a 25-stage linear shift register generators.1

1 A Gold code is constructed using two maximum-length
quences (m-sequences). Briefly, anm-sequence can be generated
using a simple linear shift register generator that has all the feed
signals returned to a single input of a shift register, or a delay l
Given a set of feedback connection coefficients(c1, . . . , cn), where
ci is chosen to be either 0 (open) or 1 (connect), the sequenceai (0
t

We see that the differences between the bit error r
in our chaotic sequences and Gold sequences ar
significant for small values ofU and neglectable fo
large values ofU , suggesting that our chaotic cod
sequences can perform almost as well as the Gold
quence in terms of the bit error rate in a multi-us
environment. This result is further strengthened
simulation result of the bit error rate versus the sign
to-noise ratio, as shown inFig. 4(b) for four represen
tative values ofU . For each value ofU , two data sets
are plotted, the lower one from the Gold code and
upper one from the chaotic code. We see that the
ferences in the bit error rate between the two codes
small, as desired.

While chaotic signals possess a number of pro
ties typically associated with random signals, wh
makes chaotic codes suitable for spread-spec
communication, the issue of synchronizability may
of concern. Without drivering signals, any mismat
in the initial conditions will cause desynchroniz
tion events. Even under self-synchronous schemes
chaotic systems, the synchronization time may be v
long and often induces a high bit error rate in pract
which can be particularly serious for high-dimensio
chaotic systems. Fortunately, for our system(1), be-
cause of the uni-directionally coupled map lattic
scheme, these difficulties can be alleviated, as prev
work demonstrated that fast and robust synchron
tion can be achieved when the coupling strength
ceeds a reasonable amount[30]. For instance, we hav
found in our simulation that for two systems given
Eq. (1), one acting as a transmitter and another a
receiver, the synchronization time is typically with

or 1) is generated according to the recursive formula:ai = c1ai−1 +
c2ai−2 + · · · + cnai−n = ∑n

k=1 ckai−k mod (2), where all terms
are binary (0 or 1). The sequence so generated is pseudo-ra
in the sense that the period (or length) of the sequence is 2n − 1.
Them-sequence codes, while convenient to generate, are not secu
because they are linear. In addition,the crosscorrelation between in
dependently generatedm-sequences typically has large values a
hence, they are not usable in a multi-user environment. To o
come these difficulties, the Gold codes are used, which are pro
codes achieved by the exclusive or-ring with modulo-2 adding
two m-sequences. The code sequences are added bit by bit by
chronous clocking. In general,a large number of Gold codes wit
the same length and with controlled cros-scorrelation can be ge
ated. For mathematical details ofm-sequences and Gold codes, s
Ref. [22].
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Fig. 4. For Eqs.(1) and (2)with µ = 10, ν = 6, andN = 27 − 1, (a) bit error rate versus the user number in a multi-user and nois
environment, and (b) bit error rate versus the signal-to-noise ratio in a multi-user and noisy environment. Also shown in both pane
corresponding plots from the classical Gold code.
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150 iterations forε = 0.95 andm = 60. To transmit
the driving signal for synchronization, the spread
method can again be used. For instance, from the
map site in the transmitter system one can obta
binary sequenceKm(n), as in Eq.(2). This binary
sequence can be transmitted as information bits
some standard spreading method such as one util
the Gold code. The binary sequance can be conve
into a continuous signal at the receiver, and then
used to synchronize the receiver system. Once
chronization between the transmitter and the rece
is established, spread-spectrum communication u
chaotic codes can then be recovered.

In comparison with classical codes, chaotic co
not only have comparable performance in dealing w
multi-user interference and noise disturbance, but
have some special properties superior to the form
Firstly, classical codes generated by linear shift r
ister generators are easily decipherable once a s
sequential set of bits (2n + 1 with n being the num-
ber of generator stages) from the sequence is kno
In contrast, security of the modified spatiotempo
chaotic model, Eqs.(1) and (2), has been identified t
be extremely high, even higher than the new issued
vanced encryption standard[15,16,20,27]. Secondly,
for anm-stage linear shift register generator, the nu
ber of maximum length sequences is given byψ(2m −
1)/m, whereψ is the Euler’s totient function, and fo
each preferred pairm-sequences, the total number
the Gold sequences is only 2m − 1 [22]. In constrast,
for the coupled map system(1), any change of the
t

initial conditions or parameters will generatem new
sequences. Since both the initial conditions and the
rameters are real values and can be chosen random
certain ranges, theoretically there are an infinite nu
ber of sequences that can be generated. Furtherm
for each system there are a total ofm generators work
ing in parallel, and this can greatly improve the co
generating speed. We also find thatν, the number of
bits in a code, has little influence on the properties
performance of the codes. It is thus possible to ge
ate a large number of codes at fast speed.

A shortcoming of the chaotic communication schem
proposed in this Letter is that the transmitter and
receiver must be highly synchronizable, which stipu
lates that the two systems be nearly identical. Wh
synchronization time can be shortened by using m
significant digits rather thanthe least significant one
in generating the driving signal, the security of t
communication may be compromised. In practi
there is then a tradeoff between the synchroniza
speed and the degree of security. In this regard,
provements based on model selection and coup
schemes may help[26].

In conclusion, we have proposed a code genera
scheme based on spatiotemporal chaos in a coup
map lattice system, and demonstrated the potenti
use the codes for baseband spread-spectrum com
nication. The random nature and the properties of
codes in terms of spread-spectrum communication
teria are analyzed. In addition to being able to ma
some commonly used classical codes in several
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properties, our chaotic codes can be more secure
be generated at high speed in large numbers. T
results suggest that chaotic codes can be practic
useful for digital spread-spectrum communication.
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