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Abstract

We present a rigorous analysis and numerical evidence indicating that a recently developed methodology for detecting
unstable periodic orbits is capable of yieldingall orbits up to periods limited only by the computer precision. In particular,
we argue that an efficient convergence to every periodic orbit can be achieved and the basin of attraction can be made finite and
accessible for typical or particularly chosen initial conditions. 2001 Elsevier Science B.V. All rights reserved.

PACS:05.45.Ac; 05.45.Pq

Unstable periodic orbits (UPOs) have been recog-
nized as perhaps the most fundamental building blocks
of invariant sets in chaotic dynamical systems [1,2].
Many measurable quantities of physical interest can be
related to the dynamical properties of the set of infinite
number of UPOs embedded in the chaotic set. It is thus
of paramount interest in the study of chaotic systems
that a complete set of UPOs can be computed. There
are several algorithms for computing UPOs in chaotic
systems, notably the Biham–Wenzel (BW) method [3]
that is applicable to Hénon-like maps [4], the recent
Schmelcher–Diakonos (SD) method [5] and its variant
developed by two of us (DL) [6]. All these methods
appear capable of yielding all UPOs up to reasonably
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high periods in a variety of model chaotic systems, but
so far there is no rigorous assurance that this will be
true.

The aim of this Letter is to make a step forward by
presenting a rigorous analysis of the basin size of the
DL method in one dimension and providing numer-
ical evidence in two dimensions suggesting that the
method is in fact capable of yieldingall UPOs [6]. The
key to complete detection of UPOs lies in thebasin of
attraction for every orbit [7]. That is, there exists a
region in the phase space in which initial conditions
converge to the UPO under a particular numerical iter-
ative scheme. In order to have a successful detection,
this basin must be finite and be accessible for typical
(randomly chosen) or particularly chosen initial con-
ditions. Because the DL method is a variant of the SD
method, our basin analysis implies that the SD method
can also yield a complete set of UPOs. However, as we
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will argue heuristically in this Letter, the DL method
has the unique property of high efficiency and scala-
bility, which makes a complete detection of UPOs fea-
sible.

In a chaotic system, the numberNp of UPOs in-
creases exponentially with the periodp: Np ∼ ehT p ,
wherehT > 0 is the topological entropy of the chaotic
set. The traditional Newton–Raphson (NR) method
possesses a fast convergent property, but the basin for
each individual UPO shrinks exponentially with the
period because the number of UPOs increases expo-
nentially with the period. The NR method is thus nu-
merically infeasible for UPOs of high periods [7]. The
essence of the SD–DL methodologies lies in a sig-
nificant enlargement of the basins for UPOs of high
periods because they make use of “switches” which
make each UPO, in turn, globally convergent. In other
words, the SD–DL methods allows for a finite fam-
ily of iterators, one of which is expected to be glob-
ally convergent for each UPO of a given period. On
the other hand, the NR method is forced to cope with
all UPOs of a given period with the same iterator for
all, which thus forces exponentially decreasing basins
for each UPO. The convergence of the SD method,
however, becomes extremely slow when the period is
high [5]. The DL method [6], on the other hand, takes
the advantages of, and overcomes the drawbacks of,
both the SD and the NR methods so that it is fast and
globally convergent. We will argue that, in the DL de-
tection scheme, the basin of attraction to every UPO
can be made finite and accessible for random or par-
ticularly chosen initial conditions. Numerical evidence
also suggests that, starting from all UPOs of the low-
est periods, whose detection is guaranteed even by the
NR method, the scheme to select initial conditions in
the DL algorithm appears to warrant that every UPO of
higher periods can be detected.1 In what follows, we
first describe the NR, SD, and DL methods and prove a
theorem regarding the finiteness of basin of attraction
for one-dimensional maps in the DL scheme. We then
argue, with the aid of numerical tracking of basins of
convergence, that a similar property can be expected in
high dimensions. Since the argument for high dimen-
sions is not rigorous, we provide numerical examples
including a hyperbolic chaotic set for which no UPO

1 We still have no rigorous understanding why this is so.

is missing, to demonstrate that the DL method can in-
deed detect all UPOs in an efficient manner.

Consider anN -dimensional chaotic mapxn+1 =
f(xn). The orbit points of periodp can be detected as
thezerosof the following function:g(x)= f(p)(x)− x,
where f(p)(x) is the p times iterated map off(x).
To find zeros ofg(x), one usually chooses an ini-
tial pointx0 and then computes successive corrections
xk+1 = xk + δx, which converge to the desired solu-
tion. In the NR method [7], the corrections are cal-
culated from a set ofN linear equations−J(x)δx =
g(x), whereJ(x)= ∂g/∂x is the Jacobian matrix. The
NR method has excellent convergence properties, ap-
proximately doubling the number of significant digits
upon every iteration, provided that the initial point is
within the linear neighborhoodof the solution, which
shrinksexponentiallyas the period increases. In the
SD method, the corrections are determined as follows:
δx = λCg(x), whereλ is a small positive number and
C is anN ×N matrix, which we call aswitchingma-
trix, with elementsCij ∈ {0,±1} such that each row
or column contains only one nonzero element. With an
appropriate choice ofC and a sufficiently small value
of λ the above procedure can find any periodic point
of a chaotic system. The main advantage of the SD
method is that the basin of attraction of each UPO ex-
tends far beyond its linear neighborhood, so most ini-
tial points converge to a UPO. The iterative scheme in
the DL method is as follows:

(1)xk+1 = xk + [
1βg(x)− CJ(x)

]−1 · Cg(x),

whereg(x) ≡ ‖g(x)‖ � 0 is the length of the vector,
andβ > 0 is an adjustable parameter. In the vicinity
of an UPO, the functiong(x) tends to zero and the
NR method is restored. Away from the solution and
for sufficiently large values ofβ , the DL scheme is
similar to that of the SD method and thus almost
completely preserves its global convergence property.
Qualitatively, this similarity can be understood by
noting that the SD method is in fact the Euler method
with step sizeλ for solving the following system
of ODEs: dx/ds = Cg(x), while the DL method is
the semi-implicit Euler method [8] with step size
h = 1/βg(x) for solving the same system of ODEs.
Consequently, with sufficiently small step size, both
methods closely follow the solutions to the ODEs and
thus share the global convergence property.
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Computationally, the DL method for finding all pe-
riodic points of periodp thus consists of the follow-
ing steps: (1) Find all periodic orbits of low periods,
say, all fixed points and all period-2 orbits, by using
any of the described above iteration schemes with a
sufficiently large number of randomly chosen seeds;
(2) List all 2NN ! matricesCN×N , and determine the
subset of these necessary for stabilizing arbitrary hy-
perbolic equilibria; (3) Iterate Eq. (1) by using every
periodic point of periodp − 1 as seeds, and choosing
a matrix C and a numberβ = β1 > 0; (4) If the se-
quence{xk} converges to a root ofg, then iteratef to
find all components of the orbit; (5) Repeat steps (3)
and (4) for every matrixC in the list; (6) Repeat steps
(3)–(5) for increasing values ofβ until no more new
orbit points are found.

A key point of this Letter concerns the scaling ofβ ,
in step (6), which leads us to believe with a high degree
of numerical confidence that we have a complete set
of UPOs, up to a given period. Consider that for
very small period-p, once we have saturatedβ , while
we have strong belief that we have collected all the
up to period-p points, we can formulate independent
verification of completeness using a very large number
of randomly chosen initial seeds. Once we have
verified ourβ-saturation threshold for smallp, then
for higher period-p, by thescalabilityof our method,
that is by followingexactly the same steps for each
period, we assert with strengthened confidence that
our collected list of up-to period-p points is complete.

It is demonstrated in Ref. [6] that for two-dimen-
sional maps such as the Ikeda–Hammel–Jones–Mo-
loney (IHJM) map [9], for a high period, sayp = 20,
the number of UPOs that can be detected as a function
of the parameterβ saturates atβ ≈ 103, indicating that
no orbit is missing forβ > 103. For higher periods,
the value ofβ needs to be larger. In principle, one
can detect, efficiently, all orbits up to periods that are
limited only by the computer round-off. Efficiency
and the ability to detect complete sets of UPOs are
therefore the two features of the DL algorithm. In
the sequel, we will provide rigorous analysis and/or
numerical evidence for these features.

1. Efficiency. We stress that, with respect to ef-
ficiency, the major improved ingredient of the DL
method lies in its property of fast convergence,as com-
pared with the SD method. In particular, note that in
the neighborhood of a root ofg(x), we have‖g‖ ≈ 0

and, hence, the algorithm is essentially NR whose con-
vergence rate is quadratic, a statement that can be
proven rigorously [10]. In addition, in the SD method,
vast majority of the computation is spent on finding
UPOs that are already found or on trajectories that do
not converge at all. In the DL method, the seeds for
period-p orbits are the orbit points of all the period-
(p − 1) orbits, which helps reduce, significantly, the
computation time. In actual implementation, we rec-
ommend the following seeding scheme: (1) Find all
UPOs of low period (sayp � 3); (2) Chooseβ ; (3)
Use the(p − 1)-period seeds to detect UPOs of pe-
riodp with all matricesCN×N ; (4) Use these detected
period-pUPOs as seeds to detect period-(p+1)UPOs
as in step (3); (5) Use the just detectedp+ 1 UPOs as
seeds for detecting thelower period-p points again;
(6) Repeat steps (2)–(5) for increasingβ until satura-
tion, i.e., no more new period-p orbits are detected.

2. Complete detection of UPOs. The key require-
ment for a complete detection of UPOs is that the
basin for each UPO not be exponentially small for
largep. For a chaotic system, a fairly recent work [7]
has shown rigorously that the traditional NR algorithm
yields basins whose sizes decrease exponentially with
the period. An appealing feature of the DL algorithm
is that the basin sizes for distinct periodic orbits can
be controlled. In particular, by increasing the value of
the parameterβ in Eq. (1), the basin can be enlarged.2

The rest of this Letter is to prove this key statement for
one-dimensional systems and provide numerical sup-
port for higher-dimensional systems.

Theorem. For a one-dimensional mapf (x), let g(x)
= f p(x)− x and x̄ be a root ofg(x). Assume that̄x
is not a critical point, i.e.,g′(x̄) �= 0. For β � 0, define
the following function:

(2)H(x)≡ x + Cg(x)

β|g(x)| −Cg′(x)
,

and also defineNβ,C(x̄) to be the open interval
containing x̄ and satisfying|H ′(x)| < 1 for all x ∈

2 A large value ofβ, however, requires more time steps for the
numerical trajectory to enter the neighborhood of the corresponding
periodic orbit. Thus, there is a trade off between enlarging the basins
and convergence.
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Nβ,C(x̄). Then, under the condition that

(3)−2<
g(x)g′′(x)− [g′(x)]2
[β|g(x)| −Cg′(x)]2 < 0,

a numberC∗ = ±1 can be chosen such that if0 �
β2 � β1, thenNβ2,C

∗(x̄)⊆Nβ1,C
∗(x̄).

Proof. DifferentiatingH(x) yields

H ′(x)= 1+C2 [g(x)g′′(x)− (g′(x))2]
[β|g(x)| −Cg′(x)]2 ,

becauseg′(x)|g(x)| − g(x)|g(x)|′ = 0. Condition (3)
implies thatH ′(x) is well defined and satisfies|H ′(x)|
< 1 onNβ,C(x̄). Forβ2 � β1, we have the two cases
whereg′(x̄) < 0 andg′(x̄) > 0. In the former case, we
chooseC = 1 and letx ∈Nβ2,1(x̄). We have

−2<
g(x)g′′(x)− [g′(x)]2
[β2|g(x)| −Cg′(x)]2

� g(x)g′′(x)− [g′(x)]2
[β1|g(x)| −Cg′(x)]2 < 0.

Since 0< β2|g(x)| − Cg′(x) � β1|g(x)| − Cg′(x),
we havex ∈ Nβ1,1(x̄). For the case whereg′(x̄) > 0,
choosingC = −1 results in the same conclusion. This
completes the proof. ✷

The above proof only applies to one-dimensional
chaotic maps. In higher dimensions, unfortunately, a
similar proof cannot be carried out due mainly to the
following technical difficulty: in one dimension,β
only arises in the denominator ofH(x), but in higher
dimensions, the inverse of(β‖g(x)‖ − CJ) is a quo-
tient of two functions ofβ . While it can be shown that
any pointx satisfying‖∂H/∂x‖ < 1 will converge to
a periodic point [10], a straightforward statement re-
garding the basin of attraction, similar to that in the
one-dimensional theorem, is not true [10]. In particu-
lar, say we define the the following neighborhood of
a fixed point ofg(x): Nβ,C(x̄) = {x: ‖∂H/∂x‖ < 1}.
Then it is not true that there exists aC such that 0�
β2 � β1 impliesNβ2,C(x̄)⊆Nβ1,C(x̄). At present, we
do not have a rigorous understanding of the basin of
convergence for the DL method in dimensions higher
than 1. Experience suggests, however, the following:
letSβ,C(x̄) be the largest simply connected region con-
tainingx̄ in the basin of attraction of a periodic pointx̄;
then there exists a switching matrixC∗ such thatβ � 0

impliesS0,C∗(x̄)⊆ Sβ,C∗(x̄). Sinceβ = 0 corresponds
to the NR algorithm, this means that the DL algorithm
always provides a larger basin of attraction than that
associated with the NR method.

Since no rigorous statement can be made regard-
ing the basin size in the DL method in higher dimen-
sions, here we present numerical plots of basins of at-
traction for the IHJM map{x, y} → {a + b(x cosφ −
y sinφ), b(x sinφ + y cosφ)}, whereφ = k − η/(1 +
x2 + y2) and the parameters area = 1.0, b = 0.9,
k = 0.4, andη = 6.0. At the parameter setting, the
IHJM map possesses a chaotic attractor. Three basin
plots with different choices of the matrixC for points
of all period-5 orbits are shown in Fig. 1. The appar-
ent largeness of the basins renders detection of UPOs
of this period complete. Similar basin structures are
observed for UPOs of higher period.

To gain more confidence that the DL scheme is in-
deed capable of yielding all orbits, we here describe
results from two numerical examples:

1. A hyperbolic chaotic set in the Hénon map. For
the Hénon map [4](x, y)→ (a− x2 + by, x), there is
a nonattracting chaotic saddle fora = 3.0 andb= 0.3,
for which there is no tangency between the stable and
the unstable manifolds [11] and the dynamics can be
described by that of a complete horseshoe. By select-
ing β according to the ruleβ = b0b

p

1 , whereb0 = 10
andb1 = 1.2, all 2p fixed points of thep times iter-
ated map are found. We remark that the BW method
[3], which has been applied to a variety of Hamiltonian
and dissipative maps with real and complex eigenval-
ues as well as the billiard systems, can also yield all
periodic orbits.3 To have more confidence, we have
also tested various cases of the Hénon map including
the standard parameter seta = 1.4 andb = 0.3, for
which the BW method is capable of yielding complete
sets of periodic orbits, and found that the DL method
results in the same number of orbits.

2.The Tinkerbell map. Nusse and Yorke report find-
ing 64 period-10 UPOs using a quasi-Newton method

3 For maps without apparent symmetries, it may be hard to apply
the BW method, which requires specific adaptation for different
map. Nonetheless, in cases where the BW method applies, it
provides a better handle on the issue of completeness of the set of
yielded orbits.
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Fig. 1. Basin plots for the period-5 orbit points of the IHJM map withβ → ∞ andC = (1 0
0 1

)
(upper left panel),C = (0 1

1 0
)

(upper right panel),

andC = ( 0 −1
−1 0

)
(lower panel). Different symbols (dots, filled and open circles) denote the locations of all the period-5 orbits.

for the following Tinkerbell map [12]:(x, y)→ (x2 −
y2 + 0.9x − 0.6013y,2xy+ 2x + 0.5y). With the DL
algorithm, once all period-3 orbits are found, it ap-
pears that complete sets of UPOs of all higher pe-
riods can be found. For the quasi-Newton method,
millions of random seeds are required to find the 64
period-10 orbits, while the DL algorithm requires only
9 × 56= 504 period-9 points as seeds and the basins
of attraction are significantly larger. With six switch-
ing matrices, only 3024 applications of the iterator in
Eq. (1) are utilized to find 101 period-10 UPOs. Fig. 2
shows the locations of all UPOs of period up to 14.

The Tinkerbell map actually represents an exam-
ple where the DL algorithm performs far superiorly

than the SD method, due to DL’s extremely effi-
cient seeding scheme. In general, if the seeds are
chosen randomly, as in the SD method, the num-
ber of seeds required to detect all orbits of a given
period grows much faster than the number of cycle
points. We have in fact implemented the SD method
for the Tinkerbell map and observed a drastic in-
crease in the number of seeds as the period is in-
creased. For instance, for UPOs of periods(5,6,7,
8,9), the numbers of periodic points are 2n (n= 5,6,
7,8,9), but the approximate numbers of seeds re-
quired are(200,1000,7000,50000,400000), respec-
tively. For period larger than, say, 14, the SD method is
practically incapable of yielding many UPOs, let alone
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Fig. 2. All periodic points of period up to 14 for the Tinkerbell map.

complete sets of UPOs. While this appears to be a
practical limitation of the SD algorithm, we view it as
rather critical as far as computational efficiencies are
concerned. In this regard, the DL algorithm appears to
be the only available method at present that is practi-
cally capable of detecting complete sets of UPOs for
low-dimensional chaotic systems.

In summary, we give a rigorous analysis for one-
dimensional maps and numerical results for two-
dimensional maps, which indicate that the recently
proposed algorithm (DL) canefficiently yield com-
plete sets of unstable periodic orbits embedded in an
ergodic invariant chaotic set. The focus of our analy-
sis is on the basin of attraction. We show that the size
of the basin can be controlled by a parameter in the al-
gorithm and can be made large. Experience suggests
that, with respect to the basin of attraction and conver-
gence, the DL algorithm actually performs better than
what we can rigorously prove. So far, to our knowl-
edge, no other methods can achieve this.
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