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Abstract

The phenomenon of amplitude death in coupled nonlinear oscillators has been a topic of recent interest. We demonstrate
that a similar phenomenon can occur in a pair of time-delay coupled, external-cavity semiconductor lasers. In particular, with
coupling chaotic oscillations of the laser field can be converted into quasiperiodic motion and low-frequency fluctuations in
laser power can be suppressed.
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There has been an interest in the phenomenon of cycle oscillators are all identical [4], in sharp contrast
amplitude death [1-3] in the context of time-delay to the situation of zero time delay, where a broad dis-
coupled limit-cycle oscillators [4,5]. The phenomenon tribution in the natural frequencies of the oscillators is
was first observed in coupled chemical oscillators [1]. necessary for the amplitude death [2,3]. Since time de-
It was then established theoretically that, if the cou- lay is presentin many physical applications, amplitude
pling is sufficiently strong and the spread in the nat- death may be pervasive in coupled oscillators. The aim
ural frequencies of the oscillators is sufficiently broad, of this Letter is to present evidence that a similar phe-
the amplitudes of the oscillations can reach zero [2,3]. nomenon can occur in time-delay coupled, external-
The issue of time-delayed coupling, which is physi- cavity semiconductor lasers. The observable phenom-
cally important, was recently addressed both theoreti- enon is that the laser oscillation can be modulated sig-
cally [4] and experimentally [5]. An interesting result nificantly. We call the phenomenamplitude modu-
is that in the presence of a time delay, amplitude death lation in coupled semiconductor lasers.
can occur even if the natural frequencies of the limit- In many applications of semiconductor lasers, opti-

cal feedbacks are deliberately introduced to improve
the performances of the laser such as the enhance-
msponding author. ment of the single longitudinal mode operation, spec-
E-mail address: yclai@chaos1.la.asu.edu (Y.-C. Lai). tral line narrowing, improved frequency stability, and
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J2‘ of the complex electrical fieldE(r) of a single lon-
gitudinal mode and the carrier densityt) averaged

J J
Tl
Tl1 .L spatially over the laser medium. The equations can be
- - . written in a standard normalized form [8]
n

1 dE(t 4
@) =A+ia) NOE() +ne " “"E( — 1),
Fig. 1. Our coupling scheme generating amplitude modulation in d
external-cavity semiconductor lasers. T dN (1)

dt

wavelength tunability, etc. [6]. However, at moderate Wherea is the linewidth enhancement factor [3lo
feedback levels, which can be anticipated in most ap- 'S the angular frequency of the solitary lase, is
plications, the laser power can exhibit sudden, down- the photon life time,z, is the carrier lifetime,/ =
to-zero dropouts at random times, followed by a slow < — Jth (J is the injected constant current density
and gradual recovery after each dropout. The phenom- an?jth is the threshold)V (r) = n () — nt, andni =
enon is most serious when the pumping currentis close 7~ 1S the threshold carrier density for the solitary

to the solitary threshold. The average frequency of the [aser- The external cavity is characterized by two pa-
dropouts is typically at the MHz-level, which is sev- rameters: (i) the coefficient characterizing the rela-

eral orders of magnitude smaller than that of the soli- V& @mountof lightreflected back into the laser cavity,
tary laser relaxation oscillation, hence the term low- and (ii) the delay time = 2L /c that is the round-trip
frequency fluctuations (LFFs). In most applications, Ume of the lightin the external cavity of length The
LFFs are undesirable. As we will show, our amplitude- 92in per unit time of the single Ionzg|tud|nal mode is
modulation phenomenon can be used to potentially Gt E) = Guln(t) — nol(1 — €| E(®)[%), whereG, is
suppress the LFFs. the modal gain coe_ff|C|entz,o_|s the carrier dens_lty at

We consider a pair of coupled semiconductor lasers, fransparency, and is the gain saturation coefficient.
as schematically illustrated in Fig. 1. Two laser diodes, N régimes of LFFs, typically ~ 0 so that, approxi-
denoted byL1 and Ly, are mutually coupled through mately,G (n, E) does hot (_jgpend onthe ele(_:trlcal field
a coupling parameter; < 1, i.e., an fraction of the E(t) [_10]. The two remaining parameters in the LK-
laser field of L1 is injected intoL, and vice versa. ~ €duations arg =1,y ang = 7/7p. The power of
LaserL; is subject to an additional optical feedback, thelaserisP(:) = |E ()|~ and we denote the phase of
characterized by the external mirraf with reflec- (€ laser field by (r). In our scheme of two coupled
tion coefficient;,. The physical distance betweén lasers, the coupled LK equations can be written as
and Ly is I3 and the length of the external cavity of dE1(r) ) -

L is I. We shall demonstrate that with the coupling g, ~ — (* T i@N1E1(t) + n1e Ea(t — ).
scheme, which can be implemented in laboratory ex-  gN4(r)
periments, the optical output from the lader can be
modulated so that its maximum values are decreased j r,(r)
but its minimum values, which is zero when it is un-
coupled withL2 and subject to optical feedbacks from
M, is bounded away from zero. The average power
of the output fromZ, maintains at approximately the AN Jo— Na(t) — [2Na() + 1| E20) 2. (2)
same level as that in the absence of coupling. Such sus- ~ dt

tained operation of the laser without complete power wherer; =1[1/c andto = 2l2/c. In our numerical ex-
dropouts occurs in parameter regions of positive mea- periments we set the parameters such that the individ-
sure. ual lasers are near their threshol@s:= 1000,x = 6,

The fundamental equations modeling a single exter- andJy, J2 < 0.01. The bifurcation parameters args
nal-cavity semiconductor laser is a set of delay- andrp . We utilize the forth-order Adams—Bashford—
differential equations, known as the Lang—Kobayashi Moulton (ABM) predictor—corrector method [11,12]
(LK) equations [7], which describe the time evolutions  with step sizedr = t1/n, to integrate Eq. (2), where

=J — N(1) — [2N (1) + 1| E(D)|?, (1)

= J1— N1(t) — [2N1(2) + 1] E1(0)|?,

= (L +ia)N2Eo(t) + nie "1 Eq(t — 1)

+ n2e 22 Eo(t — 1),
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Fig. 3. For the coupled laser system, the maximum (solid line) and
t minimum (dotted line) values of the power output versusgajor

fixed to = 1000, (b)zo for fixed ny = 3.3 x 10-3, and (c)wy for
Fig. 2. Time traces of the power output: (a) uncoupled laser, wjr1 = —1, 71 = 7o = 1000. The locked regimes are those where
(b) coupled system (Eqg. (2)) in a locked regime (see Fig. 3) where the power dropouts associated with LFFs are avoided. Note that
the amplitude of the laser field has been modulated in a desirable in (c), there are substantial amounts of frequency detuning between
manner so that the power output no longer drops down to zero, and the two lasers. The wild fluctuations in power output in region A
(c) coupled system in an unlocked regime. Time is in units of the (not a locked region) suggests the existence of two LFF attractors
photon lifetimez,, (see [8]). with complicated basins.

n, = 1000 is chosen to be the number of initial condi- dom times. In contrast, the output powei(r) of the
tions in the time intervals-t12 < r < 0. In what fol- coupled laser system can be made more regular and
lows, we use symbol®, N and Z without subscript its minimum values are bounded away from zero, as
as for uncoupled lasers while symbols with subscripts shown in Fig. 2(b), where parameters values are set to
for coupled lasers. be: 7 = 2 = 1000,J1 = 4 x 1073, Jo =2 x 1073,

We now demonstrate that the coupling scheme il- 5 =2 x 1073, andn, = 3.3 x 10-3. Thus, although
lustrated in Fig. 1 can modulate the laser field in a LFFs are still present in the coupled system, they are
desirable manner so that the output power no longer modulated in a desirable way. Comparison between
drops down to zero. To compare the performance of Fig. 2(a) and (b) indicates that, while the amplitude of
the coupled laser system with that of an individual the power fluctuations is reduced in the coupled sys-
laser with optical feedback, we refer to a laser de- tem, its average power output remains approximately
scribed by the original LK-equations with feedback the same as that of the uncoupled laser. Thus, the cou-
parametem, t, and J asuncoupled, while these by pled laser system can operate without degrading in
Eq. (2) ascoupled. Fig. 2(a) shows for an uncou- power output but with the desirable feature that the
pled laser withn = 2 x 1073, ¢ = 1000, andJ = instantaneous power will never be zero. The features
4 x 1073, a typical time trace of the laser output power in Fig. 2(b) in fact occur in finite parameter regions,
P(t), where we see that power dropouts occur at ran- as shown in Fig. 3(a), (b), and (c), where the maxi-
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mum and minimum values of the power output of the points, which is determined by their eigenvalues, gives
coupled laser system are plotted versus the feedbackrise to phenomenon such as LFFs [14,15].
strengths, the delay timerp, and the frequencys, A trajectory in the phase space can visit the neigh-
respectively. We see that there are varitogked pa- borhoods of ECMs and antimodes but can never stay
rameter regions of finite size in which amplitude mod- there for a long time because these fixed points are
ulation occurs. A feature is that if we wish to have an unstable. Typically, there are multiple coexisting at-
average output at some specific level, we can/ix tractors, such as those giving rise to LFFs (the LFF
at that level and then vary other parameterd.efso attractors) and the MGM attractor [12,15]. The basin
that the system is in a locked regime. In the unlocked of the MGM attractor is, however, small in the phase
regime the power fluctuations are irregular and they space, which means that it is difficult to physically
drop near to zero as shown in Fig. 2(c). Varying other place the initial state of the laser near the MGM at-
parameters, such ag, t1 ande, results in a similar  tractor. LFFs arise when the trajectory wanders on an
behavior. We have also found that in the locked regime LFF attractor whose basin is not dynamically con-
the two lasers exhibit the following behavior: a small nected with the basin of the MGM attractor, as shown
distance between two nearby phase-space points forin Fig. 4(a) and (b) for the uncoupled lasérsand L2
one laser tends to correspond to a small distance in an-at the parametets= 2 x 1073, J =4 x 10~ 3 andn =
other laser. This is in fact a generalized synchronous 3.3 x 103, J = 2 x 1073, respectively. The plots in
behavior [13]. Fig. 4(a) and (b) represent the LFF attractors [14,15].
We now give a heuristic theory, based on dynam- When these two lasers are coupled together with a time
ics, for the numerically observed modulation of laser delay, the ranges in th&—N plane of these attrac-
oscillations. For an uncoupled laser, the set of station- tors are reduced dramatically, as shown in Fig. 4(c),
ary solutions constitutes the most fundamental dynam- where the upper-right attractor corresponds to the dy-
ical invariant sets responsible for LFFs [12,14], which namics of lasef.1 in (Z1, N1)-plane and the lower-left
are determined by the following set of transcendental attractor to that ofL, in the (Z2, N»)-plane. We ob-

equations: serve that, due to coupling, both lasers operate more
locally in the phase space: lasks tends to stay near

Ns = —ncod¢o + Zy), the MGM, while the dynamical trajectories &f (its

Ny =(J — P,)/(1L+2P,), output power is the one for the whqle coupled system)

_ L are confined in a phase-space region where the corre-

Zy = —ntv/14a?sin[Z; + ¢o + tan ta], sponding power can never be zero. Examination using

n? = N2+ (Zs/t — aNy)>, ) a Poincaré surface _of section indicates t_hat _these small
attractors are quasiperiodic, as shown in Fig. 4(d) for

where the phase-delay variable &(t) = ¢ () — laser Ly. This is then analogous to the phenomenon

¢(t — 1) and Z; = (ws — wo)T. The fixed points are  of amplitude death [4,5] with the distinction that, in
typically distributed along an elliptic curve in the such a case, the dynamical invariant set changes from
(Z, N) plane. The physical nature of these fixed points a limit cycle to a steady state, whereas in our case, an
changes with a bifurcation parameter, say The LFF attractor, which is typically chaotic [15], is con-
following is a typical scenario [15]. Ag is increased  verted into a quasiperiodic one via time-delayed cou-
from zero, a saddle-node bifurcation occurs, where a pling. Fig. 5 shows a bifurcation diagram, where the
pair of fixed points, one stable and another unstable, set of local maxima of; (¢) is plotted versus the cou-

is created. The stable one is a maximum gain mode pling parameter,. For n2 < nz., P1(t) is apparently
(MGM) while the unstable fixed point is an antimode. chaotic, while fornz > n2., P1(¢) is regular (quasi-

As n is increased further, the antimode remains so but periodic). The origin of quasiperiodic motion may be
the stable fixed point can become an unstable one viarelated to the existence of “backbone” regular dynam-
a Hopf bifurcation, usually called an external-cavity ics associated with LFFs when the pumping current is
mode (ECM). For a given parameter value, typically close to the solitary threshold of the laser [16].

there are an MGM, a number of ECMs and antimodes.  The wild fluctuations in the power output of the
The dynamical interplay among these distinct fixed coupled laser system in region A in Fig. 3(c) indicates
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Fig. 4. LFF attractors projected in the-N plane: (a) laser1,
absence of.,, with parameters) = 2 x 103 and J = 4 x 10~3;

(b) laserLy, in absence of_q, with parameters) = 3.3 x 1073
and J = 2 x 1073, (c) The trajectories of.; and L in plane
Z1—N1 and Zy—-N> plane, respectively, of coupled systems at
wy=-15x 103, The fixed points iiZ—N plane are those of the
uncoupled laset., of (b). (d) The Poincaré section of the trajectory
in (c) atZ1 =0, indicating its quasiperiodic nature.

the presence of two coexisting attractors: one similar
to that in a locked regime (Fig. 2(b)) and another in
an unlocked regime (Fig. 2(c)). A small change in the
parametet, can lead to a completely different attrac-
tor with distinct power output, implying complicated
basins of these attractors [17].
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Fig. 5. A typical bifurcation diagram for amplitude modulation:
local maxima of P1(¢) versus the coupling parameten. For

n2 < n2., P1(r) is apparently chaotic, while foyy > no., P1(t)

is regular (quasiperiodic). Other parameters are the same as for
Fig. 3(a).

reaches approximately zero, then this laser essentially
behaves dynamically like one without any feedback,
generating stable output with no power dropouts. For
laserL1, laserL, provides a physical means for gen-
erating close-to-zero feedback through ttyaamical
coupling between the lasers.

The above physical picture provides a heuristic ap-
proach to understand the bifurcation responsible for
the amplitude-modulation phenomenon. As the cou-
pling parameter;; changes so that amplitude modu-
lation occurs, effectively the amount of feedback into
the output laser is decreased. To make the analysis fea-
sible, we consider a simplified version of the LK equa-
tions [18]. In particular, we write the complex electri-
cal field as:E(r) = R(t) exfi¢ (r)], where R(t) and
¢ (¢) are the field amplitude and phase, respectively.
Since typically, the time variation of the phase is much
faster than that of the amplitude, the following ap-
proximation can be used [18R(+ — t) ~ R(¢), and
é~z(t)/T +2(t)/2, wherez(r) = ¢(t) — p(t — 1) iS
the phase delay. By choosing the laser powér =

Physically, the disappearance of complete power R?(r), the carrier density(r), and the phase delayr)
dropouts in our coupled laser system can be under- as the new set of dynamical variables, one can then ar-
stood by noticing that a semiconductor laser, when not rive at the following three-dimensional model [18]:

subject to any optical feedback, can generally main-
tain stable power output. LFFs occur when there is op-

tical feedback. When two lasers are coupled as in our

scheme (Fig. 1), if the interaction of the optical fields
is such that, on average, the feedback into ldser

O _ 2oy + neosz (0 + 40) ]P0,
% =J —n@® — (20() + 1) P(1),
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dz(tt) _ 2|:_Zi_t) +an(r) — nsin(Z(I) + ¢O)i|v 4)

which possesses the same steady state solutions a
those in the full LK equations, as determined by
Eq. (3).

The steady state solutions are the key to under-
standing the bifurcation leading to amplitude mod-
ulation. Eq. (3) is a set of transcendental equa-
tions which gives a series of solutions denoted by
(P, ns,z5), where a physical solution satisfies the
conditionn; < J. The stabilities of the fixed points are
determined by the eigenvalugshat are solutions of

B+ AN+ BL+C=0,

whereA, B, andC are given by:

1 1+ 2P
A= —+ncodzs + ¢o) + ,
T 2T
14+2pP,[1 1+ 2n,
B = — co P
2T |:'L' +n SZS +¢0):| + P o7
1+ 2n;
C=P
Soor

1
X [; + ncodzs + ¢o) — na Sin(zs + ¢0)]- (%)

There are only two possibilities for the three eigenval-
ues of a fixed point: either all three are real or, one is
real, sayr; = A, and the other two are complex, say
X2’3 =r xis, wherer ands are the real and imaginary
parts, respectively.

We choose the feedback paramejeas the bifur-
cation parameter and describe how these fixed points
are created as the bifurcation parametés increased
from zero. For illustrative purpose we set the other pa-
rameters as = 1000,7 = 1000,« = 6.0, J = 0.001,
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Fig. 6. For n = 0.0055: (a) a graphical representation of the
transcendental equation (3) (the third equation); (b) the MG#ls (
and ECMs §), and the antimodesx(). The horizontal dotted line
divides the parameter space into two regions: in Region | the LFFs
are sustained, while in Region Il the LFFs are transient.

leads to a saddle-node bifurcation where a pair of fixed
points, one stable and another unstable, is created. The
stable one is an MGM while the unstable fixed point
is an antimode. As; is increased further from the
saddle-node bifurcation point, the antimode remains
so but the stable fixed point can be an MGM for only

a small range of values of. The evolution of a typi-

cal saddle-node pair is shown in Fig. 6(b) in the;
plane, where for this particular pair a Hopf bifurca-

and¢o = wpr = —1. The solutions of Eq. (3) can be tion occurs ay ~ 0.00328 (the horizontal dotted line)
represented graphically as the intersecting points be-which turns the original stable fixed point (MGM) into
tween the solid curve (the third equation) and the dot- an unstable one (in fact an ECM). At the Hopf bifur-
ted line, as shown in Fig. 6(a), where the number of cation, the coefficientai, B, and C in Eg. (5) sat-
solutions is proportional toyr+/«2 + 1. Of particu- isfy: A>0,C >0, andC — AB =0, wherew? = C

lar importance is the parameter interval in between andw is the frequency of the limit cycle at the bifur-
two successive tangencies of the dotted straight line cation point, and the value efbecomes positive from
with two adjacent branches of the sine curve. For in- the negative side. The Hopf bifurcation naturally di-
stance, Fig. 6(a) corresponds toiaaalue in between  vides the parameter interval into two distinct regions:
the tangencies of the dotted line with the two leftmost Region | (from the Hopf bifurcation to next saddle-
branches of the sine curve. Here we analyze one suchnode bifurcation, above the dotted line) and Region Il
parameter interval. The mathematical condition for a (from the original saddle-node bifurcation to the Hopf
tangency to occur ist = 0 andC = 0, which in fact bifurcation, below the dotted line). At the top end of
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Region I, a new saddle-node bifurcation occurs, after Acknowledgement

which the situation depicted in Fig. 6(b) repeats for
the newly created saddle-node pair. The antimodes and
ECMs, after being created, remain in the phase space
for a much larger parameter interval than those for the
MGMs. The LFF attractors in Region | are typically
chaotic while those in Region Il are regular [15hus

we see that the amplitude modulation phenomenon for
which a chaotic LFF attractor is converted into a reg-

ular one, istriggered by a Hopf bifurcation.

In summary, we have presented evidence for am-
plitude modulation in a pair of optically coupled,
external-cavity semiconductor lasers. The phenom-
enon occurs in parameter regimes of positive mea-
sure. The scheme is in fact suitable for experimen-
tal test. The two lasers and the mirror can be placed
at fixed distances so that the whole system falls in
a locking regime. Such a laser system possesses all
advantages associated with optical feedback, but with
no power dropouts. While we assume identical lasers
in our scheme, we find that the condition of identity
can be relaxed to certain extent. For instance, effective
elimination of power dropouts can be achieved even
when the mismatch between the two lasers is as large
as 10% (say, we set; = 6 anda = 6.5). However,
in the presence of larger mismatches, the ranges of the
locked regimes are too small for the scheme to be prac-
tically useful.

Finally, we stress the difference between our work
and the existing works on amplitude-death [4,5]. De-
spite the common coupling scheme employing time-
delayed signals, all existing works are for limit-cycle
oscillators, while ours deals witthaotic oscillators.
Previous studies indicate that LFFs in external-cavity
semiconductor lasers are the result of various chaotic
transitions [12,14]: the dynamics of such lasers in
the LFF regime are thus typically chaotic. As we
have demonstrated, time-delayed coupling can convert
the chaotic oscillation of the laser field with power
dropouts into quasiperiodic motion without power
dropouts. We have thus uncovered a more general
type of amplitude-modulation phenomenon in time-
delayed coupled nonlinear oscillators: transition from
chaotic oscillations to quasiperiodic motions. We think
this is a nontrivial generalization of the conventional
amplitude-death phenomenon that occurs in limit-
cycle oscillators.

A.P. and Y.C.L. were supported by AFOSR under
Grant No. F49620-98-1-0400.
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