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Abstract

We demonstrate that complicated basins of attraction can occur in time-delay coupled, external-cavity semiconductor lasers.
In particular, we find that there can be multiple coexisting attractors associated with low-frequency fluctuations in the laser
power output, and prediction of the asymptotic attractor for specific initial conditions is practically impossible.
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There has been a continuous interest in the basin invariant sets [1]. Typically, the dimension of a fractal
structure in nonlinear dynamical systems since the pi- basin boundary is a fraction less than the phase-space
oneering works in the early eighties [1-5]. A reason dimension. As a consequence, a more precise specifi-
for such an interest concerns the predictability of as- cation of the initial conditions often results in a much
ymptotic attractors when initial conditions are chosen smaller improvement in the probability to predict the
in the vicinity of basin boundaries. Smooth boundaries attractor correctly. Riddled basins contain no open sets
are simple sets whose dimensions are one less than(e.g., no open area in two dimensions) and have di-
that of the phase space. For these boundaries, an im-mensions close to that of the phase space [6—-11]. For
provement in the precision to specify the initial con- riddled basins, a vast reduction in the uncertainty to
ditions results in an equal amount of improvement in specify the initial conditions results in hardly any im-
the predictability of the asymptotic attractor. Fractal provement in ability to predict the final attractor. Be-
basins are open (e.g., contain open areas in two di- cause of this serious physical consequence, the phe-
mensions) but their boundaries contain fractal, chaotic nomenon of riddling has received quite a lot of recent

attention [6—12].
Complicated basin structures such as fractal and
mspondmg author. riddled basins are important because they can occur in
E-mail address: awadhesh@enpc589.eas.asu.edu (A. Prasad). Physical systems [2-5,7,8]. The purpose of this Letter
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is to present evidence that riddled-like basinan oc- cally, when optical feedback is present, the laser effec-
cur in a class of nonlinear optical systems of recentin- tively possesses an external cavity that injects the op-
terest, external-cavity semiconductor lasers which are tical field back into the original laser cavity. From the
mathematically described by delay differential equa- viewpoint of dynamics, a semiconductor laser with-
tions. Despite the infinite dimensionality of the phase out feedback is a relaxation oscillator. However, due
space in such systems, we are able to demonstrateto the time delay in optical feedback, it is neces-
that low-dimensional attractors can coexist, and the sary to use time-delay differential equations to de-
boundaries separating their basins of attraction can ex-scribe external-cavity semiconductor lasers, leading to
hibit riddled-like features. Physically, these attractors infinite-dimensional phase spaces. There can be arich
are often associated with low-frequency fluctuations variety of dynamical phenomena in these lasers [15,
(LFFs) in the power output of the laser. We believe 17-19].
our result is important because it is a phenomenonthat A single mode external-cavity semiconductor |&ser
has not been noticed previously in the study of LFFs is modeled by a set of delay-differential equations,
in external-cavity semiconductor lasers. Our result is known as the Lang—Kobayashi (LK) equations [22],
also mathematically interesting because it is a demon- which describe the time evolutions of the complex
stration of complicated basins in infinite-dimensional electrical fieldE (¢) of a single longitudinal mode and
dynamical systems. the carrier density:(t) averaged spatially over the
A brief background on external-cavity semicon- laser medium. The equations can be written in a stan-
ductor lasers and LFFs is as follows. There has dard normalized form [23], as follows:
been a large variety of applications of semiconduc- JE
. : (1)
tor lasers nowadays such as optical data recording and
optical-fiber communication. In these applications op-
tical feedbacks are inevitably present, such as back- 7 (1)
scattered light from the end mirrors of the laser cav-
ity. There are also applications in which optical feed- wherex is the linewidth enhancement factay, is the
backs are deliberately introduced to improve the per- angular frequency of the solitary laseg,is the photon
formances of the laser such as the enhancement oflife time, t, is the carrier lifetimeJ = J — Jwn (J
the single longitudinal mode operation, spectral line is the injected constant current density afid is the
narrowing, improved frequency stability, wavelength threshold),N(¢) = n(t) — nw, andngp = ;1 is the
tunability, etc. [13]. While low levels of optical feed- threshold carrier density for the solitary laser. The
backs can be advantageous [13,14], the performancesoefficienty characterizes the relative amount of light
of semiconductor lasers are usually degraded whenreflected back into the laser cavity, while the delay
the feedback is at moderate or high levels. In par- time r = 2L/c is the round-trip time of the light in
ticular, at high feedback levels, the laser can enter the external cavity of lengttL. The two remaining
the so-calledcoherence collapse regime [15] where parameters in the LK-equations aye= t,y and7T =
the optical linewidth increases drastically. At moder- ,/7,. The power of the laser B(¢) = |E(t)|2 and the
ate feedback levels, when the pumping current is close phase of the laser field is denoted ¢gr). The phase
to the solitary threshold, the laser intensity can ex- delay,Z(z), is defined ag (1) — ¢ (t — 7).
hibit sudden, down-to-zero dropouts at irregular times,  To demonstrate complicated basins, we consider a
followed by a slow and gradual recovery after each pair of time-delay coupled, external-cavity semicon-
dropout (LFFs) [16]. LFFs pose a difficulty in applica- ductor lasers, as schematically illustrated in Fig. 1.
tions where a sustained laser power is needed. Physi-The coupling between lasefs and L, is character-
ized by the parameten < 1, i.e., anz fraction of the

=14 i) NOE®) +ne " TE@t — 1),
dN (1)

—J—N@®-[2N0) +1]|E0)%,

1 To establish riddling mathematically is not feasible for realistic 2 While LFFs can occur in multi-mode external-cavity semicon-
physical systems such as the external-cavity semiconductor lasersductor lasers (e.g., see Ref. [20]), there is also streak-camera evi-
that we deal with in this Letter. Here we say a basin is riddled-like, dence that single-mode lasers can exhibit LFFs (see, for example,
based on numerical observation only. Ref. [21] and references therein).
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laser field ofL1 is injected intoL, and vice versa. The 0.004
reflection coefficient from mirroM, which forms the 05 10'00 53000
external cavity with lasef.,, is n2. The physical dis- 0.002 , ? :
tance betweerl1 and L2 is [1 and the length of the N 9 L
external cavity ofL» is I. In this configuration, laser Z orF x O -
L1 has an active feedback from lader while laserL» = x o N L,
has two external feedbacks (one is active from ldser = 0002 o n
and another is passive from mirrdf). The coupled | - Lz | |
LK equations [24] are -0.004 5 10 5 7 5 0 10
) 19
dE1(t . T T T
1) _ (14 ia)N1E1(1) + nie” "™ Ea(t — 11), e
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F e 22 By (1 — 1) 0.003 0.004 0.005 0.006 0.007
— 1), )
;
dNa(1)
r dr J2 = Na(1) — [2N2(t) + 1] @) Fig. 2. Time traces of the power output: (a) uncoupled laser;
. and coupled system (Eq. (2)) at () = —1.5 x 10-3 and
where subs_crlpts 1 and 2 are referred to lagarand (©) wy = —2 x 10-%. (d) The trajectories ofLy and Ly in
Ly, respectivelyry =I1/c andt, = 2I3/c. planes Z;—N1 and Z,—N», respectively, of coupled systems at
Fig. 2(a) shows the time evolution of powgrfor wp = —15 x 103, The fixed points inZ-N plane are those of
a single external-cavity laser f&f = 1000, « = 6, the uncoupled lasek;. (e) The Poincaré section of the trajectory in
7 =1000,J =4 x 10—3, n=2x 103 andwr = —1. (d) atZ1 = 0, indicating its quasiperiodic nature.

The plot is apparently irregular and power can drop
to nearly zero. In these calculations, other parametersis reduced but its average power output remains

values arev; = —1/7, J1 =4x 1073, J, =2 x 1073, approximately the same as that of the uncoupled laser.
n=2x 1073, 11 = o = 1000, andj = 3.3 x 10°3. This means that, the average output of the coupled
The bifurcation parameter is;. We utilize the forth- laser system can be controlled by adjusting the amount
order Adams—Bashford—Moulton (ABM) predictor— of the injecting current/1. Thus, the coupled laser

corrector method [25] with step sizét = t1/n, system can operate without degrading in power output

to integrate Eq. (2), whera, = 1000 is chosen but with the desirable feature that the instantaneous
to be the number of initial conditions in the time power will never be zero.

intervals —t1 > <t < 0. At this sufficiently largen,, The absence of down-to-zero power drop in the
the numerical integration for this system, Eq. (2), is coupled laser system can be explained by a stability
stable. For the coupled system, the output poRi&r) analysis of the fundamental solutions of individual
is more regular and its minimum values are bounded external-cavity semiconductor lasers, which constitute
away from zero as shown in Fig. 2(b) fep = —1.5 x the dynamical invariant sets responsible for LFFs [21,
103, Here the amplitude of the power fluctuations 26]. The solutions are determined by the following set
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of transcendental equations:

J— P
(1+2P)
Zs = —ntv/ 1+ a?sin[Z + ¢o +tarm L «],
n?=NZ+(Zs/t —aNy)?,

Ng = —ncos¢o + Zy), Ny =

3

where the phase-delay variable (1) = ¢ () —

¢ — 1) and Z; = (wy — wo)t. For a given set of
parameters values, three different types of fixed points
exist: a maximum-gain mode (MGM), a number of
external-cavity modes (ECMs, circles) and antimodes
(crosses). These are distributed along an elliptic curve
in the (Z, N) plane, as shown in Fig. 2(d) at=

3.3 x 1073, A trajectory can never stay near any ECM
or antimode for long time, giving rise to phenomenon
such as LFFs [26,27]. When two lasers are coupled
with a time delay, the ranges in th&, N) plane of
these attractors are reduced dramatically, as shown in
Fig. 2(d), where the upper-right attractor is that of
laser L1 and the lower-left attractor is from,. We
observe that both lasers operate more locally in the
phase space: lasdr; tends to stay near the MGM,
while the dynamical trajectories df; are confined in

47

0.02

00162
£0.012-
- Locked Regime
0. 0.008 -
Unlocked Regime
0.004 - <3 -
8:""’""""“"7!1{51%_1 ________________ _
2 T T T
b)
8 e -
% 10~ ' —
=
Q0 sk .
o
or | " I I N
0002 00015 -0.001 _ -0.0005 0 0.0005
0.0% 9 | | [ ]
0.016 - -
0.012
Qo 0.008
0.004 |
o P RERRFRTRE TR VTR MM";FM B l‘.’lﬂ"ﬂiﬁ “MM
| |
9.0x10*  -8.8x10"  8.6x10” -84x10* -82x10® -8.0x10™
0)2

Fig. 3. (a) For the coupled laser system, the maximum (solid line)

and minimum (dotted line) values of the power output versagb)

The minimum distance (dots) between the local attractors of lasers
L1 and Ly versusws. (¢) A blowup of part of the region Ain (a).

a phase-space region where the corresponding power

can never be zero.

The features, as shown in Fig. 2(b) and (d), in
fact occur in finite parameter regions, as shown in
Fig. 3, where the maximum and minimum values
of the power output of the coupled laser system are
plotted versus the bifurcation parameter. We see
that there ardocked parameter regions of finite size
in which the minimum value of the power output is
not zero. There are also unlocked regions for which
the power can be zero; an example of the power time
series is shown in Fig. 2(c) fowy = —2 x 1073,
Examination using Poincaré surface of sections for
Fig. 2(b) and (c) indicate that former is quasiperiodic
(Fig. 2(e) for laselL1) while later is chaotic. We note
that previous studies indicate that LFFs in external-
cavity semiconductor lasers are the result of various
chaotic transitions [21,26]. The dynamics of such
lasers in the LFF regime are thus typically chaotic.
As we see here, time-delayed coupling can convert
the chaotic oscillation of the laser field with power
dropouts into quasiperiodic motion without power
dropouts.

A remarkable feature of Fig. 3 is that there appears
to be a parameter interval in which the power output
P; of the system exhibits wild fluctuations as a
function of the bifurcation parameter, which is denoted
by region A in Fig. 3(a). These fluctuations persist
on small scales, as shown in a blowup of part A
in Fig. 3(c). Such fluctuations typically indicate co-
existing attractors with complicated basins [9312]
because a small change in the parameter can lead to
a completely different attractor with distinct power-
output characteristics. We find that one attractor is
chaotic with down-to-zero drops in laser power and
another is quasiperiodic without such power drops.
The minimum distance between the local attractors of
laserL1 andL», as shown in Fig. 3(b), also manifests
this transition clearly. In the locked regime they are
far apart (Fig. 2(d)) while in the unlocked region they
overlapped on each other (making the distance zero).

3 It seems that the present bifurcation is “blurred blow-out” type
of bifurcation as shown by Ashwin et al. in Ref. [12].
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Fig. 4. Fraction f(¢) of uncertain parameter pairs (out of 100 Z,
parameter pairs) versus parameter perturbatitr the parameter,
wy, interval marked as region A in Fig. 3(a).

However, in the region A, the presence of both the

zero and t.he non-zero d!s_ta_mces confirm the both type Fig. 5. The basin of the chaotic attractor (black dots) for

of scenarios. The sensitivity of the laser output on " "¢ '10-4 () A blowup of part of (a).

parameter variations can be conveniently quantified by

the uncertainty exponent [1,4,9], as follows. We fix

a small perturbatiom and randomly choose a pair of blowup of part of (af We find that no matter how

parameters of-distance apartin region A of Fig. 3(a). small the phase-space region is chosen to be, there

The two parameters arencertain with respect to  are always two classes of initial conditions mixed in

perturbatione if they yield different attractors. The a riddled-like manner which go to the two different

fraction of uncertain parameter paiyge) typically attractors. Figs. 4 and 5 are thus a clear demonstration

decreases with and scales witls as of the phenomenon of riddled-like basins in external-
cavity semiconductor lasers.

5 In summary, we have presented numerical evidence
fle)~ e, ) for the occurrence of riddled-like basins in a realis-
tic nonlinear optical system: coupled external-cavity
semiconductor lasers. To our knowledge, prior to this
Letter the issues of multiple coexisting attractors and
the associated basin topologies have been largely ig-
nored in the study of such lasers. A practical impli-
cation is that in the actual operation, the presence of
small perturbations in parameters or in laser fields
can cause the laser to move between the coexisting
attractors and the power output can change wildly.

whereg > 0 is the uncertainty exponent [1,4,9]. Fig. 4
shows a typical plot off (¢) versuse, where we see
that there are large fluctuations jf(¢). The feature
to notice is, however, that as is reduced, f (¢)
does not appear to decrease appreciably. In fact, a
least-squares fit of the plot givgs= 0.003+ 0.01,
indicating thatg cannot be distinguished from zero.
This is typical of riddled or riddled-like basins [9]. The
practical implication is that the asymptotic attractor
cannot be predicted, if there is an uncertainty in the
specification of parameters and initial conditions, no 4 The technical details for generating Fig. 5 are as follows.
matter how small. Indeed, the basins of the chaotic and We start with a randomly selected initial condition in the plane
quasiperiodic attractor appear to be interwoven with (21 N1, keeping remaining variables (610° — 2) fixed. After

. . removing sufficient transients, % 10°, we check whether the
apparent lack of structures, as shown in Fig. S(a) and motion (within next 1x 10° data points) is quasiperiodic or chaotic.
(b) for w2 = —8 x 1074, where the dots denote initial  Tpjs is quantified by the value dfmax (Fig. 3) whether it is below
conditions that go to the chaotic attractor and (b) is a a threshold,Pmax= 0.009, or above it for the respective attractors.
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The riddled-like basin structure suggests that such
changes cannot be predicted or controlled even in prin-
ciple.

We stress that, while complex basins have indeed

Y.-C. Lai, C. Grebogi, J.A. Yorke, S.C. Venkataramani, Phys.
Rev. Lett. 77 (1996) 55;
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Y.-C. Lai, C. Grebogi, Phys. Rev. Lett. 83 (1999) 2926.

been studied extensively, the existence of such basins11] p, Ashwin, J. Buescu, I.N. Stewart, Phys. Lett. A 193 (1994)

in a realistic physical system described by complex
delay-differential equations has not been observed
prior to our work. Our work represents a good example
where interesting phenomena in nonlinear dynamics,
usually studied using relatively simple mathematical
models, can in fact occur in physical systems. More
importantly, as we have shown in our work, concepts
in nonlinear dynamics can be useful for understand-
ing realistic physical devices. For instance, in lasers,

126;

P. Ashwin, J. Buescu, |.N. Stewart, Nonlinearity 9 (1996) 703;
H. Nakajima, Y. Ueda, Physica D 99 (1996) 35;

L. Billings, J.H. Curry, E. Phipps, Phys. Rev. Lett. 79 (1997)
1018;

K. Kaneko, Phys. Rev. Lett. 78 (1997) 2736;

Y.L. Maistrenko, V.L. Maistrenko, A. Popovich, E. Mosekilde,
Phys. Rev. E 57 (1998) 2713;

T. Kapitaniak, Y. Maistrenko, A. Stefanski, J. Brindley, Phys.
Rev. E 57 (1998) R6253;

M. Woltering, M. Markus, Phys. Rev. Lett. 84 (2000) 630.

the presence of small perturbations in parameters or[12] p. Ashwin, E. Covas, R. Tavakol, Nonlinearity 12 (1999) 563.
in fields can cause the laser to move between the co-[13] K.R. Preston, K.C. Woolard, K.H. Kameron, Electron. Lett. 17

existing attractors, resulting in wild fluctuations in the
power output. One may try to reduce the environmen-
tal noise to suppress the fluctuations, but our work
shows that this is practically impossible because of the
intrinsic dynamical property of riddling.
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