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Abstract

We investigate how the transition to chaos with multiple positive Lyapunov exponents can be characterized by the set of
infinite number of unstable periodic orbits embedded in the chaotic invariant set. We argue and provide numerical
confirmation that the transition is generally accompanied by a nonhyperbolic behavior: unstable dimension Õariability. As a
consequence, the Lyapunov exponents, except for the largest one, pass through zero continuously. q 2000 Elsevier Science
B.V. All rights reserved.

PACS: 05.45.Jn; 05.45.Ac

A fundamental question in nonlinear dynamics is
to understand how chaos arises and evolves as a
system parameter changes. It is now known that
there are four possible routes to low-dimensional
chaos, i.e., chaos with only one positive Lyapunov

Ž . w xexponent: i the period-doubling cascade route 1 ;
Ž . w x Ž .ii the intermittency transition route 2 ; iii the

w x Ž .crisis route 3 ; and iÕ the route to chaos in
w xquasiperiodically driven systems 4–6 . Transition to

chaos with multiple positive Lyapunov exponents
Žhas become a recent topic of study see, e.g., Refs.

w x.7–12 . A good understanding of this transition is of
interest because high-dimensional phenomena are re-
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Žceiving an ever increasing attention see, e.g., Refs.
w x.13,14 , and there have been extensive efforts in the

Ž w x.control see, e.g., Refs. 15–19 and synchronization
Ž w x.see, e.g., Refs. 20–22 of high-dimensional chaotic
systems.

In order to better understand a transition, it is
desirable to study it in terms of the fundamental
dynamical quantities of the system. There is nothing
more fundamental than to characterize a transition by
unstable periodic orbits embedded in the dynamical
invariant set1. Most known bifurcations in low-di-

1 It has been a widely accepted notion that in deterministic
chaotic systems, unstable periodic orbits constitute the skeleton of
the chaotic sets such as chaotic attractors or nonattracting chaotic

w xsaddles. See, for example, 23 .
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mensional chaos theory, such as the period-doubling
w xbifurcation 1 , the saddle-node bifurcation, crises

w x3 , etc., are characterized by properties of some key
unstable periodic orbits involved in the bifurcations.
The aim of this paper is to present a periodic-orbit
characterization of the transition to chaos with multi-
ple positive Lyapunov exponents. Our principal re-
sult is that the transition is generally accompanied by

w xsevere unstable dimension Õariability 24 , a type of
nonhyperbolicity that has been documented recently
for high-dimensional chaotic systems and is believed

w xto be common in such systems 25–27 . Specifically,
assuming that the system already possesses one posi-
tive Lyapunov exponent, we find that unstable di-
mension variability provides a possible dynamical
mechanism for any subsequent Lyapunov exponents
to become positive as a system parameter changes.
As a consequence, the transition is typically smooth
in the sense that the subsequent Lyapunov exponents
pass through zero continuously. We note that the
smooth behavior of Lyapunov exponents in high-di-
mensional chaotic systems has been observed previ-

w xously 7–12 , but our results here provide an expla-
nation for this behavior based on unstable periodic
orbits. In what follows, we will first present a heuris-
tic theory for the transition and provide explicit
numerical confirmation. A key factor that enables us
to perform numerical test of our idea is the availabil-
ity of an algorithm for computing a large number

w xperiodic orbits for general dynamical systems 28,29 ,
which we have implemented with substantial im-

w xprovements 30 .
Consider a dynamical system described by the

Ž .following N-dimensional map: x s F x ,a ,nq1 n
N Ž .where xgRR N)2 and a is a bifurcation param-

eter. Since we are interested in the transition to chaos
with more than one positive Lyapunov exponent, we
assume that near the transition, the system has a
chaotic attractor with at least one positive Lyapunov
exponent. For concreteness, we let the transition
point be a and assume that for aQa , there is onec c

Ž .positive Lyapunov exponent l )0 and for aRa ,1 c
Ž .there are two positive ones l )l )0 . Thus, near1 2

a , each periodic orbit embedded in the attractor hasc

at least one expanding direction. Consider periodic
orbits of period p. There are N ;ehT p of them,p

where h )0 is the topological entropy of the attrac-T

tor. Since l is positive and the parameter interval of1

Ž .interest is small near a , h remains approximatelyc T

constant in this interval2. In order to relate the
Lyapunov exponents to unstable periodic orbits, we

Ž .note two facts: 1 the exponents are defined with
respect to the natural measure of the chaotic attractor
w x Ž .34 , and 2 a typical trajectory on the attractor visits
the neighborhoods of the infinite number of unstable
periodic orbits. Thus, although periodic orbits are
atypical in the sense that they form a set of Lebesgue
measure zero, the natural measure can be related to
the infinite number of atypical measures associated
with unstable periodic orbits. In particular, it was

w xshown rigorously for hyperbolic systems 35 and
verified numerically for more general chaotic sys-

w xtems 36 that the natural measure m in a phaseS

space region S can be expressed as:

m s lim eyl Ž j.
1 p , 1Ž .ÝS

p™` jgS

Ž j. Ž .where l ’s is1, . . . , N are the eigenvalues of thei
Ž j. Žjth periodic orbit of period p, l ) 0 j s1

.1, . . . , N , and the summation is over all periodicp

orbits of period p and its integer factors contained in
S. The Lyapunov exponents of the attractor can then
be written, approximately, as:

Np
Ž j.Ž j. yl p1l f lim l e , is1, . . . , N , 2Ž .Ýi i

p™` js1

where the expression becomes exact if the underly-
w xing dynamics is hyperbolic 35 . We can now exam-

ine the second Lyapunov exponent:
Np

Ž j.Ž j. yl p1l f lim l e , 3Ž .Ý2 2
p™` js1

where l Q0 for aQa and l R0 for aRa .2 c 2 c

Since there are approximately equal numbers of un-

2 For typical Hamiltonian systems and for Axiom-A attractors
Ž .of dissipative dynamical systems, it was proven that h m s

Ž . Ž .Ý l , where h m is the metric entropy and l )0 is1, . . .l ) 0 i ii
Ž w xare positive Lyapunov exponents see Ref. 31 , reprinted in Ref.

w x w x.32 , and Ref 33 . Generally, the topological and metric entropies
Ž . w x Ž .satisfy h G h m 33 . In our case, because: 1 l fconstant)0T 1

Ž .and l f0, and 2 the derivative of the Lyapunov exponents2

with respect to the bifurcation parameter is bounded, we expect
h to be approximately constant about the transition.T
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stable periodic orbits immediately before and after
the transition, and the dynamical properties of the
periodic orbits are structurally stable, we see that it is

Ž j. Ž .generally not possible for all l js1, . . . , N to2 p

be negative for aQa and all to be positive forc

aRa . The only possibility for l to change sign atc 2

a is for some lŽ j. to be negative and some to bec 2

positive for a near a , with a balance achieved at a .c c

Specifically, let:

ls a s lim lŽ j.eyl Ž j.
1 p ,Ž . Ý2 2

p™` Ž j.l -02

lu a s lim lŽ j.eyl Ž j.
1 p , 4Ž . Ž .Ý2 2

p™` Ž j.l )02

s Ž . uŽ .where l a and l a are the stable and unstable2 2

weights associated with the second largest Lyapunov
exponent. We see that the transition to chaos with
multiple positive Lyapunov exponents can occur via

Ž . < s Ž . < uŽ .the following scenario: 1 l a )l a for aQ2 2
Ž . < s Ž . < uŽ . Ž . < s Ž . <a ; 2 l a -l a for aRa ; and 3 l a sc 2 2 c 2

uŽ .l a at asa . Two consequences associated with2 c
Ž .this scenario become immediately apparent: 1 near

the transition, there is severe unstable dimension
variability because unstable periodic orbits can have

Ž .different number of unstable directions, and 2 l2

passes through zero at a continuously. We stressc

that the key element in our argument for the continu-
ity of the transition is the continuous dependence of
the largest Lyapunov exponent on a in the vicinity
of a .c

The above scenario for the transition to chaos
with multiple positive Lyapunov exponents is based
on the characterization of the natural measure by
unstable periodic orbits embedded in the attractor,

Ž .i.e., Eq. 1 , which is rigorously valid only when the
Ž .system is hyperbolic. We expect, however, Eq. 1 to

hold, at least approximately, for nonhyperbolic
chaotic systems as well. To give a supporting argu-
ment, we recall the formal definition of hyperbolic-

Ž .ity. A chaotic set is hyperbolic if: i at each point of
the trajectory the phase space can be split into an
expanding and a contracting subspaces and, the ex-
panding subspace evolves into the expanding one
along the trajectory and the same is true for the

Ž .contracting subspace; ii the angle between the
stable and the unstable subspaces is bounded away
from zero. In low-dimensional chaotic systems with
only one positive Lyapunov exponent, nonhyperbol-
icity occurs typically because of the violation of

Ž .condition ii , i.e., there are tangencies between the
stable and the unstable subspaces. The tangencies
are, however, rare in the sense that the set of tan-
gency points has Lebesgue measure zero. In this

Ž . w xcase, Eq. 1 is expected to be valid 36 . In high-di-
mensional systems, nonhyperbolicity can also occur

Ž .due to the violation of condition i , i.e., due to
w xunstable dimension variability 25–27 . From Eq.

Ž .1 , we see that the natural measure is determined by
the largest Lyapunov exponent. Thus, in so far as
there exists at least one unstable direction for every

Žpoint in the chaotic set corresponding to one posi-
. Ž .tive Lyapunov exponent , we expect Eq. 1 , and

Ž . Ž .consequently Eqs. 2 – 4 , to be valid. Since the
argument assumes that the largest Lyapunov expo-
nent remains positive, we see that it does not apply
to the evolution of the largest exponent itself. Thus,
the routes to chaos with one and more than one
positive Lyapunov exponent are generally different.

As our representative numerical example, we con-
sider the following four-dimensional system consist-
ing of two coupled Ikeda–Hammel–Jones–Moloney
Ž . w xIHJM maps 37,38 :

x saqb x cosf yy sinf ,Ž .nq1 n n n n

y sb x sinf qy cosf ,Ž .nq1 n n n n

xX saqb xX cosf
X yyX sinf

X ,Ž .nq1 n n n n

yX sb xX sinf
X qyX cosf

X , 5Ž . Ž .nq1 n n n n

Ž . Ž X X.with the couplings between x, y and x , y occur-
ring in the phase variables f and f

X :n n

f skydr 1qx 2 qy2 q2pe xX yx ,Ž .Ž .n n n n n

2 2X X X X
f skydr 1q x q y q2pe x yx ,Ž . Ž . Ž .n n n n n

6Ž .

where a, b, k, and d are parameters, and e repre-
sents the coupling strength. The IHJM map models
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the dynamics of an optical pulse propagating in a
ring cavity, subject to partial reflection, phase and
amplitude modulation and distortion due to a nonlin-
ear optical medium in the cavity. We conceive that

Ž .the phase coupling in Eq. 6 is physically meaning-
ful as phase interaction is readily realizable in non-
linear optics. In our numerical experiments, we fix
Ž . Ž .a,b,k,d s 0.85,0.9,0.4,5.18 so that the uncoupled
IHJM map exhibits a chaotic attractor with one
positive Lyapunov exponent, and we choose e as the
bifurcation parameter. Fig. 1 shows the four Lya-

Ž .punov exponents of Eq. 5 versus e , where we see
that a transition occurs at ese f0.185: there isc

one positive Lyapunov exponent for e-e and therec
Ž .are two for e)e . Apart from regimes of: 1c

Ž .periodic windows, and 2 wild fluctuations of the
exponents in which there are multiple coexisting
attractors, we see that the second largest Lyapunov

Ž .exponent l or the envelope of l appears to pass2 2

through zero continuously as e is increased through
e , as shown in the inset of Fig. 1.c

We now provide evidence that severe unstable
dimension variability occurs near e . To computec

unstable periodic orbits embedded in the chaotic

Ž .Fig. 1. The four Lyapunov exponents of Eq. 5 versus e . A
blowup of the behavior of l near e , a transition point to chaos2 c

with two positive Lyapunov exponents, is shown in the inset.

Fig. 2. Locations of unstable periodic orbits of periods 24 and 25
in the synchronization manifold MM with unstable dimensions one

Ž . Ž .and two are shown in a and b , respectively.

Ž .attractor of Eq. 5 , we make use of an improved
w xversion 30 of the Schmelcher–Diakonos algorithm

w x28,29 which can, in principle, yield complete sets
of periodic orbits of relatively large period3. The
algorithm is particularly powerful for low-dimen-
sional maps such as the two-dimensional IHJM map
for which we find a total of over 105 orbit points of
period up to 25. For the four-dimensional coupled

Ž .system Eq. 5 , due to a much larger topological
entropy, we detected periodic orbits of period only
up to 7 for a total of about 20 000 orbit points. To
make numerical experiments feasible, we note that

3 Even though we cannot prove rigorously the completeness of
the detected sets of orbits, our algorithm allows us to conduct a
thorough exploration of the phase space, so that the number of
undetected orbits, if any, is extremely small.
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�the synchronization manifold defined by MM : xs
X X4 Ž .x , ysy is actually a solution of Eq. 5 . In MM, the

invariant set is the chaotic attractor of the IHJM map
for which a large number of periodic orbits can be
computed. These periodic orbits are a subset of all
periodic orbits embedded in the chaotic attractor of

Ž .Eq. 5 because MM is part of the attractor. In situa-
tions where MM is transversely stable, the chaotic
attractor in MM is an attractor of the full system and,

Ž .4hence, periodic orbits in MM are all orbits of Eq. 5
Fig. 2 shows the locations of the unstable periodic
orbits of periods 24 and 25 in MM for es0.19Re ,c

where the transversely stable and unstable orbits are
Ž . Ž .shown in a and b , respectively. Unstable dimen-

sion variability is clearly present because the trans-
versely stable orbits have unstable dimension one
and the transversely unstable ones have two. In fact,
unstable dimension variability is severe5 because
each of the two groups of periodic orbits appears to
cover densely the whole chaotic attractor in MM.

We have also computed unstable periodic orbits
Ž .of the full four-dimensional system Eq. 5 within

our computational resource. The total numbers of
periodic orbits of these periods actually change
slightly as e increases through e . Fig. 3 shows, forc

es0.185fe , histograms of the weighted Lya-c

4 We find that near e , the transverse Lyapunov exponentc

evaluated with respect to a trajectory in the chaotic attractor in the
synchronization manifold MM is nearly zero. Therefore, unstable
periodic orbits in MM represents a large fraction of all periodic
orbits in the attractor in the full phase space.

5 The severeness of unstable dimension variability can be quan-
w xtified by using the following contrast measure 39 : C sp

Ž j.Ž . Ž .m p y m p N Ž p. yl Ž p. p2 1 1,2 1Ž . Ž ., where m p 'Ý e , N p and1,2 js1 1
Ž . Ž .m p q m p2 1
Ž .N p are the numbers of periodic orbits of period p with one and2

Ž .two unstable directions, respectively. The quantities m p are1,2

then the weighted numbers of period-p orbits with one and two
unstable directions, respectively. When there is no unstable di-

Ž . Ž .mension variability, we have either N p s0 or N p s0,2 1

which yields C s1. The contrast C starts to decrease from onep p

when unstable dimension variability occurs, and the worst case is
C s0, corresponding to the situation where unstable dimensionp

w Ž . Ž .xvariability is most severe m p sm p . Numerical computa-1 2

tions of contrasts for periodic orbits of different periods reveal
that the values of these contrasts are near zero in parameter
regimes where transitions to chaos with multiple positive Lya-
punov exponents occur, indicating the presence of severe unstable
dimension variability near the transitions.

Ž . Ž .Fig. 3. Histograms of the first solid line and second dashed line
largest Lyapunov exponents of all periodic orbits of period 7 in

Ž .the full four-dimensional system Eq. 5 .

j yl1
j p j yl1

j p Žpunov exponents l e and l e j s1 2
.1, . . . , N for all periodic orbits of period 7. We see7

that the second largest Lyapunov exponent of the
periodic orbits can be either positive or negative,
indicating unstable dimension variability.

In summary, we have presented a heuristic theory
and solid numerical evidence for the characterization
of the transition to chaos with multiple positive
Lyapunov exponents by unstable periodic orbits. Our
main conclusion is that this transition is typically
accompanied by severe unstable dimension variabil-
ity. This provides evidence, at the level of unstable
periodic orbits, for the smooth behavior of Lyapunov

Ž .exponents except for the largest one through zero
w xin high-dimensional chaotic systems 7–12 . The

transition is thus different from most transitions to
low-dimensional chaos in that the former involves an
infinite number of periodic orbits. We remark that an
explicit verification of unstable dimension variability
requires precise computation of a large number of
unstable periodic orbits embedded in the chaotic
attractor, which is difficult. We are able to test our

w xargument due largely to our improved version 30 of
w xthe Schmelcher–Diakonos algorithm 28,29 .

We stress that, intuitiÕely, when a chaotic system
evolves from having one positive Lyapunov expo-
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nent to having more than one such exponent, there
has to be a variability in the unstable dimensions
among unstable periodic orbits embedded in the
chaotic set, and the continuous behavior in the Lya-
punov exponents near this transition is a natural
consequence of the unstable dimension variability.
This paper provides evidence for this intuition. How-
ever, just as there are different routes to low-
dimensional chaos, there can be distinct scenarios to
high-dimensional chaos. The one through unstable
dimension variability investigated in this paper is
just one such scenario that is expected to occur
commonly in chaotic systems.
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