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Abstract

We investigate how the transition to chaos with multiple positive Lyapunov exponents can be characterized by the set of
infinite number of unstable periodic orbits embedded in the chaotic invariant set. We argue and provide numerical
confirmation that the transition is generally accompanied by a nonhyperbolic behavior: unstable dimension variability. As a
consequence, the Lyapunov exponents, except for the largest one, pass through zero continuously. © 2000 Elsevier Science

B.V. All rights reserved.

PACS 05.45.Jn; 05.45.Ac

A fundamental question in nonlinear dynamics is
to understand how chaos arises and evolves as a
system parameter changes. It is now known that
there are four possible routes to low-dimensional
chaos, i.e., chaos with only one positive Lyapunov
exponent: (i) the period-doubling cascade route [1];
(i) the intermittency transition route [2]; (iii) the
crisis route [3]; and (iv) the route to chaos in
quasiperiodically driven systems [4—6]. Transition to
chaos with multiple positive Lyapunov exponents
has become a recent topic of study (see, e.g., Refs.
[7-12]). A good understanding of this transition is of
interest because high-dimensional phenomena are re-
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ceiving an ever increasing attention (see, e.g., Refs.
[13,14]), and there have been extensive efforts in the
control (see, e.g., Refs. [15-19]) and synchronization
(see, e.g., Refs. [20—22]) of high-dimensional chaotic
systems.

In order to better understand a transition, it is
desirable to study it in terms of the fundamental
dynamical quantities of the system. There is nothing
more fundamental than to characterize a transition by
unstable periodic orbits embedded in the dynamical
invariant set®. Most known bifurcations in low-di-

L1t has been a widely accepted notion that in deterministic
chaotic systems, unstable periodic orbits constitute the skeleton of
the chaotic sets such as chaotic attractors or nonattracting chaotic
saddles. See, for example, [23].
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mensional chaos theory, such as the period-doubling
bifurcation [1], the saddle-node bifurcation, crises
[3], etc., are characterized by properties of some key
unstable periodic orbits involved in the bifurcations.
The aim of this paper is to present a periodic-orbit
characterization of the transition to chaos with multi-
ple positive Lyapunov exponents. Our principal re-
sult is that the transition is generally accompanied by
severe unstable dimension variability [24], a type of
nonhyperbolicity that has been documented recently
for high-dimensional chaotic systems and is believed
to be common in such systems [25—-27]. Specifically,
assuming that the system already possesses one posi-
tive Lyapunov exponent, we find that unstable di-
mension variability provides a possible dynamical
mechanism for any subsequent Lyapunov exponents
to become positive as a system parameter changes.
As a consequence, the transition is typically smooth
in the sense that the subsequent Lyapunov exponents
pass through zero continuously. We note that the
smooth behavior of Lyapunov exponents in high-di-
mensional chaotic systems has been observed previ-
ously [7-12], but our results here provide an expla
nation for this behavior based on unstable periodic
orbits. In what follows, we will first present a heuris-
tic theory for the transition and provide explicit
numerical confirmation. A key factor that enables us
to perform numerical test of our idea is the availabil-
ity of an algorithm for computing a large number
periodic orbits for general dynamical systems[28,29],
which we have implemented with substantial im-
provements [30].

Consider a dynamical system described by the
following N-dimensional map: X, ., = F(x,,a),
where x eZN (N > 2) and a is a bifurcation param-
eter. Since we are interested in the transition to chaos
with more than one positive Lyapunov exponent, we
assume that near the transition, the system has a
chagtic attractor with at least one positive Lyapunov
exponent. For concreteness, we let the transition
point be a, and assume that for a < a, thereis one
positive Lyapunov exponent (A, > 0) and for a > a,,
there are two positive ones (A, > A, > 0). Thus, near
a,, each periodic orbit embedded in the attractor has
at least one expanding direction. Consider periodic
orbits of period p. There are N, ~ e'"P of them,
where h; > 0 is the topological entropy of the attrac-
tor. Since A, is positive and the parameter interval of

interest is small (near a,), hy remains approximately
constant in this interval?. In order to relate the
Lyapunov exponents to unstable periodic orbits, we
note two facts: (1) the exponents are defined with
respect to the natural measure of the chaotic attractor
[34], and (2) atypical trajectory on the attractor visits
the neighborhoods of the infinite number of unstable
periodic orbits. Thus, athough periodic orbits are
atypical in the sense that they form a set of Lebesgue
measure zero, the natural measure can be related to
the infinite number of atypical measures associated
with unstable periodic orbits. In particular, it was
shown rigorously for hyperbolic systems [35] and
verified numericaly for more general chaotic sys-
tems [36] that the natural measure ug in a phase
space region S can be expressed as:
ps= lim Y e, (1)

P> jes
where X{’s(i =1,...,N) are the eigenvalues of the
jth periodic orbit of period p, A’>0 (j=
1,...,N,), and the summation is over al periodic
orbits of period p and its integer factors contained in
S The Lyapunov exponents of the attractor can then
be written, approximately, as:

NP

A= lim Y ADe P i=1,... N, (2)

p— j=1
where the expression becomes exact if the underly-
ing dynamics is hyperbolic [35]. We can now exam-
ine the second Lyapunov exponent:

NP

A= lim Y APe M'p, (3)

p— ji=1
where A, <0 for a<a, and A, >0 for axa,.
Since there are approximately equal numbers of un-

2 For typical Hamiltonian systems and for Axiom-A attractors
of dissipative dynamical systems, it was proven that h( u)=
X, > oAi, where h( w) is the metric entropy and A; > 0(i=1,...)
are positive Lyapunov exponents (see Ref. [31], reprinted in Ref.
[32], and Ref [33]). Generally, the topological and metric entropies
satisfy hy > h( w) [33]. In our case, because: (1) A, = constant > 0
and A, =0, and (2) the derivative of the Lyapunov exponents
with respect to the bifurcation parameter is bounded, we expect
h; to be approximately constant about the transition.
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stable periodic orbits immediately before and after
the transition, and the dynamical properties of the
periodic orbits are structurally stable, we see that it is
generally not possible for al A9’ (j=1,...,N,) to
be negative for a<a, and al to be positive for
a> a.. The only possibility for A, to change sign at
a, is for some A3 to be negative and some to be
positive for a near a,, with a balance achieved at a,.
Specificaly, let:

A(a) = lim Y APeM'p
P== \h<o

M(a) = lim Y APe e, (4)
P=* x>0

where A3(a) and Aj(a) are the stable and unstable
weights associated with the second largest Lyapunov
exponent. We see that the transition to chaos with
multiple positive Lyapunov exponents can occur via
the following scenario: (1) |A3(a)l > Ay(a) for a<
a.; (2) 2@l < Ay(a) for ax ag; and (3) [A3(a)l =
A3(a) at a=a,. Two consequences associated with
this scenario become immediately apparent: (1) near
the transition, there is severe unstable dimension
variability because unstable periodic orbits can have
different number of unstable directions, and (2) A,
passes through zero at a, continuousy. We stress
that the key element in our argument for the continu-
ity of the trangition is the continuous dependence of
the largest Lyapunov exponent on a in the vicinity
of a..

The above scenario for the transition to chaos
with multiple positive Lyapunov exponents is based
on the characterization of the natural measure by
unstable periodic orbits embedded in the attractor,
i.e., Eq. (1), which is rigorously valid only when the
system is hyperbolic. We expect, however, Eq. (1) to
hold, at least approximately, for nonhyperbolic
chaotic systems as well. To give a supporting argu-
ment, we recall the formal definition of hyperbolic-
ity. A chaotic set is hyperbolic if: (i) at each point of
the trajectory the phase space can be split into an
expanding and a contracting subspaces and, the ex-
panding subspace evolves into the expanding one
along the trgjectory and the same is true for the

contracting subspace; (ii) the angle between the
stable and the unstable subspaces is bounded away
from zero. In low-dimensional chaotic systems with
only one positive Lyapunov exponent, nonhyperbol-
icity occurs typically because of the violation of
condition (ii), i.e., there are tangencies between the
stable and the unstable subspaces. The tangencies
are, however, rare in the sense that the set of tan-
gency points has Lebesgue measure zero. In this
case, Eqg. (1) is expected to be valid [36]. In high-di-
mensional systems, nonhyperbolicity can also occur
due to the violation of condition (i), i.e, due to
unstable dimension variability [25-27]. From Eq.
(1), we see that the natural measure is determined by
the largest Lyapunov exponent. Thus, in so far as
there exists at least one unstable direction for every
point in the chaotic set (corresponding to one posi-
tive Lyapunov exponent), we expect Eg. (1), and
consequently Egs. (2)—(4), to be valid. Since the
argument assumes that the largest Lyapunov expo-
nent remains positive, we see that it does not apply
to the evolution of the largest exponent itself. Thus,
the routes to chaos with one and more than one
positive Lyapunov exponent are generally different.

As our representative numerical example, we con-
sider the following four-dimensional system consist-
ing of two coupled |keda—Hammel—Jones—Moloney
(IHIM) maps [37,38]:

Xpy1 =@+ b(X,co8¢, —y,Sing,),
Yo+ 1= D(X SN, +y,C0S,),
X1 =a+b(Xx,cos¢, —y,sing;),
he1 = b(X SiNg), + ycosey) (5)

with the couplings between (x,y) and (X,y’) occur-
ring in the phase variables ¢, and ¢;:

o =k—d/(1+x;+Y]) +2me( X, — X,),

dn=k—d/[1+ (x)7 + ()] + 2me( %, — %),
(6)

where a, b, k, and d are parameters, and e repre-
sents the coupling strength. The IHIM map models
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the dynamics of an optical pulse propagating in a
ring cavity, subject to partial reflection, phase and
amplitude modulation and distortion due to a nonlin-
ear optica medium in the cavity. We conceive that
the phase coupling in Eq. (6) is physically meaning-
ful as phase interaction is readily realizable in non-
linear optics. In our numerical experiments, we fix
(a,b,k,d) = (0.85,0.9,0.4,5.18) so that the uncoupled
IHIM map exhibits a chaotic attractor with one
positive Lyapunov exponent, and we choose e as the
bifurcation parameter. Fig. 1 shows the four Lya
punov exponents of Eq. (5) versus e, where we see
that a transition occurs at € = ¢, = 0.185: there is
one positive Lyapunov exponent for e < e, and there
are two for e>e.. Apart from regimes of: (1)
periodic windows, and (2) wild fluctuations of the
exponents in which there are multiple coexisting
attractors, we see that the second largest Lyapunov
exponent A, (or the envelope of A,) appears to pass
through zero continuously as e is increased through
€, @ shown in the inset of Fig. 1.

We now provide evidence that severe unstable
dimension variability occurs near €,. To compute
unstable periodic orbits embedded in the chaotic

Lyapunov exponents
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Fig.1. The four Lyapunov exponents of Eq. (5) versus €. A
blowup of the behavior of A, near €., a transition point to chaos
with two positive Lyapunov exponents, is shown in the inset.
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Fig.2. Locations of unstable periodic orbits of periods 24 and 25
in the synchronization manifold .# with unstable dimensions one
and two are shown in () and (b), respectively.

attractor of Eq. (5), we make use of an improved
version [30] of the Schmelcher—Diakonos algorithm
[28,29] which can, in principle, yield complete sets
of periodic orbits of relatively large period®. The
algorithm is particularly powerful for low-dimen-
sional maps such as the two-dimensiona IHIM map
for which we find a total of over 10° orbit points of
period up to 25. For the four-dimensional coupled
system Eq. (5), due to a much larger topological
entropy, we detected periodic orbits of period only
up to 7 for a total of about 20000 orbit points. To
make numerical experiments feasible, we note that

3 Even though we cannot prove rigorously the completeness of
the detected sets of orbits, our algorithm allows us to conduct a
thorough exploration of the phase space, so that the number of
undetected orbits, if any, is extremely small.
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the synchronization manifold defined by .Z:{x=
X,y =Y} isactualy a solution of Eq. (5). In .#, the
invariant set is the chaotic attractor of the IHIM map
for which a large number of periodic orbits can be
computed. These periodic orbits are a subset of all
periodic orbits embedded in the chaotic attractor of
Eq. (5) because .# is part of the attractor. In situa-
tions where .Z is transversely stable, the chaotic
attractor in .# is an attractor of the full system and,
hence, periodic orbits in .# are all orbits of Eq. (5)*
Fig. 2 shows the locations of the unstable periodic
orbits of periods 24 and 25 in .# for e =0.19 > ¢,
where the transversely stable and unstable orbits are
shown in (a) and (b), respectively. Unstable dimen-
sion variahility is clearly present because the trans-
versely stable orbits have unstable dimension one
and the transversely unstable ones have two. In fact,
unstable dimension variability is severe® because
each of the two groups of periodic orbits appears to
cover densely the whole chaotic attractor in .Z.

We have also computed unstable periodic orbits
of the full four-dimensiona system Eq. (5) within
our computational resource. The total numbers of
periodic orbits of these periods actually change
dightly as e increases through e.. Fig. 3 shows, for
€=0.185= ¢, histograms of the weighted Lya-

“We find that near e, the transverse Lyapunov exponent
evaluated with respect to a trgjectory in the chaotic attractor in the
synchronization manifold .# is nearly zero. Therefore, unstable
periodic orbits in .# represents a large fraction of al periodic
orbits in the attractor in the full phase space.

® The severeness of unstable dimension variability can be quan-

tified by using the following contrast measure [39]: C,=

#2P)~ 1P| \yhere ()= EMeg(Pe” MU N(p) and
a(p)+ pa(p) - . . .
N,( p) are the numbers of periodic orbits of period p with one and

two unstable directions, respectively. The quantities u, ,(p) are
then the weighted numbers of period-p orbits with one and two
unstable directions, respectively. When there is no unstable di-
mension variability, we have either N,(p)=0 or N,(p)=0,
which yields C, = 1. The contrast C,, starts to decrease from one
when unstable dimension variability occurs, and the worst case is
C, =0, corresponding to the situation where unstable dimension
variability is most severe [ u,( p) = u,( p)l. Numerical computa
tions of contrasts for periodic orbits of different periods reveal
that the values of these contrasts are near zero in parameter
regimes where transitions to chaos with multiple positive Lya-
punov exponents occur, indicating the presence of severe unstable
dimension variability near the transitions.

0 0.5 1 1.5 2
Lyapunov exponents of UPOs

Fig. 3. Histograms of the first (solid line) and second (dashed line)
largest Lyapunov exponents of all periodic orbits of period 7 in
the full four-dimensiona system Eq. (5).

punov exponents Ale MP and Ae MP (=
1,...,N,) for al periodic orbits of period 7. We see
that the second largest Lyapunov exponent of the
periodic orbits can be either positive or negative,
indicating unstable dimension variability.

In summary, we have presented a heuristic theory
and solid numerical evidence for the characterization
of the transition to chaos with multiple positive
Lyapunov exponents by unstable periodic orbits. Our
main conclusion is that this transition is typically
accompanied by severe unstable dimension variabil-
ity. This provides evidence, at the level of unstable
periodic orbits, for the smooth behavior of Lyapunov
exponents (except for the largest one) through zero
in high-dimensional chaotic systems [7-12]. The
transition is thus different from most transitions to
low-dimensional chaos in that the former involves an
infinite number of periodic orbits. We remark that an
explicit verification of unstable dimension variability
requires precise computation of a large number of
unstable periodic orbits embedded in the chaotic
attractor, which is difficult. We are able to test our
argument due largely to our improved version [30] of
the Schmelcher—Diakonos algorithm [28,29].

We stress that, intuitively, when a chaotic system
evolves from having one positive Lyapunov expo-
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nent to having more than one such exponent, there
has to be a variability in the unstable dimensions
among unstable periodic orbits embedded in the
chaotic set, and the continuous behavior in the Lya
punov exponents near this transition is a natural
consequence of the unstable dimension variability.
This paper provides evidence for this intuition. How-
ever, just as there are different routes to low-
dimensional chaos, there can be distinct scenarios to
high-dimensional chaos. The one through unstable
dimension variability investigated in this paper is
just one such scenario that is expected to occur
commonly in chaotic systems.
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