
monstrate
lar, with
tions in
Physics Letters A 318 (2003) 71–77

www.elsevier.com/locate/pla

Amplitude modulation in a pair of time-delay coupled
external-cavity semiconductor lasers

Awadhesh Prasada, Ying-Cheng Laia,b,∗, Athanasios Gavrielidesc, Vassilios Kovanisc

a Department of Mathematics and SSERC, Arizona State University, Tempe, AZ 85287, USA
b Departments of Electrical Engineering and Physics, Arizona State University, Tempe, AZ 85287, USA

c Nonlinear Optics Center, Air Force Research Laboratory, DELO, Kirtland AFB, NM 87117, USA

Received 11 May 2002; received in revised form 4 October 2002; accepted 6 August 2003

Communicated by A.R. Bishop

Abstract

The phenomenon of amplitude death in coupled nonlinear oscillators has been a topic of recent interest. We de
that a similar phenomenon can occur in a pair of time-delay coupled, external-cavity semiconductor lasers. In particu
coupling chaotic oscillations of the laser field can be converted into quasiperiodic motion and low-frequency fluctua
laser power can be suppressed.
 2003 Elsevier B.V. All rights reserved.
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There has been an interest in the phenomeno
amplitude death [1–3] in the context of time-dela
coupled limit-cycle oscillators [4,5]. The phenomen
was first observed in coupled chemical oscillators
It was then established theoretically that, if the co
pling is sufficiently strong and the spread in the n
ural frequencies of the oscillators is sufficiently bro
the amplitudes of the oscillations can reach zero [2
The issue of time-delayed coupling, which is phy
cally important, was recently addressed both theor
cally [4] and experimentally [5]. An interesting resu
is that in the presence of a time delay, amplitude de
can occur even if the natural frequencies of the lim
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cycle oscillators are all identical [4], in sharp contr
to the situation of zero time delay, where a broad d
tribution in the natural frequencies of the oscillators
necessary for the amplitude death [2,3]. Since time
lay is present in many physical applications, amplitu
death may be pervasive in coupled oscillators. The
of this Letter is to present evidence that a similar p
nomenon can occur in time-delay coupled, extern
cavity semiconductor lasers. The observable phen
enon is that the laser oscillation can be modulated
nificantly. We call the phenomenonamplitude modu-
lation in coupled semiconductor lasers.

In many applications of semiconductor lasers, o
cal feedbacks are deliberately introduced to impr
the performances of the laser such as the enha
ment of the single longitudinal mode operation, sp
tral line narrowing, improved frequency stability, a
.
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Fig. 1. Our coupling scheme generating amplitude modulatio
external-cavity semiconductor lasers.

wavelength tunability, etc. [6]. However, at modera
feedback levels, which can be anticipated in most
plications, the laser power can exhibit sudden, do
to-zero dropouts at random times, followed by a sl
and gradual recovery after each dropout. The phen
enon is most serious when the pumping current is c
to the solitary threshold. The average frequency of
dropouts is typically at the MHz-level, which is se
eral orders of magnitude smaller than that of the s
tary laser relaxation oscillation, hence the term lo
frequency fluctuations (LFFs). In most applicatio
LFFs are undesirable. As we will show, our amplitud
modulation phenomenon can be used to potenti
suppress the LFFs.

We consider a pair of coupled semiconductor las
as schematically illustrated in Fig. 1. Two laser diod
denoted byL1 andL2, are mutually coupled throug
a coupling parameterη1 < 1, i.e., aη1 fraction of the
laser field ofL1 is injected intoL2 and vice versa
LaserL2 is subject to an additional optical feedbac
characterized by the external mirrorM with reflec-
tion coefficientη2. The physical distance betweenL1
andL2 is l1 and the length of the external cavity
L2 is l2. We shall demonstrate that with the coupli
scheme, which can be implemented in laboratory
periments, the optical output from the laserL1 can be
modulated so that its maximum values are decrea
but its minimum values, which is zero when it is u
coupled withL2 and subject to optical feedbacks fro
M, is bounded away from zero. The average po
of the output fromL1 maintains at approximately th
same level as that in the absence of coupling. Such
tained operation of the laser without complete pow
dropouts occurs in parameter regions of positive m
sure.

The fundamental equations modeling a single ex
nal-cavity semiconductor laser is a set of del
differential equations, known as the Lang–Kobaya
(LK) equations [7], which describe the time evolutio
-

of the complex electrical fieldE(t) of a single lon-
gitudinal mode and the carrier densityn(t) averaged
spatially over the laser medium. The equations can
written in a standard normalized form [8]

dE(t)

dt
= (1+ iα)N(t)E(t)+ ηe−iω0τE(t − τ ),

(1)T
dN(t)

dt
= J −N(t)− [2N(t)+ 1]|E(t)|2,

whereα is the linewidth enhancement factor [9],ω0
is the angular frequency of the solitary laser,τp is
the photon life time,τs is the carrier lifetime,J ≡
J −J th (J is the injected constant current dens
andJth is the threshold),N(t)≡ n(t)−nth, andnth =
τ−1
p is the threshold carrier density for the solita

laser. The external cavity is characterized by two
rameters: (i) the coefficientγ characterizing the rela
tive amount of light reflected back into the laser cav
and (ii) the delay timeτ = 2L/c that is the round-trip
time of the light in the external cavity of lengthL. The
gain per unit time of the single longitudinal mode
G(n,E)=Gn[n(t)− n0](1− ε|E(t)|2), whereGn is
the modal gain coefficient,n0 is the carrier density a
transparency, andε is the gain saturation coefficien
In regimes of LFFs, typicallyε ≈ 0 so that, approxi
mately,G(n,E) does not depend on the electrical fie
E(t) [10]. The two remaining parameters in the L
equations areη = τpγ andT = τs/τp. The power of
the laser isP(t)= |E(t)|2 and we denote the phase
the laser field byφ(t). In our scheme of two couple
lasers, the coupled LK equations can be written as

dE1(t)

dt
= (1+ iα)N1E1(t)+ η1e

−iω1τ1E2(t − τ1),

T
dN1(t)

dt
= J1 −N1(t)− [2N1(t)+ 1]|E1(t)|2,

dE2(t)

dt
= (1+ iα)N2E2(t)+ η1e

−iω1τ1E1(t − τ1)
+ η2e

−iω2τ2E2(t − τ2),
(2)T

dN2(t)

dt
= J2 −N2(t)− [2N2(t)+ 1]|E2(t)|2,

whereτ1 = l1/c andτ2 = 2l2/c. In our numerical ex-
periments we set the parameters such that the ind
ual lasers are near their thresholds:T = 1000,α = 6,
andJ1, J2< 0.01. The bifurcation parameters areη1,2
andτ1,2. We utilize the forth-order Adams–Bashford
Moulton (ABM) predictor–corrector method [11,1
with step sizedt = τ1/np to integrate Eq. (2), wher
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Fig. 2. Time traces of the power output: (a) uncoupled la
(b) coupled system (Eq. (2)) in a locked regime (see Fig. 3) wh
the amplitude of the laser field has been modulated in a desir
manner so that the power output no longer drops down to zero
(c) coupled system in an unlocked regime. Time is in units of
photon lifetimeτp (see [8]).

np = 1000 is chosen to be the number of initial con
tions in the time intervals−τ1,2 � t < 0. In what fol-
lows, we use symbolsP , N andZ without subscript
as for uncoupled lasers while symbols with subscr
for coupled lasers.

We now demonstrate that the coupling scheme
lustrated in Fig. 1 can modulate the laser field in
desirable manner so that the output power no lon
drops down to zero. To compare the performance
the coupled laser system with that of an individu
laser with optical feedback, we refer to a laser
scribed by the original LK-equations with feedba
parameterη, τ , andJ as uncoupled, while these by
Eq. (2) ascoupled. Fig. 2(a) shows for an uncou
pled laser withη = 2 × 10−3, τ = 1000, andJ =
4×10−3, a typical time trace of the laser output pow
P(t), where we see that power dropouts occur at r
Fig. 3. For the coupled laser system, the maximum (solid line)
minimum (dotted line) values of the power output versus (a)η2 for
fixed τ2 = 1000, (b)τ2 for fixed η2 = 3.3 × 10−3, and (c)ω2 for
ω1τ1 = −1, τ1 = τ2 = 1000. The locked regimes are those wh
the power dropouts associated with LFFs are avoided. Note
in (c), there are substantial amounts of frequency detuning betw
the two lasers. The wild fluctuations in power output in region
(not a locked region) suggests the existence of two LFF attrac
with complicated basins.

dom times. In contrast, the output powerP1(t) of the
coupled laser system can be made more regular
its minimum values are bounded away from zero,
shown in Fig. 2(b), where parameters values are s
be: τ1 = τ2 = 1000,J1 = 4 × 10−3, J2 = 2 × 10−3,
η1 = 2 × 10−3, andη2 = 3.3 × 10−3. Thus, although
LFFs are still present in the coupled system, they
modulated in a desirable way. Comparison betw
Fig. 2(a) and (b) indicates that, while the amplitude
the power fluctuations is reduced in the coupled s
tem, its average power output remains approxima
the same as that of the uncoupled laser. Thus, the
pled laser system can operate without degradin
power output but with the desirable feature that
instantaneous power will never be zero. The featu
in Fig. 2(b) in fact occur in finite parameter region
as shown in Fig. 3(a), (b), and (c), where the ma
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mum and minimum values of the power output of t
coupled laser system are plotted versus the feed
strengthη2, the delay timeτ2, and the frequencyω2,
respectively. We see that there are variouslocked pa-
rameter regions of finite size in which amplitude mo
ulation occurs. A feature is that if we wish to have
average output at some specific level, we can fixJ1
at that level and then vary other parameters ofL2 so
that the system is in a locked regime. In the unloc
regime the power fluctuations are irregular and th
drop near to zero as shown in Fig. 2(c). Varying ot
parameters, such asJ1, τ1 andα, results in a similar
behavior. We have also found that in the locked reg
the two lasers exhibit the following behavior: a sm
distance between two nearby phase-space point
one laser tends to correspond to a small distance in
other laser. This is in fact a generalized synchron
behavior [13].

We now give a heuristic theory, based on dyna
ics, for the numerically observed modulation of las
oscillations. For an uncoupled laser, the set of stat
ary solutions constitutes the most fundamental dyn
ical invariant sets responsible for LFFs [12,14], wh
are determined by the following set of transcende
equations:

Ns = −η cos(φ0 +Zs),
Ns = (J − Ps)/(1+ 2Ps),

Zs = −ητ
√

1+ α2 sin
[
Zs + φ0 + tan−1α

]
,

(3)η2 =N2
s + (Zs/τ − αNs)2,

where the phase-delay variable isZ(t) ≡ φ(t) −
φ(t − τ ) andZs = (ωs − ω0)τ . The fixed points are
typically distributed along an elliptic curve in th
(Z,N) plane. The physical nature of these fixed poi
changes with a bifurcation parameter, sayη. The
following is a typical scenario [15]. Asη is increased
from zero, a saddle-node bifurcation occurs, wher
pair of fixed points, one stable and another unsta
is created. The stable one is a maximum gain m
(MGM) while the unstable fixed point is an antimod
As η is increased further, the antimode remains so
the stable fixed point can become an unstable one
a Hopf bifurcation, usually called an external-cav
mode (ECM). For a given parameter value, typica
there are an MGM, a number of ECMs and antimod
The dynamical interplay among these distinct fix
points, which is determined by their eigenvalues, gi
rise to phenomenon such as LFFs [14,15].

A trajectory in the phase space can visit the nei
borhoods of ECMs and antimodes but can never
there for a long time because these fixed points
unstable. Typically, there are multiple coexisting
tractors, such as those giving rise to LFFs (the L
attractors) and the MGM attractor [12,15]. The ba
of the MGM attractor is, however, small in the pha
space, which means that it is difficult to physica
place the initial state of the laser near the MGM
tractor. LFFs arise when the trajectory wanders on
LFF attractor whose basin is not dynamically co
nected with the basin of the MGM attractor, as sho
in Fig. 4(a) and (b) for the uncoupled lasersL1 andL2
at the parametersη= 2×10−3, J = 4×10−3 andη=
3.3 × 10−3, J = 2 × 10−3, respectively. The plots in
Fig. 4(a) and (b) represent the LFF attractors [14,1
When these two lasers are coupled together with a
delay, the ranges in theZ–N plane of these attrac
tors are reduced dramatically, as shown in Fig. 4
where the upper-right attractor corresponds to the
namics of laserL1 in (Z1,N1)-plane and the lower-lef
attractor to that ofL2 in the (Z2,N2)-plane. We ob-
serve that, due to coupling, both lasers operate m
locally in the phase space: laserL2 tends to stay nea
the MGM, while the dynamical trajectories ofL1 (its
output power is the one for the whole coupled syste
are confined in a phase-space region where the c
sponding power can never be zero. Examination u
a Poincaré surface of section indicates that these s
attractors are quasiperiodic, as shown in Fig. 4(d)
laserL1. This is then analogous to the phenomen
of amplitude death [4,5] with the distinction that,
such a case, the dynamical invariant set changes
a limit cycle to a steady state, whereas in our case
LFF attractor, which is typically chaotic [15], is con
verted into a quasiperiodic one via time-delayed c
pling. Fig. 5 shows a bifurcation diagram, where t
set of local maxima ofP1(t) is plotted versus the cou
pling parameterη2. For η2 < η2c, P1(t) is apparently
chaotic, while forη2 > η2c, P1(t) is regular (quasi-
periodic). The origin of quasiperiodic motion may
related to the existence of “backbone” regular dyna
ics associated with LFFs when the pumping curren
close to the solitary threshold of the laser [16].

The wild fluctuations in the power output of th
coupled laser system in region A in Fig. 3(c) indica



A. Prasad et al. / Physics Letters A 318 (2003) 71–77 75

at
e
ry

ilar
in

the
c-
d

wer
der-
not
in-
op-
our
ds

n:

s for

ially
ck,
For
n-

ap-
for

ou-
u-
to
fea-
a-

ri-

ely.
ch
p-

n ar-
Fig. 4. LFF attractors projected in theZ–N plane: (a) laserL1,
absence ofL2, with parametersη = 2 × 10−3 andJ = 4 × 10−3;
(b) laserL2, in absence ofL1, with parametersη = 3.3 × 10−3

and J = 2 × 10−3. (c) The trajectories ofL1 and L2 in plane
Z1–N1 and Z2–N2 plane, respectively, of coupled systems
ω2 = −1.5× 10−3. The fixed points inZ–N plane are those of th
uncoupled laserL2 of (b). (d) The Poincaré section of the trajecto
in (c) atZ1 = 0, indicating its quasiperiodic nature.

the presence of two coexisting attractors: one sim
to that in a locked regime (Fig. 2(b)) and another
an unlocked regime (Fig. 2(c)). A small change in
parameterω2 can lead to a completely different attra
tor with distinct power output, implying complicate
basins of these attractors [17].

Physically, the disappearance of complete po
dropouts in our coupled laser system can be un
stood by noticing that a semiconductor laser, when
subject to any optical feedback, can generally ma
tain stable power output. LFFs occur when there is
tical feedback. When two lasers are coupled as in
scheme (Fig. 1), if the interaction of the optical fiel
is such that, on average, the feedback into laserL1
Fig. 5. A typical bifurcation diagram for amplitude modulatio
local maxima ofP1(t) versus the coupling parameterη2. For
η2 < η2c , P1(t) is apparently chaotic, while forη2 > η2c , P1(t)

is regular (quasiperiodic). Other parameters are the same a
Fig. 3(a).

reaches approximately zero, then this laser essent
behaves dynamically like one without any feedba
generating stable output with no power dropouts.
laserL1, laserL2 provides a physical means for ge
erating close-to-zero feedback through thedynamical
coupling between the lasers.

The above physical picture provides a heuristic
proach to understand the bifurcation responsible
the amplitude-modulation phenomenon. As the c
pling parameterη2 changes so that amplitude mod
lation occurs, effectively the amount of feedback in
the output laser is decreased. To make the analysis
sible, we consider a simplified version of the LK equ
tions [18]. In particular, we write the complex elect
cal field as:E(t) = R(t)exp[iφ(t)], whereR(t) and
φ(t) are the field amplitude and phase, respectiv
Since typically, the time variation of the phase is mu
faster than that of the amplitude, the following a
proximation can be used [18]:R(t − τ ) ∼ R(t), and
φ̇ ∼ z(t)/τ + ż(t)/2, wherez(t)= φ(t)− φ(t − τ ) is
the phase delay. By choosing the laser powerP(t) =
R2(t), the carrier densityn(t), and the phase delayz(t)
as the new set of dynamical variables, one can the
rive at the following three-dimensional model [18]:

dP(t)

dt
= 2

[
n(t)+ η cos

(
z(t)+ φ0

)]
P(t),

T dn(t)

dt
= J − n(t)− (

2n(t)+ 1
)
P(t),
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(4)
dz(t)

dt
= 2

[
−z(t)
τ

+ αn(t)− η sin
(
z(t)+ φ0

)]
,

which possesses the same steady state solution
those in the full LK equations, as determined
Eq. (3).

The steady state solutions are the key to und
standing the bifurcation leading to amplitude mo
ulation. Eq. (3) is a set of transcendental eq
tions which gives a series of solutions denoted
(Ps, ns, zs), where a physical solution satisfies t
conditionns � J . The stabilities of the fixed points ar
determined by the eigenvaluesλ̄ that are solutions of

λ̄3 +Aλ̄2 +Bλ̄+C = 0,

whereA, B, andC are given by:

A= 1

τ
+ η cos(zs + φ0)+ 1+ 2Ps

2T
,

B = 1+ 2Ps
2T

[
1

τ
+ η cos(zs + φ0)

]
+ Ps 1+ 2ns

2T
,

(5)

C = Ps 1+ 2ns
2T

×
[

1

τ
+ η cos(zs + φ0)− ηα sin(zs + φ0)

]
.

There are only two possibilities for the three eigenv
ues of a fixed point: either all three are real or, one
real, sayλ̄1 = λ, and the other two are complex, s
λ̄2,3 = r± is, wherer ands are the real and imaginar
parts, respectively.

We choose the feedback parameterη as the bifur-
cation parameter and describe how these fixed po
are created as the bifurcation parameterη is increased
from zero. For illustrative purpose we set the other
rameters asτ = 1000,T = 1000,α = 6.0, J = 0.001,
andφ0 = ω0τ = −1. The solutions of Eq. (3) can b
represented graphically as the intersecting points
tween the solid curve (the third equation) and the d
ted line, as shown in Fig. 6(a), where the number
solutions is proportional toητ

√
α2 + 1. Of particu-

lar importance is the parameter interval in betwe
two successive tangencies of the dotted straight
with two adjacent branches of the sine curve. For
stance, Fig. 6(a) corresponds to anη value in between
the tangencies of the dotted line with the two leftm
branches of the sine curve. Here we analyze one s
parameter interval. The mathematical condition fo
tangency to occur is:λ = 0 andC = 0, which in fact
s

Fig. 6. For η = 0.0055: (a) a graphical representation of t
transcendental equation (3) (the third equation); (b) the MGMs•)
and ECMs (◦), and the antimodes (×). The horizontal dotted line
divides the parameter space into two regions: in Region I the L
are sustained, while in Region II the LFFs are transient.

leads to a saddle-node bifurcation where a pair of fi
points, one stable and another unstable, is created
stable one is an MGM while the unstable fixed po
is an antimode. Asη is increased further from th
saddle-node bifurcation point, the antimode rema
so but the stable fixed point can be an MGM for on
a small range of values ofη. The evolution of a typi-
cal saddle-node pair is shown in Fig. 6(b) in theη–z
plane, where for this particular pair a Hopf bifurc
tion occurs atη ≈ 0.00328 (the horizontal dotted line
which turns the original stable fixed point (MGM) in
an unstable one (in fact an ECM). At the Hopf bifu
cation, the coefficientsA, B, andC in Eq. (5) sat-
isfy: A > 0, C > 0, andC − AB = 0, whereω2 = C
andω is the frequency of the limit cycle at the bifu
cation point, and the value ofr becomes positive from
the negative side. The Hopf bifurcation naturally
vides the parameter interval into two distinct regio
Region I (from the Hopf bifurcation to next saddl
node bifurcation, above the dotted line) and Regio
(from the original saddle-node bifurcation to the Ho
bifurcation, below the dotted line). At the top end
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Region I, a new saddle-node bifurcation occurs, a
which the situation depicted in Fig. 6(b) repeats
the newly created saddle-node pair. The antimodes
ECMs, after being created, remain in the phase sp
for a much larger parameter interval than those for
MGMs. The LFF attractors in Region I are typical
chaotic while those in Region II are regular [15].Thus
we see that the amplitude modulation phenomenon for
which a chaotic LFF attractor is converted into a reg-
ular one, is triggered by a Hopf bifurcation.

In summary, we have presented evidence for a
plitude modulation in a pair of optically couple
external-cavity semiconductor lasers. The phen
enon occurs in parameter regimes of positive m
sure. The scheme is in fact suitable for experim
tal test. The two lasers and the mirror can be pla
at fixed distances so that the whole system falls
a locking regime. Such a laser system possesse
advantages associated with optical feedback, but
no power dropouts. While we assume identical las
in our scheme, we find that the condition of ident
can be relaxed to certain extent. For instance, effec
elimination of power dropouts can be achieved e
when the mismatch between the two lasers is as l
as 10% (say, we setα1 = 6 andα2 = 6.5). However,
in the presence of larger mismatches, the ranges o
locked regimes are too small for the scheme to be p
tically useful.

Finally, we stress the difference between our w
and the existing works on amplitude-death [4,5]. D
spite the common coupling scheme employing tim
delayed signals, all existing works are for limit-cyc
oscillators, while ours deals withchaotic oscillators.
Previous studies indicate that LFFs in external-ca
semiconductor lasers are the result of various cha
transitions [12,14]: the dynamics of such lasers
the LFF regime are thus typically chaotic. As w
have demonstrated, time-delayed coupling can con
the chaotic oscillation of the laser field with pow
dropouts into quasiperiodic motion without pow
dropouts. We have thus uncovered a more gen
type of amplitude-modulation phenomenon in tim
delayed coupled nonlinear oscillators: transition fr
chaotic oscillations to quasiperiodic motions. We th
this is a nontrivial generalization of the convention
amplitude-death phenomenon that occurs in lim
cycle oscillators.
l
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