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Abstract

Ž .Low-frequency fluctuations LLFs in semiconductor lasers subject to time-delayed optical feedback from external
reflectors have been experimentally observed and theoretically studied for the past two decades. Yet recently a question has
come into focus: whether these fluctuations are only a transient phenomenon. This Letter addresses this issue from the
viewpoint of deterministic chaotic transitions. In particular, we investigate the single-mode single-delay Lang–Kobayashi
equations by constructing a scheme that allows for a detailed bifurcation analysis and, consequently, an understanding of the
coexistence of LFFs and stable emission on the maximum gain mode, the latter’s being the subject of recent experiments
w Ž . xPhys. Rev. A 60 1999 634 . Our computations suggest that LFFs can be either transient or sustained, depending on the
dynamical interplay between the maximum gain mode and a chaotic set. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 42.55.Px; 05.45.qb; 42.65.Sf

A well-known phenomenon in the study of semi-
conductor lasers subject to optical feedback is low-

Ž . w xfrequency fluctuations LFF 1–12 , which take
place when a semiconductor laser in biased close to
the solitary laser threshold. In such a case, the power
of the laser exhibits irregular dropout events at an
average frequency that is about three orders of mag-
nitude smaller than that of oscillations of the laser
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field. Typically, the fast dynamics take place at GHz
frequencies and the average frequency of the dropout
events is of the order of a few MHz. Although LFF
appear to be random, for which modeling based on
stochastic assumptions may be natural, a first key
step is to seek an understanding of the phenomenon

w xby exploring its deterministic origin 6 . In particular,
chaos is expected to occur commonly because, a
semiconductor laser in the presence of optical feed-
back represents a highly nonlinear dynamical system.
LFF pose a serious problem in applications where a
constant mean square power output from the laser is

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 00 00133-X



( )R.L. DaÕidchack et al.rPhysics Letters A 267 2000 350–356 351

desired. The paramount interest in recent years in
these systems and associated phenomena comes form

w xefforts to apply stabilization techniques 13 and
w xfrom applications in communications 14 .

One important recent observation in the study of
semiconductor lasers is that, in some regions of the
parameter space, LFF coexist with stable emission

Ž . w xon the maximum gain mode MGM 15–17 . The
implication is then that LFF may only be a transient
phenomenon in the sense that the laser output would
eventually be stabilized after suffering an initial time
period of power drops. Apparently, if this were true,
then LFF would not be a serious problem in applica-

Ž .tions. We then ask: 1 whether or not LFF can be
Ž .transient, and 2 if yes, how common do we expect

LFF to be transient?
The aim of this Letter is to address the above

questions by investigating the Lang–Kobayashi
w xequations 18 . These equations combine a phe-

nomenological description of the laser gain medium
with a first principles wave equation for the electric
field. In the past, they have been successfully used in
modeling a variety of laser structures exposed to

w xoptical feedback, Fabry–Perot 19 , distributed-
w xfeedback 20 , and vertical-cavity surface-emitting

w xdevices 21 . Our approach will be to perform a
detailed numerical bifurcation analysis, in conjunc-
tion with qualitative arguments, to understand LFF
from the perspective of deterministic chaotic dynam-
ics. Our principal result is that LFF can be either
transient or sustained, depending on the dynamical
interplay between invariant sets that physically cor-
respond to different operational modes of the laser.

We begin by briefly describing the Lang–
w xKobayashi equations 18 and discussing their suit-

ability for modeling the phenomenon of LFF in
semiconductor lasers subject to optical feedback. The
equations are:

d EE t 1q iaŽ .
y1s G N ,EE yt EE tŽ . Ž .Ž .pd t 2

qg eyi v 0t ext EE tyt ,Ž .e

d N t N tŽ . Ž . 2< <sJy yG N ,EE EE t , 1Ž . Ž . Ž .
d t ts

Ž . Ž .where EE t and N t are the laser intracavity com-
plex electric field and the carrier population, respec-

w xtively, a is the linewidth enhancement factor 22,23 ,
v is the laser emission frequency in the absence of0

feedback, t is the photon lifetime, t is the carrierp s

lifetime, and J is the injected current density. The
external cavity parameters are the feedback strength
g that measures the intensity of the light reflected
back into the laser cavity, and the delay time t sext

2 L rc, which is the round-trip time of the light inext

the external cavity of length L . This model as-ext

sumes single-mode operation of the solitary semi-
conductor laser and neglects multiple reflections from
the external mirror.

Ž . Ž .ŽThe modal gain per unit time G N,EE sG N 10
< < 2 . Ž . Žy´ EE contains the linear gain G N sG Ny0 N

.N where G is the gain constant and N is the0 N 0

carrier density at transparency, and intensity reduc-
tion of the gain due to spatial and spectral hole
burning and carrier heating, with ´ being the gain

w xsaturation coefficient 24,25 . The effect of nonlinear
gain saturation was extensively studied by Masoller
w x25 and was found to lead to the stabilization of the

Ž .external cavity modes ECM , so that the onset of
chaos and chaotic transitions is shifted towards higher
feedback levels. Since the purpose of this work is to
investigate chaotic transitions in the system with
delayed feedback, we will ignore the saturation ef-
fects and set ´s0.

< Ž . < 2The electric field is normalized so that V EE tc

is the total photon number in the laser wave guide,
where V is the volume of the active region. Thec

parameter J sN rt is the lasing threshold currentth th s

density of a solitary laser and N is the thresholdth

carrier density. Typical values for the above parame-
Ž .ters are: 1 linewidth enhancement factor as3–7,

Ž . Ž .2 photon lifetime t ;1 ps, 3 carrier lifetimep
Ž . 33 y3t ;1 ns, 4 threshold current J f2.0=10 ms th

y1 Ž . y12s , 5 modal gain coefficient G f1.0=10N
3 y1 Ž .m s , 6 carrier density at transparency N f1.00

24 y3 Ž .=10 m , 7 volume of the active region V ;c
y16 3 Ž .1.0=10 m , 8 feedback level gs0–30=

9 y1. Ž .10 s , and 9 delay time t s1–10 ns. Despiteext

recent discussions about the importance of multi-
w xmode behavior for the description of LFF 11 , we

Ž .think that Eq. 1 is suitable for our study, since in
the experiments LFF persist under single mode oper-
ation as it was described in a recent experiment
where a distributed-feedback semiconductor was used

w xto ensure single-mode operation 20 .
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In our numerical simulations, we measure time in
units of the photon lifetime and introduce the nor-

Ž . Ž .malized excess carrier number density n t ;N t
Ž .yN . The dynamical system, Eqs. 1 can then beth

w xwritten in the following normalized form 26 :

d EE tŽ .
yi v t0s 1q ia n t EE t qhe EE tyt ,Ž . Ž . Ž . Ž .

d t

dn tŽ . 2< <T sPyn t y 2n t q1 EE t , 2Ž . Ž . Ž . Ž .
d t

Ž .where, hst g , Tst rt , and P; JrJ y1,p s p th

ts2 L rct . The above equations describe dynam-ext p
Ž .ics of three independent real variables, since EE t s

Ž . Ž .EE t q i EE t . However, the phase space associatedR I
Ž .with Eq. 2 is of infinite dimension, since, to inte-

grate these equations starting at ts0, it is necessary
to define initial conditions for the three variables
everywhere in the time interval ytF t-0 .

Ž .The stationary solutions of Eq. 2 can be written
Ž . i v s t Ž . Ž .as: EE t sE e and n t sn . Writing EE t ss s

Ž . if Ž t . tE t e and introducing the phase delay variable:
Ž . Ž . Ž .D t sf t yf tyt qv t , we see that the sta-0

tionary solutions are the fixed points in the configu-
Ž . Ž .ration space of the three variables E t , n t , and

Ž . 2 ŽD t . We have: n syhcos D and E s Pys s s
. Ž . Ž .n r 1q2n , where D ' v qv t are the solu-s s s s 0

tions to the implicit equation:

2 y1'D yv tsyht a q1 sin D q tan a . 3Ž .Ž .s 0 s

At low feedback levels this equation has only one
solution, which is close to the solitary laser fre-
quency v . With increasing h, additional solutions0

Ž .appear in pairs. For low pumping P-h some of
the solutions are not allowed because of the condi-

w xtion E G0. A stability analysis 27 shows that ones

of the fixed points is stable and is thus identified as
Ž .an external cavity mode ECM of the laser, while

another is an unstable saddle point, often called an
antimode, which physically corresponds to destruc-
tive interference between the external cavity and

w xlaser fields 7 .
We study the dynamics of Lang–Kobayashi equa-

tions using Adams–Bashford–Moulton predictor-
w xcorrector method 28 . We set parameter values as

6, ts1000, v tsy1, Ts1000, Ps0.001 and0

vary the feedback parameter h. The choice of these

parameters is consistent with a recent experiment in
which bifurcation cascades were recorded for an

w xexternal cavity of 15 cm 15 . A large variety of
different chaotic transitions occur with increasing
feedback level as shown in Fig. 1. Each new ECM is
stable upon creation, but then becomes unstable due
to Hopf bifurcation at higher h and is replaced by a
limit cycle. As the feedback is further increased, the
cycle undergoes a period-doubling bifurcation at h

y4 w Ž .xf13.25=10 Fig. 1 a followed by a cascade of
bifurcations leading to a chaotic attractor at hs13.5

y4 Ž .=10 , as shown in Fig. 1 b . This attractor grows
in size, occupying more space between the neighbor-
ing saddle points until at hf14.08=10y4 it merges
with the attractor ruins of another ECM, which were

w Ž .xinaccessible at a lower feedback level Fig. 1 c . At
the same time, the attractor gets closer to the saddle
separating it from the basin of the maximum gain

Ž . y4mode MGM , and at hf14.34=10 a boundary
w xcrisis 29,30 occurs: after spending some time on the

chaotic attractor, the trajectory escapes across the
w Ž .xsaddle to the MGM Fig. 1 d . Thus, at this feed-

back level the chaotic behavior of the system is
transient and, after a finite time interval, is replaced
by a limit cycle around the MGM.

ŽThis sequence of transition events stable ECM
™ ECM attractor ™ merging with lower gain

.attractor ruins ™ transient towards MGM repeats
qualitatively for higher feedback levels until a large
attractor containing many ECMs is created. LFF,

w xalso known as the Sisyphus effect 7 , occur when
the system evolves on this large attractor made of the
attractor ruins associated with many ECMs. We call
this large attractor the Sisyphus attractor. In order to
distinguish between sustained and transient LFF, we
need to consider the basin of attraction of both
MGM and Sisyphus attractors: if the basin of the
MGM attractor contains part of the Sisyphus attrac-
tor, then LFF will only be transient. Strictly speak-
ing, in this case, the term ‘Sisyphus attractor’ is no
longer valid because it is only a transient. In chaos
theory, the event when two previously isolated basins
begin to connect with each other is called crisis
w x29,30 . If, on the other hand, the MGM attractor is
unstable and becomes part of the Sisyphus attractor
then the corresponding LFF are sustained.

To determine where in parameter space the LFF
phenomenon is sustained or transient, the most direct
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Ž . Ž . Ž .Fig. 1. Different stages in the evolution of the external cavity mode ECM attractor: a limit cycle after a period-doubling bifurcation; b
Ž . Ž .chaotic attractor; c merger of the ECM attractor with attractor ruins of the neighboring ECM; d boundary crisis of the chaotic attractor.

Ž . Ž .The crosses = designate saddles, and the circles ( denote nodes of the external cavity. In all cases the integration is initialized at the
Ž .ECM and the trajectory between 100 and 250t is plotted. The duration of the transient in d is 207t .

way is to study the bifurcation diagram of the attrac-
tors. Recall that in low-dimensional chaotic systems,
a bifurcation diagram typically contains parameter
regions for chaotic attractors and for periodic win-

w xdows 31 . Chaos on attractors is sustained but it is
only transient in periodic windows. We thus seek to
construct bifurcation diagrams for the Lang–
Kobayashi equations. A major difficulty is the ex-
tremely high dimensionality involved in the system.
It is thus necessary to carefully select a Poincaré
surface of section and a variable that can adequately
represent the system evolution. Since our main focus
is on transitions between attractor ruins of different
ECMs, we define the Poincare section in such a way,´
that it passes through all the fixed points of the

Ž .system. Namely, the point E ,n ,D is on the sur-i i i

2 Ž . Ž .face of section if E s Pyn r 1q2n . Thei i i

variable D provides the best view of the Sisyphusi

attractor since ECMs are separated by approximately
2p . Another complication in the construction of a
bifurcation diagram is that, depending on the feed-
back level, the laser dynamics may have several
attractors separated by the basin boundaries. The
appearance of the bifurcation diagram depends then
on the choice of the initial condition. That is, only
attractors whose basin contains the initial point will
appear on the bifurcation diagram.

The bifurcation diagram shown in Fig. 2 was
constructed as follows. We fix the parameters as4,
Ts1000, Ps0.001, v tsy1, ts1000, and vary0

h in increments of 1.0=10y5 in the range from
zero to the value at which 20 ECMs exist. At a given
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Fig. 2. Bifurcation diagram of the delay coordinate on the Poincare surface. The system parameters are ts1000, v tsy1, Ts1000,´ 0

Ps0.001, and as4. The ‘window-like’ structure reveals alternating regions of sustained and transient LFF.

value of h we find all stationary solutions and
initialize the integration of Lang–Kobayashi equa-
tions at one of the ECMs inside the Sisyphus attrac-
tor. After a 500t pre-iteration run, we record values
of the phase delay coordinate D at points of inter-i

section with the Poincare surface during the follow-´
ing time period of 2000t . The key feature of Fig. 2
is the appearance of ‘window-like’ structure in the
diagram. In these ‘windows’ the attractor is localized
around the MGM and LFF are transient. In each
window, the MGM attractor goes through a cascade
of period-doubling bifurcations, becomes chaotic, and
eventually collides with the transient chaotic set,
leading to LFF. After this, the MGM becomes part
of a larger Sisyphus attractor, and LFF are then
sustained until the a new maximum gain mode be-
comes stable.

In order to contrast the transient and sustained
characters of the Sisyphus effect at different values

of the feedback parameters, we show in Fig. 3 two
cases from the opposite sides of one of the transient
windows in Fig. 2. The dynamics in both cases

Ž .appear similar, except that for Fig. 3 a , a trajectory
initiated in the middle of the Sisyphus ‘attractor’ gets
trapped around MGM after 226t . In this case, the

Ž .corresponding LFF are transient. Fig. 3 b shows the
Sisyphus attractor at a slightly higher feedback level.
We see that even though the trajectory gets close to
the MGM, it does not remain there, but returns back
to the Sisyphus attractor, thus sustaining LFF and the
power dropout events. For this level of feedback, the
MGM is part of the Sisyphus attractor. Conse-
quently, trajectory starting from most initial condi-
tions remain on the Sisyphus attractor so that LFF
are sustained.

In summary, we have proposed a bifurcation anal-
ysis scheme for studying deterministic chaotic dy-
namics of semiconductor lasers subject to optical
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Ž .Fig. 3. Transient and sustained LFF: a hs0.01536, the trajectory is initialized in the Sisyphus attractor and escapes to the maximum gain
Ž . Ž .ECM after 226t ; b hs0.01624, the trajectory is initialized at the MGM and remains on the Sisyphus attractor. Here also, the crosses =

Ž .designate saddles, and the circles ( denote nodes. In both cases the trajectory between 100t and 500t is shown.

feedback. By analyzing the regime of coexistence of
stable emission and low-frequency fluctuations, we
find a window-like structure in which sustained LFF
regions alternate with transient LFF regions, in latter
case the asymptotic dynamical state is stable emis-
sion generated by the maximum gain mode. Evi-
dently, the probability of observing LFF or stable
emission depends on the relative widths of the win-
dows. The study of how the window width depends
on the system parameters will be the subject of
future investigation.

This work was supported by AFOSR under Grant
No. F49620-98-1-0400.
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