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Connectivity distribution and attack tolerance of general networks
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Abstract

A general class of growing networks is constructed with both preferential and random attachments, which includes random
and scale-free networks as limiting cases when a physical parameter is tuned. Formulas are derived characterizing the evolution
and distribution of the connectivity, which are verified by numerical computations. Study of the effect of random failures and
intentional attacks on the performance of network suggests that general networks which are neither completely random nor
scale-free are desirable.
 2002 Elsevier Science B.V. All rights reserved.

PACS: 89.75.Hc; 84.35.+i; 02.50.Cw; 05.40.-a

Since the ground-breaking papers by Barabási and
Albert on scale-free networks [1] and by Watts and
Strogatz on small-world networks [2], the interest on
large, growing, and complex networks has soared [3].
Consider a network consisting ofN (large) nodes,
each having a numberK of links to other nodes in
the network. Since the network is large,K can be re-
garded as a random variable with a probability distri-
butionP(k). A realistic network is necessarily sparse,
that is:〈K〉 � N , where〈K〉 is the expectation ofK.
Barabási and Albert discovered [1,3] that many net-
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works in nature appear to exhibit the scale-free feature
in that the distributionP(k) exhibits a power-law be-
havior in a range ofk-values over several orders of
magnitudes:P(k) ∼ k−γ . The mechanisms leading to
the power-law distribution are argued to be growth and
preferential attachment [1,4], where the former means
that the size of the network keeps increasing with time
and the latter underlies that the relative probability for
an already heavily connected node to get new links is
proportionally large. Growth and preferential attach-
ments appear to be the fundamental organizing prin-
ciple of the many complex networks. The small-world
concept, on the other hand, describes the fact that the
average path between any two nodes in a large net-
work can be relatively short. While this concept has
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been known in social science in manifestations such as
the “six degrees of separation” [5], Watts and Strogatz
found that many realistic networks exhibit the small-
world feature [2]. The small-world concept appears
to be universal for large, sparse networks, regardless
of whether they have an underlying organizing struc-
ture. In fact, the pioneering study on random graphs
by Erdős and Rényi already indicated that the typical
distance between any two nodes scales logarithmically
with the number of nodes [6] and, many apparently
scale-free networks are small-world, too [3].

A scale-free network, by its definition, permits a
high degree of organization such as the existence of
a set of nodes with great numbers of links. The scale-
free situation is, however, idealized, for which the dis-
tribution P(k) is strictly power-law. Indeed, the il-
luminating scale-free model proposed by Barabási et
al. [1,4] predicts a universal power-law scaling behav-
ior with exponentγ = 3. A random network, on the
other hand, is characterized by the lack of any appar-
ent structures and by an exponential distribution of
P(k). Complex networks in nature should fall some-
where in between these two extremes. Although nu-
merical fittings of the distributionsP(k) for many real-
istic networks suggest a power-law behavior, there are
also examples where the distribution is neither power-
law nor exponential, such as the scientific collabora-
tion network [7]. While the basic dynamical mecha-
nisms for the scale-free property are relatively clear
(i.e., growth and preferential attachment) [4] and there
are many recent papers proposing various models for
scale-free networks [8–19], the question of how a gen-
eral network develops distributionP(k) with a mix-
ture of power-law and exponential behaviors remains
interesting. It is desirable to know whatmicroscopic
dynamical mechanisms can produce such a mixed be-
havior in large, growing networks and, more impor-
tantly, whether there exists a parameter with a clear
physical meaning whichcontrols the relative weights
between the power-law and exponential behaviors.

The aim of this Letter is to present a model to
explain the general scaling behavior, i.e., mixture of
power-law and exponential distributions, in a natural
manner. Specifically, we identify a physical parame-
ter that balances the power-law and exponential con-
tributions toP(k). To be as realistic as possible, we
also consider the effect of temporal fluctuations in the
number of links a new node can have [20]. In addition,

we address the practically important issues of robust-
ness and security, that is, how the performance of our
general network is affected by random failures and in-
tentional attacks.

The starting point of most existing models on
growing networks is the quantityΠi , the probability
that a new node to be connected to nodei already
in the network. Starting with a small number (m0) of
nodes, a new node withm links (edges) is added at
each time step with links determined by the probability
Πi . The original model by Barabási et al. [1,4]
assumes a linear dependence ofΠi on ki , the number
of already existing links for nodei. Generalization to
algebraic dependence in the form ofΠi ∼ kαi has been
considered by Krapivsky et al. [8] which, forα = 1,
reduces to the model by Barabási et al. While such
pre-determined dependence ofΠi on ki is necessary
for the network to exhibit the scale-free feature, there
can also be random factors affecting this dependence.
In particular, as new nodes are added to the network,
although there is a tendency for an already heavily
linked node to acquire more connections, the new
connections can also be random. For instance, in the
internet, convenience is a key factor determining how
new nodes are added, besides popularity of certain
hosts. Our idea is thus that, generally, a realistic
network grows in time according to an attachment rule
that is neither completely preferential nor completely
random. In terms of the quantityΠi , it should contain
both a deterministic component reflecting preferential
attachment, and a random component as well. In
particular, we assume

(1)Πi = (1− p)ki + p∑
j [(1− p)kj + p] ,

where 0� p � 1 is a parameter characterizing the
relative weights between the deterministic and random
contributions toΠi , and the summation is over the
whole network at a given time. Clearly,p is the
probability that a new node is randomly connected
to the existing nodei and (1 − p) is the probability
that the new node is preferentially attached toi. The
model reduces to that by Barabási et al. forp = 0
and it becomes a completely random network for
p = 1. It can thus generate any network structure from
scale-free to random. One result of this Letter is that
the model (1) yields, for 0� p � 1, a scaling that
generally lies between the two extremes of power-law
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and exponential distributions, as follows,

(2)P(k) ∼
( k

m
+ b

1+ b

)−γ

,

where the scaling exponentγ is

(3)γ = 3+ b, whereb = p

m(1− p)
.

Clearly, the power-law scaling for scale-free networks
is recovered forp = 0 and the distribution becomes
exponentialP(k) ∼ e−k/m for p → 1.

To derive the scaling law forP(k), it is necessary
to obtain the temporal evolution of the connectivity
of a given node. We use the mean-field approach [4].
Under the approximation thatki is continuous, the
probabilityΠi is in fact the continuous rate of change
of ki ,

(4)
∂ki

∂t
=mΠi(ki) = m[(1− p)ki + p]∑

j [(1− p)kj + p] .

Because of the growing nature of the network, the
summation in Eq. (4) increases with timet :
∑
j

[
(1− p)kj + p

] = 2m(1− p)t + pt.

This, together with the initial conditionki(ti ) =m,
yields the solution to Eq. (4),

ki(t) =
(
m+ p

1− p

)(
t

ti

) m(1−p)
2m+(1−2m)p − p

1− p
∼ tβ

(5)for t large and 0� p < 1,

where

β =m(1− p)/
[
2m+ (1− 2m)p

]
.

Note thatβ = 0.5 for p = 0, β = m/(2m + 1) for
p = 0.5, and forp → 1, Eq. (5) giveski(t) ∼ m ln t .
These are consistent with the results in Ref. [4]. Using
Eq. (5), we can write down the probability that a node
has a connectivityki(t) smaller thank, Φ{ki(t) < k},
as follows,

(6)

Φ
{
ki(t) < k

} =Φ

{
ti > t

[
m+ (1−m)p

k + (1− k)p

]2+ p
m(1−p)

}
.

Suppose nodes are added at equal time intervals to the
system, the probability density ofti is thenφi(ti) =

1/(m0 + t). Substituting this into Eq. (6), we obtain

Φ

{
ti > t

[
m+ (1−m)p

k + (1− k)p

]2+ p
m(1−p)

}

= 1−Φ

{
ti � t

[
m+ (1−m)p

k + (1− k)p

]2+ p
m(1−p)

}

(7)∼ 1− t

m0 + t

[
m+ (1−m)p

k + (1− k)p

]2+ p
m(1−p)

.

The probability distributionP(k) can then be obtained
by the partial derivativeP(k) = ∂Φ{ki(t) < k}/∂k,
which gives the general scaling law (2).

The scaling results (2) and (3) are obtained under
the assumption thatm, the number of links added
to the network at each time step, is a constant. In a
realistic situation,m can fluctuate with time. To model
this, we choose a constant�m and assume thatm(t)

can vary in the range[1,2�m − 1]. Specifically, we
write m(t) = �m[1 + ξ(t)], where ξ(t) is a discrete
random variable uniformly distributed in the range
[(1− �m)/�m,(�m− 1)/�m ] with zero average. A similar
derivation yields

ki(t) ∼ tβ(t),

(8)P(k) ∼
( k

m
+ b

1+ b

)−γ (t)

,

where the scaling exponentsβ(t) andγ (t) now have
an explicit dependence on time and they are given by:

β(t)= [
f (t)(1− p)

]/[
2�m+ (1− 2�m)p

]
and γ (t) = 1 + 1/β(t) where f (t) is a random
function defined by:

f (t) ln(t) =
t∫

ti

�m[1+ ξ(t)]
t

dt.

As t → ∞, f (t) → �m. We see that with the number
of new links fluctuating,P(k) has the same scaling
as that in the case of no fluctuation but the scaling
exponent changes with time. On average, the scaling
exponent is the same as that for the case wherem= �m.

We now present numerical support for the scaling
results (2), (3), (5), and (8). We start withm0 = 3
nodes. At each time step, a new node with either
m= �m= 3 [case (a)] orm(t)= �m[1+ ξ(t)] [case (b)]
links is added to the network. The number of nodes at
time stept is thenN(t) =m0 + t ∼ t . Fig. 1(a) and (b)
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Fig. 1. Evolution of the connectivityki(t) of a typical node in the network. The node is added to the system att = 95. Cases (a) and (b) are for
�m = constant= 3 andm(t) = �m[1+ ξ(t)], respectively, whereξ(t) is a discrete random variable. The solid, dashed, and dotted curves are for
p = 0,p = 0.5, andp = 1.0, respectively.

show the scaling ofki(t) with t on a logarithmic scale
for cases (a) and (b), respectively, where the solid,
dashed, and dotted curves are forp = 0, p = 0.5,
andp = 1.0, respectively. Forp = 0 andp = 0.5 in
case (a), there is a robust power-law scaling with the
exponentsβ ≈ 0.5 andβ ≈ 0.42, which agree very
well with the predicted slopes

β =m(1− p)/
[
2m+ (1− 2m)p

]
.

Whenm(t) fluctuates, as in case (b), there still appears
to be a power-law scaling behavior forp = 0 and
p = 0.5 with slopes similar to those in the case
wherem is constant, for larget . In fact, forp not too
close to 1 in case (b), the power-law scaling behavior
is always observed, but the scaling exponent exhibits
small fluctuations about that for the constantm case,
as predicted. Forp = 1 in both cases (a) and (b), the
scaling appears to beKi(t)∼ ln t , as predicted.

Fig. 2(a) and (b) show, on a logarithmic scale, the
scaling behavior of the connectivity distributionP(k)

for m= constant andm(t)= �m[1+ξ(t)], respectively,
where the open circles, stars, and squares denote
p = 0, p = 0.5, andp = 1, respectively. The scaling
is clearly power-law forp = 0, with the predicted
slopeγ = 3. For p = 1, the scaling is exponential,
as can be seen by the corresponding curves on a
semi-logarithmic scale in the insets. For 0< p < 1,
the scaling lies somewhere in between the power-law
and exponential behaviors. Comparing (a) with (b)
suggests that fluctuations inm(t) cause a plateau for
small k region in the scaling ofP(k). These results
thus indicate that our model can generate realistically
observable scaling behaviors ranging from purely
power-law to purely exponential, with the variation of
a single control parameterp.

We now turn to addressing the effect of random fail-
ure and intentional attack on general networks, which
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Fig. 2. The connectivity distributionP (k) for (a) m = constant and (b)m(t) = �m[1 + ξ(t)], where the open circles, stars, and squares denote
p = 0, p = 0.5, andp = 1, respectively. Forp = 0, the scaling is clearly power-law, with deviations from it asp is increased from zero. The
scaling forp = 1 is exponential, as shown in the insets. Fluctuations inm(t) cause a plateau for smallk region in the scaling ofP (k) [case (b)].

means, respectively, random removal of fractions of
nodes and targeted destruction of certain nodes, most
likely those heavily connected ones, in the network.
The recent study by Albert et al. [21] indicates that
growing networks with exponentially distributed con-
nectivity are robust against both intentional attacks
and random removals of a relatively small fraction
of nodes. Scale-free networks, on the other hand, ap-
pear to be robust against random failures but are more
sensitive to intentional attacks. These results are intu-
itively understandable as, for instance, there exists a
few heavily connected nodes in a scale-free network.
Attack on even a few of these nodes would immedi-
ately cripple the network. Albert et al. suggested [21]
using the concept ofdiameter [22] to quantify the per-
formance of the network under random failures or at-
tacks. Roughly speaking, the diameter of a network is
the average number of links between any two nodes
in the network, which is the same concept as the av-

erage shortest path in the small-world characterization
of networks [2]. Computation of the diameter requires
searching through all pairs of nodes in the network,
which is numerically intensive when the size of the
network is large. We have thus developed the follow-
ing simple method to compute the diameterD of a
large network, which is numerically efficient. Specif-
ically, at a given time, we randomly choosen nodes
from the network such that increasingn does not re-
sult in appreciable variations inD. Each node is re-
garded as a “center” and the number 1 is assigned to
nodes that are directly connected to it. These are the
first nearest neighbors. Nodes that require two links to
reach the center are assigned the number 2 and they are
the second nearest neighbors, and so on. This process
continues until every node that is linked to the cen-
ter, directly or indirectly, is assigned a number. The
average value of all these numbers gives the distance
d1 from the center node to an arbitrary node. Choosing
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Fig. 3. Changes in the diameterD as a function of the fractionf of removed nodes: (a) random failure with constantm, (b) random failure
with fluctuatingm(t), (c) intentional attack with constantm, and (d) intentional attack with fluctuatingm(t). The open circles, stars, and open
squares denote thep = 0, p = 0.5, andp = 1 cases, respectively. The general network withp = 0.5 appears to be a good trade-off between
scale-free and random networks against both random failures and intentional attacks.

the center node in turn yields an additional(n−1) dis-
tancesdi (i = 2, . . . , n). The diameterD is taken to be
the average value of then distances. We find numer-
ically that the method yields essentially the same re-
sult when different schemes for neighbor assignments
are used, indicating that the computed value of the di-
ameter reflects correctly the situation which it aims to
describe, i.e., the average path length between two ar-
bitrary nodes in the network.

We find, for our general network with initial con-
ditionsm0 = 3 at large time, the diameterD is small
and does not change appreciably for 0� p � 1. For in-
stance, fort = 105 (so there are about 105 nodes in the
network at this time), the scale-free network (p = 0)
hasD ≈ 4.3 while the completely random network
(p = 1) hasD ≈ 5.1, both are negligible comparing
with the number of nodes in the network, suggesting
that all networks resulted from our model are small-
world and therefore are efficient in terms of com-

munication or propagation of information within the
network, regardless of whether there is an organized
structure (the scale-free case) or there is a total lack of
such a structure (the random case). Fig. 3(a) and (b)
show the diameter of the network as a function off ,
the fraction of randomly removed nodes, for cases
of constant and fluctuatingm, respectively, where the
lower trace (open circles) is for the scale-free, the up-
per (squares) for random, and the middle (stars) for
general networks. Randomly removing less than 10%
of the nodes results in only an incremental increase
in the diameter, suggesting that all networks are ro-
bust against random failures of a small fraction of
nodes. The situation changes with intentional attacks,
as shown in Fig. 3(c) and (d) for cases of constant and
fluctuatingm, respectively. We see that for both cases,
the diameters of the scale-free networks (upper traces,
open circles) increase more rapidly withf , comparing
with the more general (middle traces, stars) and ran-
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dom (lower traces, squares) networks. The interesting
observation is that with respect to the diameter mea-
sure, a general network (say withp = 0.5) is much
more robust against intentional attacks as compared
with a scale-free one, while at the same time, performs
better under random failures as compared with a ran-
dom network. Thus, the parameterp can be tuned to
generate networks with any desired trade-off between
the scale-free and random properties in consideration
of security versus robustness against random failures.

We noticed that Ref. [9] gave a model which is
mathematically equivalent to our model (1) but with
different physical meaning. In Ref. [9], the following
attachment rule is considered. At each time step,m

new links are added to the network and, the probabil-
ity that a new link is attached to nodei is proportional
to A + qi , whereA � 0 is a predefined constant and
qi is the number of incoming links to nodei. If A is
chosen to bem, then the quantityA + qi becomeski ,
the total number of links of nodei. Our attachment
rule Eq. (1), however, is fundamentally different from
this rule. Firstly, Eq. (1) contains both a deterministic
and a random components, the latter simulates realistic
physical processes such as random rewiring, removal,
and addition of new links. This random component is
clearly important, but Ref. [9] ignores this completely.
Secondly, the attachment probability in Ref. [9] is spe-
cial in the sense that it is determined by the number of
incoming links only, while our rule is more general be-
cause it involves both incoming and outgoing links. In
many realistic networks such as those arising in epi-
demiology and biology, both incoming and outgoing
links are important. Although in form, the attachment
rule in Ref. [9] appears to be equivalent to our rule
by the simple conversionA = p/(1 − p), the mean-
ings of these two rules and hence the consequences
are qualitatively different, as explained. As we have
demonstrated, because of the complication to include
a random component, a mean-field treatment appears
to be feasible and proper, yielding results that can be
verified through numerical experiments.

We stress the following three differences between
our work and Ref. [9]. Firstly, our main theoretical
prediction is that for realistic networks, the connec-
tivity distribution is typically a mixture of algebraic
and exponential components, which has indeed been
observed, while Ref. [9] assumes algebraic connec-
tivity distribution and focuses on the variation of the

algebraic scaling exponent. In this sense, the model
and result in Ref. [9] are somewhat special. Secondly,
we analyze the effect of fluctuating links, which is
also an ingredient in many realistic networks. Thirdly,
we consider the practically important issues of net-
work security against random failures or intentional at-
tacks. Despite the inclusion of these practical factors,
we are still able to predict the connectivity distribu-
tion through a mean-field approach. The treatment in
Ref. [9] is rigorous and elegant, but the situation con-
sidered there is special.

In conclusion, we have constructed a class of gen-
eral growing networks based on the intuitive but real-
istic consideration that nodes are added to the network
with both preferential and random attachments, taking
into consideration that the number of new nodes can
fluctuate with time. We have derived theoretical for-
mulas for both the temporal evolution and distribution
of the connectivity, and these are verified by exten-
sive numerical computations. The effects of random
failure and intentional attacks on the performance of
the network are also addressed. From the engineering
pointview of designing large, complex, growing net-
works, our recommendation is that both scale-free and
random architectures should be avoided. Instead, one
should consider general networks with approximately
equal amounts of preferential and random factors.
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