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Abstract 

We investigate the sensitive dependence of asymptotic attractors on both initial conditions and parameters 
in spatio-temporal chaotic dynamical systems. Our models of spatio-temporal systems are globally coupled 
two-dimensional maps and locally coupled ordinary differential equations. It is found that extreme sensitive 
dependence occurs commonly in both phase space and parameter space of these systems. That is, for an initial 
condition and/or a parameter value that leads to chaotic attractors, there are initial conditions and/or parameter 
values arbitrarily nearby that lead to nonchaotic attractors. This indicates the occurrence of an extreme type 
of fractal structure in both phase space and parameter space. A scaling exponent used to characterize extreme 
sensitive dependence on initial conditions and parameters is determined to be near zero in both phase space 
and parameter space. Accordingly, there is a significant probability of error in numerical computations intended 
to determine asymptotic attractors, regardless of the precision with which initial conditions or parameters are 
specified. Consequently, fundamental statistical properties of asymptotic attractors cannot be computed reliably 
for particular parameter values and initial conditions. 

1. Introduction 

Asymptotic attractors of  dynamical systems 
are determined by both initial conditions and 
system parameters. In low-dimensional systems, 
sensitive dependence of asymptotic attractors 
on initial conditions can occur in systems that 
possess multiple attractors. Grebogi et al. first 
demonstrated that for some systems, basins of  
attraction are separated by fractal sets called 
fractal basin boundaries [ 1 ]. It is impossible to 
predict, with certainty, the asymptotic attractor 
for initial conditions in the neighborhood of 
fractal basin boundaries. Nonetheless, when ini- 

tial conditions are away from these boundaries, 
one can still reliably predict the final asymptotic 
attractor. Systems with multiple attractors may 
also exhibit extreme types of  fractal basins, the 
so-called "riddled basins" [2 ], in which at least 
one of the basins of attraction has the property 
that any neighborhood about each point within 
that basin contains points belonging to another 
basin. Finally, there can exist the so-called inter- 
mingled basin [2], in which all basins of attrac- 
tion are riddled. Hence, for systems that exhibit 
riddled or intermingled basins, given any initial 
condition in these basins, it is impossible to 
predict the asymptotic attractor. 
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Dynamical systems may also exhibit sensitive 
dependence of  their asymptotic attractors on pa- 
rameters. This was first demonstrated by Farmer 
[3] using the one-dimensional quadratic map 
Xn + 1 = r X n  ( 1 - xn  ). This map exhibits a unique 
attractor starting from almost all initial condi- 
tions in (0, 1 ) for any given value of  the param- 
eter r [4]. Attractors are of  two types: chaotic 
and periodic. Farmer [ 3 ] demonstrated that the 
set of  r values generating chaotic attractors (the 
chaotic parameter set) is a fractal set with pos- 
itive Lebesgue measure [5] and box-counting 
dimension [6] one. Such sets have come to be 
known as "fat fractals" [3,7]. Most importantly, 
Farmer demonstrated that because of  the fractal 
nature of  the chaotic set, arbitrarily small pertur- 
bations e about parameter values r drawn from 
this set yield parameters r + e with non-zero 
probability of  producing asymptotic attractors 
with completely different properties than those 
generated using parameter r. 

To quantify sensitive parameter dependence, 
Farmer defined a so-called scaling exponent fl 
[3,7,8]. This exponent was used to specify the 
measure of  the set of  "holes" in the fat fractal 
chaotic parameter set, i .e . ,  the set of r values 
that result in periodic attractors in the quadratic 
map above. Let h (e) be the total size of  holes 
with width > e. Then the e coarse-grained mea- 
sure of  a fat fractal set can be defined as # (e) = 
1 - h ( e ) / C ,  where C is the size of  the param- 
eter interval considered. For one-dimensional 
quadratic maps, Farmer conjectured that p (e) 
scales with e according to a power law in the 
limit of  e ~ O, 

p ( e )  --~e ~, (1) 

where fl is the so-called fatness exponent [3]. 
For the quadratic map, Farmer found that fl 
0.45. 

Sensitive dependence of asymptotic attractors 
on both parameters and initial conditions can 
also be characterized using the uncertainty expo- 
nent first introduced by Grebogi et al. to quan- 
tify fractal basin boundaries [ 1]. They noticed 

/ Physica D 74 (1994) 353-371 

that a, when used to characterize fat fractals, 
is equivalent to the exponent fl [9]. The expo- 
nent a can be calculated numerically as follows. 
Randomly choose a parameter value or an ini- 
tial condition r0 in the fractal set. Define r' = 

r0 + e, where e is a small perturbation. Determine 
whether the asymptotic dynamics of  the system 
using these two parameters or two initial con- 
ditions are qualitatively different (chaotic ver- 
sus periodic), in which case r0 is called an un- 
certain parameter value or an uncertain initial 
condition. Estimate the probability f ( e  ) that 
r0 and r' yield different asymptotic dynamical 
behavior by repeating the experiment for many 
random choices of r0 in the parameter range or 
in the phase-space region of interest. Let Nu be 
the number of uncertain parameters or initial 
conditions among Nt  randomly chosen parame- 
ter values or initial conditions at uncertainty c, 
then f ( e )  ,~ N u / N t .  In practice, f (e) decreases 
with decreasing e, typically scaling as f (e) ,-~ e ~ 
[ 1 ]. The uncertainty exponent is approximated 
by the slope of  a straight line fit in a plot of  
logl0 f (e) versus logl0 e. 

In numerical simulation of orbits, e can be 
viewed as the precision with which a parame- 
ter or an initial condition is specified. Then the 
scaling exponent a determines the probability 
P (e) that the computed asymptotic behavior ac- 
curately reflects the true dynamics of  the system. 
If a > 1, reducing c can improve the probabil- 
ity of  correct computation of  the final state. If 
a = l, then improvement in e results in an equal 
improvement in the probability of  correct com- 
putation of  the final state. If  a < l, then reduc- 
tion of  e will result in only a small reduction of 
P(e  ). In particular, in the extreme case where 
a ~ 0 (e.g., riddled basins [2] ), improvement 
in the precision e with which r is specified (even 
over many orders of magnitude) may result in 
only an incremental improvement in ability to 
predict the asymptotic state correctly. 

For the logistic map, Grebogi et al. found 
that the uncertainty exponent a is approxi- 
mately 0.41 [1]. To appreciate the meaning 



Y.-C. Lai, R.L. Winslow / Physica D 74 (1994) 353-371 355 

of  a = 0.41, assume that the parameter r can 
be determined to a precision of 10 -14. Then 
P(e ) , ~  10 -6  and, hence, the probability of  er- 
ror in numerical prediction of the final state of 
the quadratic map is roughly one in one million. 
This means that computer simulations are gen- 
erally reliable for this class of systems; we use 
the phrase "weak dependence" on parameters 
for such systems. 

Investigations of phase space and parameter 
space sensitivities have been limited to low- 
dimensional chaotic systems. In this paper, we 
investigate extreme sensitivity to initial condi- 
tions and parameters in spatio-temporal chaotic 
dynamical systems. We study two classes of 
systems: (a) globally coupled Hrnon map lat- 
tices (CMLs; [10-13]);  and (b) locally cou- 
pled systems of ordinary differential equations 
(Duffing's oscillators, [14]). Evidence will 
be presented of extreme sensitive dependence 
(characterized by near-zero uncertainty expo- 
nents) of  asymptotic attractors on both initial 
conditions and parameters. 

This paper is organized as follows. In Section 
2, the system of globally coupled Hrnon maps 
is introduced. Dynamics of  this CML is investi- 
gated at different coupling strengths. In Section 
3, we demonstrate that extreme sensitive depen- 
dence on parameters also occurs in locally cou- 
pled systems of differential equations. Conclu- 
sions and implications of these results to gen- 
eral spatio-temporal dynamical systems are pre- 
sented in Section 4. 

2. Globally coupled H~non maps 

2.1. CML equations and characterization of  
asymptotic attractors 

The system of  globally coupled H~non maps 
can be expressed as follows: 

X n + l ( i )  = a -  [(1 -~)Xn( i )  
L 

N ]2 
4-N------"f Z xn(j)  

j,j~t i 

+byn(i), i =  1 . . . . .  N, 

Yn+l (i) = Xn (i), (2) 

where i denotes discrete spatial sites, N is the to- 
tal number of maps, n denotes iteration number, 
a and b are the parameters of the single Hrnon 
map, and ~ is a parameter specifying coupling 
strength between maps at different site. The rea- 
son for choosing the Hrnon map [15 ] is that 
it is one of  the most extensively studied two- 
dimensional chaotic systems. (Locally coupled 
Hrnon maps have been studied by Politi and 
Torcini [ 16 ].) For simplicity, we assume that 
each map couples to every other map with uni- 
form coupling ~. The determinant of  the Jaco- 
bian matrix of  the map is [D J[ = I(-b)~V l and, 
hence, for Ibl < 1 the system is highly dissipative. 
In the numerical computations to be described, 
we fix b = 0.3. 

Asymptotic attractors can be characterized by 
the Lyapunov exponents of the system [ 17 ]. For 
N coupled two-dimensional maps, there are 2N 
Lyapunov exponents. Let 21 be the largest expo- 
nent, then 21 > 0 indicates a chaotic attractor, 
21 < 0 indicates a periodic attractor, and 21 = 0 
signifies quasiperiodic motion. For a given set 
of  parameters, we have used the algorithm by 
Benettin et al. [18] to compute the Lyapunov 
spectrum. The initial transient is chosen to be 
10000 iterates. The precision for numerical de- 
termination of  these exponents is set to 10-7, i.e., 
the quantity A,~i = 12i(n + I ) - 2i(n)[ is com- 
puted until max{A2i} < 10 -7  (/" = 1 , . . . , 2 N ) ,  

where n is the iteration number. The validity of  
the computed Lyapunov exponent spectrum is 
verified using the relation ~ = l  2i = log ]D J] = 
Nloglbl. 

Figs. 1A and IB show, for N = 10 coupled 
maps, plots of  A1 and the number of positive Lya- 
punov exponents Np versus the coupling strength 
~, respectively, where the parameter a is fixed 
at a = 1.4 (it is believed that the single Hrnon 
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map has a chaotic attractor at this value of  a 
when b = 0.3 ). There are three distinct dynamic 
regimes as J is increased from 0. For most J val- 
ues in regime 1 (0 < J < 0.14), Np = N, indi- 
cating that chaotic maps at each site behave in- 
dependently. For most values of  J within regime 
3 (J > 0.32), there is only one positive Lya- 
punov exponent, indicating the existence of  a 
strong coherence among maps at different sites. 
An extremely sensitive parameter dependency 
occurs in regime 2 (0.14 < J < 0.32), where 
large fluctuations in the values of  both 21 and 
Np are observed as J is varied. The existence of  
these three distinct dynamic regimes is robust as 
N, the number of coupled maps, varies for Eq. 
(2). This was verified in our numerical studies 
for several N values (4, 20, 28 and 44). 

2.2. Dynamics in the weakly coupling regime 
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Fig. 1. Largest Lyapunov exponent 21 (A), and number  of 
positive Lyaponov exponents Np (B) versus J (coupling 
strength) for a system of N = 10 globally coupled H6non 
maps with a = 1.4 and b = 0.3. Three dynamical regimes 
are seen: (1) small J regime (J < 0.14) where dynamical 
behavior of  maps are nearly independent of each other; (2) 
moderate J regime (0.14 < 5 < 0.32) in which the chaotic 
parameter set is riddled and there is an extreme sensitive 
parameter dependence; and (3) large J regime (J > 0.32) 
where there is strong coherence among maps. 

Regime 1 is characterized by the existence of  
N positive Lyapunov exponents for a system of 
N coupled maps, as shown in Fig. lB. Hence, in 
regime 1, maps evolve nearly independently of  
each other. Fig. 2 plots the Lyapunov spectra 2i 
versus i (i = 1 , 2 , . . . , 2 N )  at J = 0.1, where 
21 > 22 > . . .  > 22N, for N = 80. It is clear that 
there are N positive and N negative exponents 
with values close to 0.4 and -1.6 (the Lyapunov 
exponents of  the single H6non map). Therefore, 
the dynamics of  individual maps in regime 1 can 
be described as independent. 

Given this independence, i t  seems logical to 
assume that in regime 1, when each map is 
chaotic, the influence of the other N -  1 maps on 
can be regarded as random noise [14]. In this 
case, the coupling term in Eq. (2) would be re- 
placed by an additive random noise term. It has 
been established that small amplitude random 
noise can destroy the fine scale fractal structure 
of  a chaotic attractor [ 19]. Specifically, for a 
single initial condition in the basin of attraction, 
the resulting asymptotic attractor computed 
from a large number of successive iterations no 
longer reveals any apparent fractal structure in 
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Fig. 2. Lyapunov spectra in the weakly coupled regime 
( d = 0 . 1 ) a t a =  1.4 a n d b = 0 . 3 f o r N =  80. 

the presence of  random noise. The attractor so 
recorded is usually a "fuzzy" attractor in the 
neighborhood of  the original fractal attractor 
obtained in the absence of  noise. We find that 
this result applies to the system of weakly cou- 
pled chaotic maps. Fig. 3A shows the chaotic 
attractor for the single H6non map at a = 1.4 
and b = 0.3. Fig. 3B shows, when N = 10 and 
J = 0.1, the attractor recorded at site i = 6 
for successive 6000 iterations (after discarding 
20000 iterations of  transient) from a single ini- 
tial condition whose values of  x0 (i) and Y0 (i) 
(i = l, 2 . . . .  , N)  were chosen randomly from 
[ -2 ,  2]. Clearly, the attractor seen in Fig. 3B is a 
fuzzy version of  Fig. 3A, indicating an influence 
similar to that of  random noise from the re- 
maining ( N -  1 ) = 9 maps. Attractors recorded 
from other sites exhibit similar features. 

There is, however, a crucial difference be- 
tween dynamics of  weakly coupled chaotic maps 
and dynamics of  low-dimensional chaotic sys- 
tem subject to small random noise. This is re- 
flected in the structure of  "snapshot" attractors 
computed for these systems. Snapshot attrac- 
tors were originally introduced by Romeiras et 
al. [ 19] to study the fractal structure of  chaotic 
attractors, including that of  the single H6non 
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Fig. 3. (A) The chaotic attractor of the single H~non map at 
a = 1.4 and b = 0.3. (B) The attractor at site 6 of Eq. (2) 
at a = 1.4, b = 0.3, ~ = 0.1 and N -- 10. The attractor 
seen is a fuzzy version of that in (A) due to interactions 
among maps. 

map, under the influence of  random noise. The 
idea is that while the attractor recorded from 
a single initial condition over many iterations 
is fuzzy, fractal structure can still be revealed 
by evolving a large number of  initial conditions 
simultaneously under the map for a long time, 
and then recording the images of  all these initial 
conditions at an instant of  time. The attractor 
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Fig. 4. For the same parameter setting in Fig. 3B, a snapshot 
attractor at site 6 at the 20000th iteration. The snapshot 
attractor was obtained by choosing a grid of 80 × 80 initial 
conditions at site 6 in the region - 2  < x(6)  < 2 and 
- 2  < y(6)  < 2, and iterating these 6400 initial conditions 
simultaneously under Eq. (2). Initial conditions at other 
sites are fixed as initial conditions in the x (6) - y  (6) plane 
are varied. The snapshot attractor is fuzzy compared with 
the single H6non attractor in Fig. 3A, indicating that weakly 
coupled maps have different dynamics from a single H6non 
map subject to random noise. 

so obtained is called a "snapshot attractor". As 
time evolves, details of  the snapshot attractor 
may change, but  statistical properties of  the 
snapshot attractor, such as multifractal dimen- 
sion spectra, remain invariant at different in- 
stants of  time [ 19 ]. For weakly coupled chaotic 
maps, we find that snapshot attractors recorded 
at different sites are also fuzzy and exhibit no 
apparent fractal structure. Fig. 4 shows a snap- 
shot attractor for the same parameter setting as 
in Fig. 3B. To generate this attractor, 6400 ini- 
tial conditions on site 6 were chosen uniformly 
from a 80 x 80 grid in the two-dimensional re- 
gion - 2  < x0(6) < 2 and - 2  < y0(6) < 2, 
while initial conditions at other sites were fixed 
(chosen randomly initially). These initial condi- 
tions were then iterated forward simultaneously. 
The snapshot attractor determined at iterations 
n = 20000 is shown. Similar to Fig. 3B, Fig. 
4 reveals no evidence of  sharp fractal structure 

as seen in the single H6non attractor (Fig. 3A). 
This observation thus suggests that dynamics of  
systems of  weakly coupled chaotic maps are not 
equivalent to these of  single individual maps 
with the coupling term replaced by an additive 
noise term. 

When oscillating systems having distinct os- 
cillation frequencies are coupled together, they 
can lock onto a common oscillating frequency 
even at low coupling values (see, for example, 
numerical studies of  the dynamics of  pacemak- 
ing cardiac cells [20] ). This process is called 
frequency entrainment. Frequency entrainment 
also occurs in globally coupled H6non maps. To 
demonstrate this, observe in regime 1 of Fig. 1A 
that there are rare values of  fi for which 21 < 0. 
At these fi values, all Lyapunov exponents are 
negative, and attractors are stable periodic or- 
bits. This is similar to the appearance of  periodic 
windows interspersed within chaotic parameter 
regimes typically seen in low-dimensional sys- 
tems such as the logistic map. Frequency en- 
trainment usually occurs at these parameter val- 
ues. Fig. 5A shows an example of  frequency en- 
trainment for N = 4 coupled maps, where ~ = 
0.1395 (21 = -0 .125) .  In Fig. 5A, the abscissa 
denotes time steps, and the ordinate plots val- 
ues of all x ( i ) ' s  for i = 1 . . . . .  4. Frequency en- 
trainment is achieved at about 1825 iterations, 
after which all four maps evolve on a common 
period-4 orbit. To see that phases are different 
for different maps when frequency is entrained, 
Fig. 5B shows four time series at four sites (filled 
circles, filled diamonds, open circles, and open 
diamonds, respectively) for the parameter set- 
ting of  Fig. 5A after a transient of  20000 itera- 
tions. Clearly, phases in all four maps are differ- 
ent, although they evolve on an identical stable 
period-4 orbit. 

As the number of  maps coupled in the system 
increases, clustering can occur in which maps 
form groups that evolve on different stable pe- 
riodic orbits. Fig. 6 shows plots of  the period of 
the asymptotic attractor (ordinate) versus the 
map site (abscissa) for N = 28 and ~ = 0.0615 
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Fig. 5. (A) Frequency entrainment for coupled H6non maps 
at a = 1.4, b = 0.3, ~ = 0.1395 and N = 4 where the 
largest Lyapunov exponent 21 ~ -0.125. Shown in the fig- 
ure are four time series x ( i ) ,  where i = 1,2, 3 and 4 denote 
sites. (B) Part of  the four time series represented by filled 
circles, filled diamonds, open circles and open diamonds, 
corresponding to the dynamical variable x at sites 1, 2, 3 
and 4, respectively. Clearly, maps at four sites evolve on a 
common period-4 orbit but with different phases. 

( 21  = -0.066).  There are three distinct groups 
of  clutsers corresponding to different asymp- 
totic stable periodic orbits. They are: period-7, 
period-14 and period-l l .  The phenomena of 
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Fig. 6. Periods of stable orbits versus map site index for 
a = 1.4, b = 0.3, ~ = 0.0615 and N = 28. Three distinct 
groups of maps are seen, whose attractors have period-7 
(14 maps), period-l l  (5 maps) and period-14 (9 maps), 
respectively. 

both frequency entrainment and clustering have 
been previously studied in systems of coupled 
logistic maps by Kaneko [10,21]. 

Finally, we describe briefly the dynamics 
in the large coupling regime (regime 3). This 
regime is characterized by a presence of strong 
coherence among maps. For most values of 
coupling in this regime, there is only one pos- 
itive Lyapunov exponent, as shown in Fig. lB. 
This means that in regime 3, the dynamics of 
the whole system are similar to that of  a single 
Hbnon map. 

2.3. Ex t reme  sensitive dependence on initial 
conditions and  parameters in the intermediate 
coupling regime 

Dynamically, this regime is most interesting. 
There appear to be wild fluctuations of  21 and 
Np as g is varied. Analyses indicate that there 
are three types of  asymptotic attractors in this 
regime: chaotic, quasiperiodic and periodic. 
When the asymptotic attractors are periodic, 
frequency entrainment and clustering can occur, 
similar to that shown in Figs. 5-6. Quasiperiodic 
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motion, characterized by 21 = 0, is also com- 
mon in this regime. In such cases, asymptotic 
attractors are tori. We have observed that the 
occurrence of quasiperiodic motion appears to 
be more common when the number of coupled 
maps is small. For N = 4 and a = 1.4, there 
even exists a continuous interval of  ~ values in 
which 21 = 0 so that every value of ~ leads to 
quasiperiodic motion, starting from randomly 
chosen initial conditions in phase space. This 
indicates that at fixed parameter values, the 
basins of these quasiperiodic attractors are large, 
and are unlikely to possess fractal structure. As 
N is increased, it is common that the basins of 
these attractors can be extremely complicated 
(fractals). 

To detect multiple attractors and to study the 
structure of their basins, we fix a parameter value 
in regime 2 and compute the largest Lyapunov 
exponents 21 for many different initial condi- 
tions. When N is large, the system is high dimen- 
sional and exploration of the entire phase space 
is difficult. We therefore take the following ap- 
proach. We choose an arbitrary two-dimensional 
plane among 2N variables and examine the type 
of attractors resulting from many initial condi- 
tions on this plane. A convenient choice is the 
plane defined by dynamical variables x (i) and 
y (i) at site i. Initial values of x (i) and y (i) are 
then varied systematically, while initial values 
o f x ( j )  a n d y ( j )  ( j  = 1 . . . .  ,N , j  ~ i) are held 
constant. 

Fig. 7A shows, for N = 10, a = 1.4 and 
= 0.245, a histogram of 21 values resulting 

from 40000 initial conditions chosen at site 6 
over a 200 x 200 grid in the two-dimensional 
region - 2  < x (6 )  < 2 and - 2  < y (6 )  < 2. 
There are three peaks at values of 0.18, 0, -0.32. 
This indicates the existence of  three types of 
attractors: chaotic, quasiperiodic and periodic. 
Fig. 7B shows the projection of a chaotic attrac- 
tor on the [ x ( 6 ) , y ( 6 ) ]  plane with 21 ~ 0.18. 
Figs. 7C-D show projections of a quasiperiodic 
and a period-4 attractor on the [ x ( 6 ) , y ( 6 ) ]  
plane, respectively. Basins of these three types 

/ Physica D 74 (1994) 353-371 

of attractors are shown in Fig. 8, where red, 
blue and green dots denote basins of chaotic, 
quasiperiodic and periodic attractors, respec- 
tively. In most regions the basins of these at- 
tractors appear to be extremely intermingled. In 
these regions, for points that lead to chaotic at- 
tractors, there are points arbitrarily nearby that 
lead to nonchaotic attractors. This feature per- 
sists as successively smaller scales are examined. 
Fig. 9 shows a blowup of Fig. 8 in the region 
-0.49 < [x (6 ) , y (6 )  ] _< -0.48, where the color 
coding is the same as in Fig. 8. Fig. 10A shows 
fractions of initial conditions leading to chaotic 
(filled circles), quasiperiodic (diamonds) and 
periodic (squares) attractors versus the size in 
the x (6)-direction of the two-dimensional re- 
gion (logarithmic scale). These fractions are ap- 
proximately constants at different phase space 
scales. Figs. 8, 9 and 10A thus strongly suggest 
that the basins of these attractors are fractal. To 
further quantify fractal basins, we have com- 
puted the uncertainty exponent a [ 1] in phase 
space. The computation is performed by calcu- 
lating 21's for many initial conditions chosen on 
an arbitrary line segment in the [ x ( 6 ) , y ( 6 ) ]  
plane. Fig. 10B plots the uncertain fraction ver- 
sus perturbation on a base-10 logarithmic scale. 
The slope of the fitted straight line (an estimate 
of the uncertainty exponent) is 0.024 ± 0.005, a 
small value which is close to zero. 

A near-zero uncertainty exponent in the phase 
space implies a similar exponent in parameter 
space. The reason is that for these extreme types 
of fractal basins, when a small change in the pa- 
rameter occurs, there is a finite probability that 
the fine-scale structures of the fractal basins will 
be altered. Thus, even the same initial condi- 
tions under small parameter perturbation can 
give rise to completely different asymptotic at- 
tractors. More precisely, consider a dynamical 
system given by the following map that exhibits 
near-zero uncertainty-exponent fractal basins in 
phase space, 

X n +  1 = F(xn,p),  ( 3 )  



Y.-C. Lai, R.L. Winslow / Physica D 74 (1994) 353-371 361 

1 . 6  1 0 '  

1 . 2  l O '  

~_ 8000 
r~ 

4000 

A 

I 

B 
2 

0.5- 
¢.0 
"~ 0- 

-0.5- 

-1 

-1.5 t p i i ~ r t 

-1.5 -1 -0.5 -0.4 -0.2 0 0.2 0.4 
X 

1 

t i 

0 0.5 1 

x(6) 

) 
t i 

1.5 

2 

0.5 1 

- 0 .  

-1 .5~ , , 

-1.5 -1 -0.5 

D 
C 2 

/ 
, ; i i 

0 0.5 1 1.5 2 

X(6) 

1.5 

1 

0.5 

"~ o 

Q 

-0.5 

-1 

-1.5 ' i 

-1.5 -1 
i t r t t 

-0.5 0 0.5 I 1.5 2 

x(6) 
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where x 6 R n is the n-dimensional phase space 
variable, and p E R m denotes an m-dimensional 
parameter space. Assume that the initial condi- 
tion Xo and parameter value P0 yield one type 
of  asymptotic attractor. Extreme fractal basins 
mean that there is a finite probability that a per- 
turbed initial condition x~ would yield a distinct 
type of  attractor, where [x~-xo[  - [Axl -~ 0. Us- 
ing a Taylor expansion of  F(x~, Po) at the point 
Xo and Po, we have 

F(x~,po) = F(xo, Po) + DFx]xo,po" Ax, (4) 

where DFx[,,o,po is the n x n Jacobian matrix with 
respect to x evaluated at Xo and Po. Alternatively, 
imagine that the term in Eq. (4) which is pro- 
portional to lax[ results from a small perturba- 
tion in the parameter space. We can then write 

F(x~,po) - F(xo, Po) + DFa[xo,l,o o ( p ~ -  Po) 

= F(xo, p~)), (5) 

where DFplxo,po is the m x m derivative matrix 
with respect to p evaluated at x0 and Po, and 
lAP] -= [P~ - Po[ --' 0. The parameter perturba- 



362 Y.-C. Lai, R.L. Winslow / Physica D 74 (1994) 353-371 

Fig. 8. Basins of chaotic (red), quasiperiodic (blue), periodic (green) attractors on [x(6),y(6)] plane in Fig. 7B-D, 
respectively. 
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Fig. 9. A blowup of Fig. 8 in the region -0.49 < [x(6) ,y(6)]  < -0.48. 
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tion Ap is related to the perturbation in initial 
condition Ax by 

DFplxo ,p  o • A p  = DFxlxo ,po  ' A x .  ( 6 )  

Eq. (6) indicates that behavior of  the map 
F(x ,p)  under small changes in initial condi- 
tion can be approximated by behavior under 

small parameter changes, and vice versa. This 
implies that uncertainty exponents computed in 
both phase and parameter space are equivalent 
and, hence, an extreme sensitive dependence in 
phase space may imply extreme sensitive depen- 
dence in parameter space, and vice versa. This 
observation has been used previously to detect 
possible fractal basin boundaries in experimen- 
tal settings [22 ]. 

To demonstrate fractal structure of  parameter 
space, we examine a two-dimensional parameter 
space formed by a and ~. Fig. 11A plots a chaotic 
parameter set in the (a ,~)  space for N = 10. 
This parameter space was sampled over a two- 
dimensional 228 × 460 uniform grid in the pa- 
rameter region 1.0 < a < 1.4 and 0 < ~ < 
0.35. The maximum Lyapunov exponent 21 was 
computed at each grid point. In Fig. 11 A, black 
dots denote parameter pairs for which 21 > 0, 
while white blank regions denote parameter re- 
gions of  nonchaotic motion, i.e., 2t < 0. Chaos 
occurs for a > 1.06. Clearly, there are regions 
of  interspersed black and blank dots. Fig. 11B 
shows a blowup of part of  Fig. 11A sampled over 
a 300 x 300 uniform grid in the region 1.35 < 
a < 1.4 and 0 . 2 <  ~ < 0.25. Similar feature 
exists. This type of  behavior persists on even 
much finer scales, as shown in Fig. 11 C, which 
is an extended view of part of  Fig. 11B in the 
region 1.39 < a < 1.4 and 0.23 < ~ < 0.236 
sampled on a uniform 300 x 180 grid. To see 
the fine scale fluctuation of  2t in the parameter 
space, Fig. 12A plots, for N = 10, 21 versus ~ in 
0.245 < ~ < 0.248 for fixed a = 1.4, where 2 f s  
are computed for 600 values of  t~ using identical 
initial conditions. These data thus suggest that 
for any random choice of  the coupling parameter 

in regime 2, an arbitrarily small perturbation 
about that value of  t~ can give rise to completely 
different asymptotic dynamical behavior (e.g., a 
transition from chaos to periodic motion, or vice 
versa). Consequently, chaotic parameter sets in 
regime 2 are fractals (or are riddled) [23]. 

Fig. 12B shows a computation of  the uncer- 
tainty exponent a in the parameter space for 
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N = 10 a n d  a = 1.4. T h e  e x p o n e n t  is e s t i m a t e d  

to  be  a = 0 .0084  + 0 .0065  a t  a 95% c o n f i d e n c e  

leve l  I . T h e  d i f f e r e n c e  b e t w e e n  th i s  v a l u e  a n d  

the  v a l u e  o f  a in  p h a s e  s p a c e  (Fig .  10B) c a n n o t  

be  r e g a r d e d  as  s i gn i f i c an t  w i th  t he  s c a t t e r e d  d a t a  

p o i n t s  in  b o t h  Fig .  12B a n d  10B. 

A c o n s e q u e n c e  o f  t he se  n e a r - z e r o  u n c e r t a i n t y  

e x p o n e n t s  in  p h a s e  space  a n d  p a r a m e t e r  space  

is  an  e x t r e m e l y  s ens i t i ve  d e p e n d e n c e  on  i n i t i a l  

c o n d i t i o n s  a n d  p a r a m e t e r  v a l u e s  o f  t he  a s y m p -  

to t i c  d y n a m i c a l  b e h a v i o r  o f  the  sys t em.  T o  

a p p r e c i a t e  t he  i m p l i c a t i o n  o f  a ~ 0, a s s u m e  

t h a t  a t a k e s  i ts  u p p e r  b o u n d  v a l u e  o f  0 .015 in  

Fig .  12B. A s s u m e  the  v a l u e  o f  ~ can  b e  spec i -  

f i ed  to  w i t h i n  10-16, t h e n  t h e r e  is a p r o b a b i l i t y  
o f  f(e) ~ 10 0'015x(-16) ~ 0.6 t h a t  the  f ina l  

a s y m p t o t i c  s t a t e  c o m p u t e d  us ing  ~ is i nco r r ec t .  

I m p r o v i n g  the  p r e c i s i o n  w i t h  w h i c h  ~ is spec i -  

f i ed  of fe rs  l i t t l e  i m p r o v e m e n t  in  t he  p r o b a b i l i t y  

I The hypothesis that a fitted straight line has zero slope can 
be tested using linear regression theory [24]. In particular, 
for a linear fit y = ax  + b, there is a confidence interval [ a -  

k a y / X / ~  - 2)$2x, a + k a y / ( X / ~ -  2)Sx ] for the estimated 
slope a, where try is the standard deviation of the fit, S 2 = 
( l /n )  ~ , i ( x i  - ~)2, n is the number of data points, ~ is 

the averaged value ofxi ,  and k = v /Fl_y(1 ,n  - 2 )  (the 
F-distribution function, and 1 - 7 is the confidence level)• 
Typically, k increases with 1 - 7. If the confidence interval 
contains 0, then the hypothesis that a = 0 can be accepted 
with confidence level (1 - 7) [24]. 
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of computing the final state of the system cor- 
rectly. For example, suppose computer precision 
is improved by 22 decades to 10 -38 . Then the 
probability of  incorrectly computing the asymp- 
totic state is still ~,,~ 10 °-°15×(-38) ~ 0.3, a small 
improvement in uncertainty with respect to the 
magnitude of the improvement in computer 

precision. This indicates that computer calcu- 
lation of the asymptotic state of  the system in 
regime 2 cannot be reliable. 

Such a small uncertainty exponent means that 
most values of/ll computed within regime 2 are 
likely to be wrong, i.e., positive value could be 
negative and vice versa (or chaos could be non- 
chaotic motion and vice versa). However, since 
there appears to be an approximately equal like- 
lihood of  counting a positive 21 as negative, 
and for counting a negative 21 as positive (Fig. 
12A), the computation of  the uncertainty frac- 
tion f (e) and the subsequent estimation of  the 
uncertainty exponent a from the data of Fig. 
12B are reliable. This can be argued heuristically 
as follows. Note that the uncertainty fraction 
f ( e )  can be expressed as f ( e )  = Nu/Nt = 
Nu/(Nu + No), where N, is the number of un- 
certain parameter values, and Nc is the number 
of  certain parameter values (parameter values 
that result in 21 with same signs upon small per- 
turbations). Let the uncertain probability at e 
be p, i.e., the probability that 21 < 0 (or > 0) is 
p when it is numerically determined that 21 > 0 
(or < 0). The errors in Nu and Nc are thus 
ANu = 2 p ( 1 - p ) N u  and ANc = 2 p ( 1 - p ) N c ,  
respectively. Therefore, to first order the error 
in f ( e )  is (NcANu- NuANc)/ (Nc + Nu) 2 = O. 

As N, the number of coupled maps is in- 
creased, the features of Fig. 12 persist. Figs. 13A 
and 13B show, for N = 28, a plot of  the 
largest Lyapunov exponent versus ~, and the 
corresponding log10 f (c) versus logl0 (e) plot 
computed for regime 2, respectively. The un- 
certainty exponent is estimated to be a = 
0.00066 + 0.0068 at confidence level of  95%. 
When N = 44, We find that the uncertainty 
exponent is 0.003 + 0.014 at a 95% confidence 
level. Hence, for both N = 28 and N = 44, the 
hypothesis that a = 0 cannot be rejected [24]. 

It can therefore be concluded that both the 
phase space and the parameter space of glob- 
ally coupled H6non maps exhibit an extreme 
type of  fractal structure. Since these systems are 
simplified models of spatio-temporal dynamical 
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systems, it is highly likely that the same type 
of  sensitive initial condition and parameter de- 
pendence occurs in models of  physical systems 
which are much more complicated than the 
model investigated in this paper. 

In this Section we demonstrate that an ex- 
treme type of  parameter dependence may also 
occur in the system of  locally coupled Duffing's 
oscillators. The system can be expressed as fol- 
lows: 

dxi ( t )  -----~- = y i ( t ) ,  

dyi( t )  dx i ( t )  ]3 
-d-[ - 7  dt trl [xi ( t )  + cr2xi(t) 

+ f  sin(cot) 

+c~[x i+1 (t) - 2xi(t)  + x i-1 (t)],  

dz i ( t )  
dt - co ,  i =  1, . . . .  N. (7) 

Without the coupling term c~D2 Ix i (t) ], Eq. (7) 
is the well studied Duffing equation [22 ] which 
typically possesses chaotic attractors 2. We con- 
sider the case where these oscillators are chaotic 
while uncoupled. A parameter setting for ex- 
hibiting chaotic attractor is 7 = 1, cr~ = 100, 

2 Eq. (7) can actually be derived from the following one- 
dimensional PDE that describes nonlinear wave propaga- 
tion in forced, spatially extended medium with dispersion 
characterized by medium susceptibility a I and cr2, and 
damping ~, 

02t~ O~ t~02~ 
Ot 2 = - - 7 - - 5 7 - - a l  ~ 3 + a 2 ~  + ~ + f s i n ( t o t ) , ( 8 )  

where • = ~ ( z , t )  is the local displacement of the 
medium, ~ is a quantity that can be related to group ve- 
locity of the wave, and f is the forcing amplitude. Eq. (8) 
was first introduced by Umberger et al. [14]. To numeri- 
cally solve Eq. (8) one first spatially discretizes it by sub- 
stitutions z ~ i, ~ ( z , t )  --* x i ( t )  and 0 2 / O z  2 ~ D 2 = 
x i+ 1 _ 2x i  + x i -  I, where i is an integer denoting individual 
element at different spatial locations, x i is the displacement 
at site i, and D2 is a discrete second-order differential op- 
erator. Eq. (8) thus becomes the following set of coupled 
ODEs: 

d 2 x i ( t )  d x i ( t )  
d t  2 = - 7 - - - ~ -  - al ( x i ( t ) )  3 + t r2x i ( t )  

+fs in ( co t )  + c~D2[xi( t )] ,  i = 1,2 . . . . .  N. (9) 

Denote y i ( t )  = d x i ( t ) / d t  and z i ( t )  = cot, Eq. (9) is 
equivalent to Eq. (7). 
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0" 2 : 10, f = 1 and co = 3.5. At this param- 
eter setting, there is a chaotic attractor with 
A1 ~ 0.422. 

In order to investigate parameter dependence 
of asymptotic attractors for the system of cou- 
pled Duffing's oscillators Eq. (7), it is necces- 
sary to compute ).l for many different parameter 
values. Similar to our studies on CMLs, we vary 
the coupling strength 6. The major difficulty is 
the amount of  computation required. For N cou- 
pled oscillators, computing A I involves integrat- 
ing 6N first-order ODEs over many iterations. 
To make such a computation possible, we use the 
massively parallel Connection Machines CM5. 
Our strategy is to map Eq. (7) onto each pro- 
cessor of the CMS, and integrate these equations 
forward in time in parallel, assigning different 
local coupling values ~ to different processors. 
In this fashion, 21 can be computed in parallel 
for many different fi values. For each 6, ;tl is 
obtained by integrating Eq. (7) for 4000 itera- 
tions on the surface of section [defined by stro- 
boscopic trajectories z i ( t )  = 2~zn, where n = 
l, 2 . . . .  ] and then averaging A1 over the last 400 
iterations. 

Fig. 14A plots )-i versus fi for 0 < 6 < 20 
(N = 10, 2048 fi values) with identical initial 
conditions for all 6. These data exhibit features 
similar to Figs. 1A and 13A. Specifically, there 
are three dynamic regimes. For most 6 values in 
regimes 1 and 3, A~ varies rather smoothly with 
fluctuations determined by numerical uncertain- 
ties. In regime 2, there are significant fluctua- 
tions of A I whose amplitudes are at least one or- 
der of magnitude greater than the numerical un- 
certainties. The fluctuations in regime 2 there- 
fore represent the dynamics of the system. This 
suggests the same type of extreme sensitive de- 
pendence of asymptotic attractors on 6 in regime 
2, as described for the coupled H6non maps. To 
see this qualitatively, Figs. 14B-C show two suc- 
cessive blowups of part of regime 2 for 5.8 < 
6 <_ 6.2 (using 1024 6 values) and 5.82 _< ~ _< 
5.86 ( 1024 6 values), respectively. It is clear that 
fluctuations of ;t~ persist as smaller scales of pa- 
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rameter variation are examined. While no com- 
putation in the phase space and of the uncer- 
tainty exponents was attempted due to our lim- 
ited source of CM5 usage, the similarity between 
Fig. 14 and Figs. 1A, 12-13A suggests that Eq. 
(7) exhibits extreme sensitive dependence in pa- 
rameter space (and hence in phase space). 

4. Conclusions 

In this paper, we have studied the dynam- 
ics of spatio-temporal chaotic systems described 
by systems of coupled maps and coupled differ- 
ential equations. We have investigated extreme 
sensitivity of asymptotic attractors to both ini- 
tial conditions and parameters. Our major find- 
ings can be summarized as follows. 

(i) It is common for these spatio-temporal 
systems to exhibit distinct multiple asymp- 
totic attractors. Basins of attraction of 
these attractors can exhibit an extreme 
type of fractal behavior characterized by 
near-zero uncertainty exponents, which 
implies the same type of structure in the 
parameter space. The physical manifesta- 
tion is that for almost every initial condi- 
tions in the phase space and/or  for almost 
every parameter value in certain param- 
eter regimes that asymptotes to one type 
of attractors, there are initial conditions 
and/or  parameter values arbitrarily nearby 
that asymptote to other types of attractor. 

(ii) Fractal structures in phase space and pa- 
rameter space indicate that asymptotic at- 
tractors in spatio-temporal chaotic systems 
are extremely unpredictable with respect 
to both initial conditions and parameters. 
Regardless of the precision with which ini- 
tial conditions and parameters are speci- 
fied, there is a significant error in compu- 
tation of asymptotic attractors. 

In general, chaos in low-dimensional dynam- 
ical systems is characterized by a sensitive de- 
pendence of system dynamic variables on initial 



Y.-C. Lai, R.L. Winslow / Physica D 74 (1994) 353-371 369 

Regime 1 Regime 2 Regime 3 

Z 

I 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

0.5 

B 

5 I0 15 

8 

20 

0.4 

0.3 

, ~ -  0.2 

0.1 

0 

-0.I  

5.8 5.9 6 6.1 6.2 

8 

Fig. 14. (A) 21 versus ~ for the system of  coupled Duffing 
oscillators Eq. (7) for 0 _< ~ < 20 (N = 10, 2048 
values). (B) An extended view p a n  of  regime 2 in (A) for 
5,8 < ~ < 6,2 (1024 & values), (C) An extended view of  
part of  (B) for 5.82 < ~ < 5.86 (I024 ~ values). 

conditions in phase space (21 > 0).  While the 
occurrence of extremely sensitive dependence on 
initial conditions has recently been discovered 
for low-dimensional systems whose phase spaces 
are riddled [2], it is also common that most 
low-dimensional chaotic systems do not exhibit 
such exotic phase space structures. For latter sys- 
tems, it is still possible to predict, with certainty, 
the asymptotic attractors of the systems. Low- 
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Fig. 14 - -  continued. 

dimensional systems, such as the logistic map, 
may also exhibit a weak type of sensitive de- 
pendence of asymptotic attractors on system pa- 
rameters. The weakness of the parameter depen- 
dence renders predictable statistical quantities 
of asymptotic attractors such as Lyapunov expo- 
nents and dimensions. 

In spatio-temporal chaotic systems, the stud- 
ies herein suggest that both fractal basins and 
fractal parameter space are common. The system 
of globally coupled maps we have constructed 
in this paper consist of extremely well stud- 
ied low-dimensional chaotic system, the H6non 
map. In fact, we have also throughly studied 
the system of globally coupled Zaslavsky maps 
[25] and one of the most extensively studied 
spatio-temporal chaotic systems, the diffusively 
coupled logistic map lattices [10], and found 
similar phenomena. These three systems are, in 
fact, the only CML systems we have investigated 
in this study. Numerical evidence also indicates 
the existence of extreme sensitive parameter de- 
pendence in system of coupled ODEs. Thus, for 
spatio-temporal systems, there can be parameter 
regimes in which we cannot reliably predict the 
evolution of dynamic variables in phase space 
(since hl > 0), nor can we predict statistical 
properties of the asymptotic attractors for par- 
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ticular parameter values and initial conditions 
(since a ~ 0). This might provide insight to the 
fact that spatio-tamporal chaotic systems are 
generally extremely unpredictable. 

It is interesting that intuitively, one might 
expect spatio-temporal chaotic systems not to 
exhibit fractal basins. The reason is that the 
chaotic interaction among spatial elements may 
be modeled as random noise, and noise can 
wipe out the fine-scale structure of the system 
on a length scale determined by the coupling 
strength and, hence, one might expect arbitrar- 
ily fine fractal structures of basins to be smeared 
out [ 14 ]. Results of this paper in both the small 
and moderate coupling regimes suggest that this 
view may be incorrect. Weakly coupled spatio- 
temporal systems exhibit very different features 
(e.g., smeared snapshot attractors) from low- 
dimensional chaotic systems subject to random 
noise, while moderately coupled systems ex- 
hibit extreme types of fractal basins. The precise 
origin of these phenomena is still not clear. In- 
tuitively, these phenomena may be attributed 
to the complicated interaction among elements 
at different spatial sites as a consequence of 
coupling. 

Finally, we remark that extremely sensitive 
dependencies in both parameter space and 
phase space imply that spatio-temporal chaotic 
systems may be difficult to control. Recently, 
a successful controlling chaos strategy has been 
proposed for temporal chaotic systems [26]. 
The method makes use of arbitrarily small pa- 
rameter perturbations to stabilize chaotic tra- 
jectories around some desired unstable periodic 
orbit embeded in chaotic attractors. The success 
of this method relies on dynamics' being smooth 
in the control parameter regime, namely, when 
small parameter perturbations are applied, it is 
required that no drastic change in asymptotic 
attractor occurs. For spatio-temporal chaotic 
systems, it is clear from the study of this pa- 
per that such a condition may well be violated. 
Arbitrarily small parameter perturbation may 
result in completely different asymptotic attrac- 
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tors. Hence, at present there is no assurance 
that spatio-temporal chaotic systems can be 
controlled. 
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