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Abstract

We demonstrate that complicated basins of attraction can occur in time-delay coupled, external-cavity semiconduc
In particular, we find that there can be multiple coexisting attractors associated with low-frequency fluctuations in t
power output, and prediction of the asymptotic attractor for specific initial conditions is practically impossible.
 2003 Elsevier B.V. All rights reserved.
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There has been a continuous interest in the b
structure in nonlinear dynamical systems since the
oneering works in the early eighties [1–5]. A reas
for such an interest concerns the predictability of
ymptotic attractors when initial conditions are chos
in the vicinity of basin boundaries. Smooth boundar
are simple sets whose dimensions are one less
that of the phase space. For these boundaries, an
provement in the precision to specify the initial co
ditions results in an equal amount of improvemen
the predictability of the asymptotic attractor. Frac
basins are open (e.g., contain open areas in two
mensions) but their boundaries contain fractal, cha
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invariant sets [1]. Typically, the dimension of a frac
basin boundary is a fraction less than the phase-s
dimension. As a consequence, a more precise spe
cation of the initial conditions often results in a mu
smaller improvement in the probability to predict t
attractor correctly. Riddled basins contain no open
(e.g., no open area in two dimensions) and have
mensions close to that of the phase space [6–11].
riddled basins, a vast reduction in the uncertainty
specify the initial conditions results in hardly any im
provement in ability to predict the final attractor. B
cause of this serious physical consequence, the
nomenon of riddling has received quite a lot of rec
attention [6–12].

Complicated basin structures such as fractal
riddled basins are important because they can occ
physical systems [2–5,7,8]. The purpose of this Le
ved.
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is to present evidence that riddled-like basins1 can oc-
cur in a class of nonlinear optical systems of recent
terest, external-cavity semiconductor lasers which
mathematically described by delay differential eq
tions. Despite the infinite dimensionality of the pha
space in such systems, we are able to demons
that low-dimensional attractors can coexist, and
boundaries separating their basins of attraction can
hibit riddled-like features. Physically, these attract
are often associated with low-frequency fluctuatio
(LFFs) in the power output of the laser. We belie
our result is important because it is a phenomenon
has not been noticed previously in the study of LF
in external-cavity semiconductor lasers. Our resul
also mathematically interesting because it is a dem
stration of complicated basins in infinite-dimension
dynamical systems.

A brief background on external-cavity semico
ductor lasers and LFFs is as follows. There h
been a large variety of applications of semicond
tor lasers nowadays such as optical data recording
optical-fiber communication. In these applications o
tical feedbacks are inevitably present, such as ba
scattered light from the end mirrors of the laser c
ity. There are also applications in which optical fee
backs are deliberately introduced to improve the p
formances of the laser such as the enhancemen
the single longitudinal mode operation, spectral l
narrowing, improved frequency stability, waveleng
tunability, etc. [13]. While low levels of optical feed
backs can be advantageous [13,14], the performa
of semiconductor lasers are usually degraded w
the feedback is at moderate or high levels. In p
ticular, at high feedback levels, the laser can en
the so-calledcoherence collapse regime [15] where
the optical linewidth increases drastically. At mod
ate feedback levels, when the pumping current is c
to the solitary threshold, the laser intensity can
hibit sudden, down-to-zero dropouts at irregular tim
followed by a slow and gradual recovery after ea
dropout (LFFs) [16]. LFFs pose a difficulty in applic
tions where a sustained laser power is needed. Ph

1 To establish riddling mathematically is not feasible for realis
physical systems such as the external-cavity semiconductor l
that we deal with in this Letter. Here we say a basin is riddled-l
based on numerical observation only.
cally, when optical feedback is present, the laser ef
tively possesses an external cavity that injects the
tical field back into the original laser cavity. From th
viewpoint of dynamics, a semiconductor laser wi
out feedback is a relaxation oscillator. However, d
to the time delay in optical feedback, it is nece
sary to use time-delay differential equations to
scribe external-cavity semiconductor lasers, leadin
infinite-dimensional phase spaces. There can be a
variety of dynamical phenomena in these lasers
17–19].

A single mode external-cavity semiconductor las2

is modeled by a set of delay-differential equatio
known as the Lang–Kobayashi (LK) equations [2
which describe the time evolutions of the comp
electrical fieldE(t) of a single longitudinal mode an
the carrier densityn(t) averaged spatially over th
laser medium. The equations can be written in a s
dard normalized form [23], as follows:

dE(t)

dt
= (1+ iα)N(t)E(t)+ ηe−iω0τE(t − τ ),

(1)T
dN(t)

dt
= J −N(t)− [

2N(t)+ 1
]∣∣E(t)

∣∣2,

whereα is the linewidth enhancement factor,ω0 is the
angular frequency of the solitary laser,τp is the photon
life time, τs is the carrier lifetime,J ≡ J −J th (J
is the injected constant current density andJth is the
threshold),N(t) ≡ n(t) − nth, andnth = τ−1

p is the
threshold carrier density for the solitary laser. T
coefficientγ characterizes the relative amount of lig
reflected back into the laser cavity, while the de
time τ = 2L/c is the round-trip time of the light in
the external cavity of lengthL. The two remaining
parameters in the LK-equations areη = τpγ andT =
τs/τp . The power of the laser isP(t) = |E(t)|2 and the
phase of the laser field is denoted byφ(t). The phase
delay,Z(t), is defined asφ(t)− φ(t − τ ).

To demonstrate complicated basins, we consid
pair of time-delay coupled, external-cavity semico
ductor lasers, as schematically illustrated in Fig.
The coupling between lasersL1 andL2 is character-
ized by the parameterη1 < 1, i.e., aη1 fraction of the

2 While LFFs can occur in multi-mode external-cavity semico
ductor lasers (e.g., see Ref. [20]), there is also streak-camera
dence that single-mode lasers can exhibit LFFs (see, for exam
Ref. [21] and references therein).
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Fig. 1. Schematic illustration of a pair of time-delay couple
external-cavity semiconductor lasers.

laser field ofL1 is injected intoL2 and vice versa. The
reflection coefficient from mirrorM, which forms the
external cavity with laserL2, is η2. The physical dis-
tance betweenL1 andL2 is l1 and the length of the
external cavity ofL2 is l2. In this configuration, lase
L1 has an active feedback from laserL2 while laserL2
has two external feedbacks (one is active from laseL1
and another is passive from mirrorM). The coupled
LK equations [24] are

dE1(t)

dt
= (1+ iα)N1E1(t)+ η1e

−iω1τ1E2(t − τ1),

T
dN1(t)

dt
= J1 −N1(t)− [

2N1(t)+ 1
]∣∣E1(t)

∣∣2,

dE2(t)

dt
= (1+ iα)N2E2(t)+ η1e

−iω1τ1E1(t − τ1)

+ η2e
−iω2τ2E2(t − τ2),

(2)T
dN2(t)

dt
= J2 −N2(t)− [

2N2(t)+ 1
]∣∣E2(t)

∣∣2,

where subscripts 1 and 2 are referred to lasersL1 and
L2, respectively,τ1 = l1/c andτ2 = 2l2/c.

Fig. 2(a) shows the time evolution of powerP for
a single external-cavity laser forT = 1000, α = 6,
τ = 1000,J = 4× 10−3, η = 2× 10−3 andωτ = −1.
The plot is apparently irregular and power can d
to nearly zero. In these calculations, other parame
values areω1 = −1/τ , J1 = 4× 10−3, J2 = 2× 10−3,
η1 = 2× 10−3, τ1 = τ2 = 1000, andη2 = 3.3× 10−3.
The bifurcation parameter isω2. We utilize the forth-
order Adams–Bashford–Moulton (ABM) predicto
corrector method [25] with step sizedt = τ1/np
to integrate Eq. (2), wherenp = 1000 is chosen
to be the number of initial conditions in the tim
intervals−τ1,2 � t < 0. At this sufficiently largenp
the numerical integration for this system, Eq. (2),
stable. For the coupled system, the output powerP1(t)

is more regular and its minimum values are boun
away from zero as shown in Fig. 2(b) forω2 = −1.5×
10−3. Here the amplitude of the power fluctuatio
Fig. 2. Time traces of the power output: (a) uncoupled la
and coupled system (Eq. (2)) at (b)ω2 = −1.5 × 10−3 and
(c) ω2 = −2 × 10−4. (d) The trajectories ofL1 and L2 in
planesZ1–N1 and Z2–N2, respectively, of coupled systems
ω2 = −1.5 × 10−3. The fixed points inZ–N plane are those o
the uncoupled laserL2. (e) The Poincaré section of the trajectory
(d) atZ1 = 0, indicating its quasiperiodic nature.

is reduced but its average power output rema
approximately the same as that of the uncoupled la
This means that, the average output of the coup
laser system can be controlled by adjusting the amo
of the injecting currentJ1. Thus, the coupled lase
system can operate without degrading in power ou
but with the desirable feature that the instantane
power will never be zero.

The absence of down-to-zero power drop in
coupled laser system can be explained by a stab
analysis of the fundamental solutions of individu
external-cavity semiconductor lasers, which constit
the dynamical invariant sets responsible for LFFs [
26]. The solutions are determined by the following
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of transcendental equations:

Ns = −η cos(φ0 +Zs), Ns = J − Ps

(1+ 2Ps)
,

Zs = −ητ
√

1+ α2 sin
[
Zs + φ0 + tan−1α

]
,

(3)η2 =N2
s + (Zs/τ − αNs)

2,

where the phase-delay variable isZ(t) ≡ φ(t) −
φ(t − τ ) andZs = (ωs − ω0)τ . For a given set o
parameters values, three different types of fixed po
exist: a maximum-gain mode (MGM), a number
external-cavity modes (ECMs, circles) and antimo
(crosses). These are distributed along an elliptic cu
in the (Z,N) plane, as shown in Fig. 2(d) atη =
3.3× 10−3. A trajectory can never stay near any EC
or antimode for long time, giving rise to phenomen
such as LFFs [26,27]. When two lasers are coup
with a time delay, the ranges in the(Z,N) plane of
these attractors are reduced dramatically, as show
Fig. 2(d), where the upper-right attractor is that
laserL1 and the lower-left attractor is fromL2. We
observe that both lasers operate more locally in
phase space: laserL2 tends to stay near the MGM
while the dynamical trajectories ofL1 are confined in
a phase-space region where the corresponding p
can never be zero.

The features, as shown in Fig. 2(b) and (d),
fact occur in finite parameter regions, as shown
Fig. 3, where the maximum and minimum valu
of the power output of the coupled laser system
plotted versus the bifurcation parameterω2. We see
that there arelocked parameter regions of finite siz
in which the minimum value of the power output
not zero. There are also unlocked regions for wh
the power can be zero; an example of the power t
series is shown in Fig. 2(c) forω2 = −2 × 10−3.
Examination using Poincaré surface of sections
Fig. 2(b) and (c) indicate that former is quasiperio
(Fig. 2(e) for laserL1) while later is chaotic. We not
that previous studies indicate that LFFs in extern
cavity semiconductor lasers are the result of vari
chaotic transitions [21,26]. The dynamics of su
lasers in the LFF regime are thus typically chao
As we see here, time-delayed coupling can con
the chaotic oscillation of the laser field with pow
dropouts into quasiperiodic motion without pow
dropouts.
r

Fig. 3. (a) For the coupled laser system, the maximum (solid l
and minimum (dotted line) values of the power output versusω2. (b)
The minimum distance (dots) between the local attractors of la
L1 andL2 versusω2. (c) A blowup of part of the region A in (a).

A remarkable feature of Fig. 3 is that there appe
to be a parameter interval in which the power out
P1 of the system exhibits wild fluctuations as
function of the bifurcation parameter, which is deno
by region A in Fig. 3(a). These fluctuations pers
on small scales, as shown in a blowup of part
in Fig. 3(c). Such fluctuations typically indicate c
existing attractors with complicated basins [9,13

because a small change in the parameter can lea
a completely different attractor with distinct powe
output characteristics. We find that one attracto
chaotic with down-to-zero drops in laser power a
another is quasiperiodic without such power dro
The minimum distance between the local attractor
laserL1 andL2, as shown in Fig. 3(b), also manifes
this transition clearly. In the locked regime they a
far apart (Fig. 2(d)) while in the unlocked region th
overlapped on each other (making the distance ze

3 It seems that the present bifurcation is “blurred blow-out” ty
of bifurcation as shown by Ashwin et al. in Ref. [12].
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Fig. 4. Fractionf (ε) of uncertain parameter pairs (out of 10
parameter pairs) versus parameter perturbationε for the parameter
ω2, interval marked as region A in Fig. 3(a).

However, in the region A, the presence of both
zero and the non-zero distances confirm the both
of scenarios. The sensitivity of the laser output
parameter variations can be conveniently quantified
the uncertainty exponent [1,4,9], as follows. We
a small perturbationε and randomly choose a pair
parameters ofε-distance apart in region A of Fig. 3(a
The two parameters areuncertain with respect to
perturbationε if they yield different attractors. Th
fraction of uncertain parameter pairsf (ε) typically
decreases withε and scales withε as

(4)f (ε)∼ εβ,

whereβ > 0 is the uncertainty exponent [1,4,9]. Fig
shows a typical plot off (ε) versusε, where we see
that there are large fluctuations inf (ε). The feature
to notice is, however, that asε is reduced,f (ε)
does not appear to decrease appreciably. In fac
least-squares fit of the plot givesβ = 0.003± 0.01,
indicating thatβ cannot be distinguished from zer
This is typical of riddled or riddled-like basins [9]. Th
practical implication is that the asymptotic attrac
cannot be predicted, if there is an uncertainty in
specification of parameters and initial conditions,
matter how small. Indeed, the basins of the chaotic
quasiperiodic attractor appear to be interwoven w
apparent lack of structures, as shown in Fig. 5(a)
(b) for ω2 = −8× 10−4, where the dots denote initia
conditions that go to the chaotic attractor and (b) i
Fig. 5. The basin of the chaotic attractor (black dots)
ω2 = −8× 10−4. (b) A blowup of part of (a).

blowup of part of (a).4 We find that no matter how
small the phase-space region is chosen to be, t
are always two classes of initial conditions mixed
a riddled-like manner which go to the two differe
attractors. Figs. 4 and 5 are thus a clear demonstra
of the phenomenon of riddled-like basins in extern
cavity semiconductor lasers.

In summary, we have presented numerical evide
for the occurrence of riddled-like basins in a rea
tic nonlinear optical system: coupled external-cav
semiconductor lasers. To our knowledge, prior to t
Letter the issues of multiple coexisting attractors a
the associated basin topologies have been largel
nored in the study of such lasers. A practical imp
cation is that in the actual operation, the presenc
small perturbations in parameters or in laser fie
can cause the laser to move between the coexis
attractors and the power output can change wil

4 The technical details for generating Fig. 5 are as follo
We start with a randomly selected initial condition in the pla
(Z1,N1), keeping remaining variables (6× 103 − 2) fixed. After
removing sufficient transients, 6× 105, we check whether the
motion (within next 1×105 data points) is quasiperiodic or chaoti
This is quantified by the value ofPmax (Fig. 3) whether it is below
a threshold,Pmax= 0.009, or above it for the respective attractor
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The riddled-like basin structure suggests that s
changes cannot be predicted or controlled even in p
ciple.

We stress that, while complex basins have ind
been studied extensively, the existence of such ba
in a realistic physical system described by comp
delay-differential equations has not been obser
prior to our work. Our work represents a good exam
where interesting phenomena in nonlinear dynam
usually studied using relatively simple mathemati
models, can in fact occur in physical systems. M
importantly, as we have shown in our work, conce
in nonlinear dynamics can be useful for understa
ing realistic physical devices. For instance, in lase
the presence of small perturbations in parameter
in fields can cause the laser to move between the
existing attractors, resulting in wild fluctuations in t
power output. One may try to reduce the environm
tal noise to suppress the fluctuations, but our w
shows that this is practically impossible because of
intrinsic dynamical property of riddling.
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