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Abstract

A crisis in chaotic scattering is characterized by the merging of two or more nonattracting chaotic saddles. The fractal dimen-
sion of the resulting chaotic saddle increases through the crisis. We present a rigorous analysis for the behavior of dynamical
invariants associated with chaotic scattering by utilizing a representative model system that captures the essential dynami-
cal features of crisis. Our analysis indicates that the fractal dimension and other dynamical invariants are a devil-staircase
type of function of the system parameter. Our results can also provide insight for similar devil-staircase behaviors observed
in the parametric evolution of chaotic saddles of general dissipative dynamical systems and in communicating with chaos.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Chaotic scattering is a manifestation of transient chaos [1,39] in classical open Hamiltonian systems. There has
been a continuous interest in the subject [2,40]. A commonly utilized tool to quantify a classical scattering process is
scattering functions, which are plots of some output variables characterizing the particle trajectory after the scattering
versus some input variables characterizing the trajectory before the scattering. When the scattering is chaotic, a
scattering function typically exhibits a fractal (Cantor) set of singularities. In the vicinity of each singularity, a
small change in the input variable can result in a large change in the output variable — the signature of chaos. It
is now known that the dynamical origin of chaotic scattering is nonattracting chaotic saddles in the phase space
that contains an infinite number of unstable periodic and aperiodic orbits [1,2,39,40]. A trajectory coming into the
scattering region typically spends a finite amount of time near the chaotic saddle before exiting the system. Staying
near the chaotic saddle gives rise to the chaotic nature of the scattering process, and the set of infinite number of
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unstable periodic and aperiodic orbits embedded in the chaotic saddle leads to the infinite number of singularities
in the scattering function. Chaotic scattering has been identified in models of different physical contexts such as
chemical reactions [3,41], fluid dynamics [4,42—-47], astrophysics [5,48,49], and atomic physics [6,50,51], etc.

A central question in the study of chaotic scattering is how chaotic scattering arises and evolves as a system
parameter changes. Previous work has indicated that there are two routes to chaotic scattering: (1) the abrupt
bifurcation route in which a chaotic saddle is suddenly formed in the phase space [7,52]; and (2) the period-doubling
bifurcation route through which a chaotic saddle is gradually formed from a saddle-center bifurcation [8]. After
onset of chaotic scattering, the underlying chaotic saddle can go through further evolution, leading to qualitative
changes in the scattering characteristics. One example is the so-called massive bifurcation [9] in which an infinite
number of unstable periodic orbits in the chaotic invariant set is suddenly destroyed and simultaneously replaced
by another distinct class of infinite number of unstable periodic orbits. More recently, the phenomemisis of
in chaotic scatteringvas discovered and studied [10-12] in which two previously existing chaotic saddles collide
with each other via a complicated sequence of intersections of their stable and unstable manifolds. A physical
consequence of crisis is that chaotic scattering is characteristically enhanced throughout the crisis in the sense that
an infinite number of new possibilities for scattering trajectories are created due to tangencies of stable and unstable
manifolds of the chaotic saddles. Dynamically, the fractal dimension of the chaotic saddle increases during the
crisis. The aim of this paper is to provide a rigorous analysis for the behavior of dynamical invariants such as fractal
dimension and topological entropy of the chaotic saddle during a crisis in chaotic scattering.

In [11,12], it was conjectured that the function of the fractal dimension of the chaotic saddle versus a system
parameter during the crisis exhibits a behavior that can be characterizedead ataircase Mathematically,

a relationi(p) is called a devil staircase i(p) increases only at a Cantor set of Lebesgue measure zero but
otherwise remains constant. Lebe the bifurcation parameter, and jatandp, be the parameter values that mark

the beginning and end of the crisis, respectively, where- p;. Let the values of the fractal dimension before the

crisis (p < p1) and after the crisisy( > p2) be D1 and D», respectively. It was then found [11,12] that typically,

D, > D; and, furthermore, during the crisipi < p < p»), the fractal dimension versysis a nondecreasing,
devil-staircase type of function. This conclusion was derived based on numerical evidence and qualitative arguments.
The initial more rigorous analysis of the problem was presented in [13]. In this paper, we proceed in this direction and
verify analytically the devil-staircase characteristics of the fractal dimension. Our analysis yields the conclusion
that other dynamical invariants of the chaotic saddle, such as the topological entropy and the escape rate, also
exhibit a devil-staircase behavior, a result that has not been reported previously. Our approach is to investigate a
class of simple, one-dimensional models for which a rigorous calculation of the topological entropy or the fractal
dimension of the underlying chaotic saddle is possible. To compute the dynamical invariants, we use two methods:
(i) integrating over an invariant measure; and (ii) analyzing the transition matrix. Since our model is representative
of dynamical processes that involve homoclinic or heteroclinic tangencies and crossings of stable and unstable
manifolds of chaotic saddles, we believe that the devil-staircase structure of dynamical invariants is typical in a
large number of dynamical phenomena that involve the parametric evolution of chaotic saddles.

Although the main motivation of our study comes from chaotic scattering, we wish to point out that our results
can also account for the devil-staircase behavior of dynamical invariants observed in at least two problems: (1)
the change of topological entropy of chaotic saddles after a crisis in dissipative systems [14,15,53,54]; and (2) the
relation between channel capacity and noise resistance in communicating with chaos, the latter has been a topic of
recent interest [16,17,55-59].

Evolution of chaotic saddles after crisiSrisis in dissipative dynamical systems is an event that converts a chaotic
attractor into a chaotic saddle [14,53] as a system parameter changes through a critical value. In a typical nonlinear
system such as the Hénon map, a crisis is induced by the collision of a chaotic attractor with the boundary of its
own basin. Since the attractor lies in the closure of its unstable manifold, and since the basin boundary is the stable
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manifold of a saddle periodic orbit on the boundary, the collision can be characterized as a homoclinic or heteroclinic
tangency. As the parameter increases further through the crisis, an infinite number of tangencies occurs because
both the stable and unstable foliations of the chaotic saddle after the crisis possess a fractal structure. Consequently,
the chaotic saddle evolves after the crisis. It was found numerically that the topological entropy of the chaotic saddle
after crisis typically exhibited a devil-staircase type of nondecreasing behavior [15,54].

Channel capacity in communicating with chatisvas demonstrated recently that a chaotic system can be ma-
nipulated, via arbitrarily small time-dependent perturbations, to generate controlled chaotic orbits whose symbolic
representation corresponds to the digital representation of a desirable message [16,55-58]. This idea has caught
much attention partly because of one advantage of this type of digital-encoding strategy: the nonlinear chaotic
oscillator that generates the waveform for transmission can remain simple and efficient, while all the necessary
electronics controlling encoding of the signal remain at low-powered microelectronic level. A central issue in any
digital communication devices is to select a proper coding scheme by which arbitrary messages can be encoded
into the transmitting signal. It was argued that in general, a coding scheme generates chaotic trajectories that live
on one of the infinite number of nonattracting chaotic saddles embedded in the chaotic attractor [17,59]. A relevant
guestion is how much information the system can encode and transmit. A quantitative measure of the amount of
information is thechannel capacity18,60], which is equivalent to the topological entropy [19] of the chaotic set
utilized for encoding digital information. Since a coding scheme makes use of only an invariant subset embedded in
the attractor, and since the topological entropy of the subset cannot be greater than that of the attractor, the channel
capacity in any practical communication scheme employing a code must be less than or equal to that which would
be produced in the ideal situation, where the full attractor is utilized for encoding messages. In [17,20,59], it was
demonstrated that the function of the channel capacity versus a parameter characterizing the chaotic saddle as a
consequence of coding typically exhibited a devil-staircase behavior.

The rest of the paper is organized as follows. In Section 2, we describe physical motivations from the perspective
of chaotic scattering and introduce our analyzable model. In Section 3, we introduce the concept of integration
over an invariant measure and apply it to our model system. In Section 4, we apply the method of transition matrix
to compute dynamical invariants. In Section 5, we consider the issue of nonhyperbolicity and multifractality. In
Section 6, we present a discussion.

2. Physical motivation and analyzable model

The physics that motivates us to consider the general phenomenon of interaction between nonattracting chaotic
saddles is scattering. To give a specific example, consider the problem of particle scattering in a two-dimensional
potential field consisting of an infinite array of elastic scatterers [10-12,21]. These scatterers are placed at constant
intervals along, say, the-axis. Each scatterer is represented by a circular attractive potential well, and there is no
overlapping between adjacent potentials. The effect of each individual potential is to deflect the particle trajectory
by an angle. This angle depends on the angular momentum of the particle with respect to the potential well with
which it is interacting. Depending on the system parameters such as the particle energy, particles with slightly
different initial angular momenta can exit the system at completely different locations and directions — signature
of chaotic scattering. At relatively high energies, the deflection angles due to individual potentials are large enough
to generate chaotic scattering, but they are still too small to cause a particle traveling upward regtattie
to reverse its direction to exit downward near the-axis, and vice versa. In this case, there are two isolated
chaotic saddles in the phase space, corresponding to trajectories traveling upward and downward, respectively. As
the particle energy is decreased, the maximum deflection angles increase so that a particle traveling upward can exit
downward, and vice versa. Dynamically, this means that there is now an interaction between the previously two
isolated chaotic saddles. The interaction begins when the stable (unstable) manifold of one chaotic saddle becomes
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Fig. 1. Schematic illustration of interaction between stable and unstable foliations of a chaotic saddle. Parametric evolution of the system
corresponds to unstable foliations moving downwards.

stable
foliations

tangent to the unstable (stable) manifold of another saddle. This marks the onset of a crisis. As the energy decreases
further, an infinite number of tangencies occur. At another critical parameter value, no tangencies are possible, which
corresponds to the end of the crisis. During the crisis, the fractal dimension of the conglomerated chaotic saddle
increases whenever a new tangency occurs, leading to a devil-staircase behavior of the dimension and physically,
to successive enhancement of chaotic scattering [12].

More precisely, the devil-staircase behavior can be seen as follows. Consider an invariant chaotic saddle in the
two-dimensional plane. Since the saddle has a horseshoe-like structure, both the stable and unstable foliations are
fractals, as shown schematically in Fig. 1, where the horizontal lines denote segments of the stable manifold and
the curved ones are those of the unstable manifold. To characterize evolution of the saddle, assume that, as a system
parameter changes, the unstable foliations move downwards across the stable foliations. At a generic parameter
value, some unstable manifold becomes tangent to the stable-oa homoclinic or a heteroclinic tangency.
Dynamically, an infinite number of unstable periodic orbits is created about such a tangency [22,61,62]. Thus, we
expect the dynamical invariants, such as the topological entropy that measures the abundance of unstable periodic
orbits, to increase abruptly at the tangencies. Due to the fractal structure of the stable and unstable foliations,
such tangencies occur at a dense set of parameter values of Lebesgue measure zero. In any parameter subinterval,
where there is no tangency, the dynamical invariants remain constant or change smoothly, since the topology of the
stable and unstable manifolds remains unchanged. Overall, in a parameter interval containing both the first and last
tangencies, we expect to see the values of dynamical invariants to increase abruptly at each tangency value, while
they remain constant in any subinterval in between the tangency parameter values.

Crisis in chaotic scattering has also been observed in more realistic systems in atomic physics [23]. The essential
ingredient characterizing this nonlinear phenomenon, which is independent of the physics of any specific model
system, is the interaction between two or more previously isolated chaotic saddles. We thus seek to construct a
model that captures this essential feature, yet the model should be simple enough, so that a rigorous understanding
can be obtained. To the extent that the model is free of any feature specific to physical systems exhibiting crisis
in chaotic scattering, we can regard predictions of the modahagersalif they are also observed in numerical
experiments of specific scattering systems. In particular, we consider the following one-dimensional model:

—alx+1+b forx <O,
alx -1 —-b  forx > 0,

o) = { &

wherex € R, anda andb are parameter$ (> —1). The map is schematically shown in Fig. 2(a—d), where the four
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Fig. 2. Sketch of the model system (1) drawn do&= 6. The parameter is kept constant, and the dependence of the dynamical properties of
the system on the parametee [%, %] is investigated: (a) before crisis; (b) first tangency (beginning of crisis); (c) last tangency (end of crisis);

and (d) after crisis.

branches of the map are labeled fiyx) and f4(x) (positive slopes), angz(x) and f3(x) (negative slopes). The

map is invariant under the following symmetrical operations> —x and f;,(x) — — f»(x). For small values of,

the map can exhibit bounded attractors, while for largalues, almost all initial conditions except a set of measure
zero asymptote to eitheo or —oo. Since, we are interested in modeling a situation of scattering where particles
eventually escape thoo, we fixa at a reasonably large value and investigate the dynamical behavior of the map as

is increased from zero. As shown in Fig. 2(a), there are two interdals= [—xp, —x,] andA_ = [x,, xp], Which

are determined by the fixed points on the two branches of the map with positive slopes. For initial conditions outside
these intervals, the resulting trajectories asymptote to either —oo without entering the two intervals. The values

of x, andx, are determined by the following relationgx;, — 1) — b = x;, anda(1 — x,) — b = x;,. We obtain

a+b
Xp =

Xg =
a—1 a—

-2

_a—b

1

)
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To assure that almost all initial conditions asymptote-te, we require thak, > 0, or equivalently,
a>(b+2). (3)

Depending on the value &f Eg. (1) exhibits different dynamical behaviors. In particular, whigil) > x,, there

are attractors in the intervals, andA_. Initial conditions insided ; andA _ asymptote to the respective attractors.
Whenf, (1) < x4, i.e.,a > 2, almost all initial conditions iM . andA_ escape t@o except for two Cantor sets of
Lebesgue measure zero. In this case, when one initial condition asymptetes {or —oo), a slightly perturbed
one may asymptote te-co (or +o0) and, hence, the dynamics are similar to those of chaotic scattering. When
f»(1) > —x,4, as shown in Fig. 2(a), the Cantor setsdn and A_ are topologically and dynamically isolated.
Trajectories resulting from initial conditions i, cannot ente _, and vice versa. Due to symmetry, the fractal
dimensions of these two Cantor sets are equal. To obtain the value of the dimension, we consider thd intéitval
the first iteration, initial conditions in the interval,. = (x, + 4, x;, — 8) map outsided ; and approach to eitheo

or —oo in subsequent iterations, whe¥e= 2(b + 1)/a(a — 1). Hence, there are two line segments of lenfythat
stay inA after the firstiteration. Two inverse images®f on each side off - map out ofA  in two iterations and,
hence, there are four intervals within. of lengthé/a that can stay i  for two iterations. In general, there aré 2
intervals of lengtt$/a" 1 that can survive: iterations. Therefore, the box-counting dimension [24] of the Cantor
setis

In2" In2

d=-1lm —— = —. 4)
n—o In(§/a"1) Ina

A crisis occurs whery, (+1) = —x,, orb1 = (a — 2)/a, after which the two Cantor sets i, andA_ are

heteroclinically connected to each other, as shown in Fig. 2(b). This is a heteroclinic tangency analogous to that
of stable and unstable manifolds in two-dimensional mapsb Ascreases beyond;, there can be an infinite
number of such tangencies determined by Atth iterated mag‘b(N)(x) = fp(fo(... fr(x)...)), whereN > 2.
The last tangency occurs whefg(+1) = —xp, Or b2 = a/(a — 2), as shown in Fig. 2(c). Fab > by, there

is a single Cantor set in the intervdl = [—x;, x]. The dimension of this Cantor set can be computed from
Fig. 2(d). Initial conditions in(—x,, x,) maps outside4, in one iteration. In addition, there are open intervals
G1 = (—xp + A, —x, — A) and G2 = (x, + A, xp — A) that maps outsidel, in one iteration, where\ =

2(a + b)/[a(a — 1)]. After the first iteration, there are four intervals of lengttthat survive in4, for one iteration.
The preimages of these four intervals consist of 16 subintervals of léngthwvhich stay inA, for two iterations. In
general, there aré4ntervals of length /a1 that survive inA; for n iterations. Thus, the dimension of the Cantor
setis

In 4" In2

d=-Im — =2—.
2T 2% ina/aY) ~ “Ina

®)
Note that in order forl, to be less than 1, it is required that> 4, otherwisel, = 1 and there will be attractors
in A;. The conditioru > 4 is guaranteed by Eq. (2), which, when combined With= a/(a — 2), gives the same
constraint fora.

Egs. (4) and (5) indicate that the fractal dimension of the Cantor set increase#ftony(= 241) asb increases
from values less thah; to values greater thabp. The value ofd, as we have seen above, is determined by the
behavior of f;, (xc), wherex; = +1 are the two critical points of the map. In [11,12], it was heuristically argued,
based on examining the behaviors of higher iterates of the critical points, that folb < b, (during the crisis),
the fractal dimension increases fraimto dz in a manner that is typical of a devil staircase.

Note that the model equation (1) is piecewise linear and the absolute value of the derivative is cofistant:=
a for anyx. Hence, the natural invariant measurge[25] covers uniformly the invariant set. Moreover, it coincides
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with the Parry measure (maximal entropy meastirad the Sinai-Ruelle-Bowen (SRB) measure [26,27]. Thus,
the topological entropytt, the Kolmogorov-Sinai (KS) metric entrofixs, and the generalized Renyi entropies
hg of the systemyf (x) are identicalit = hks = hy. In an analogous way the constant slope of the map stipulates
that the generalized dimensions (including the capabiy the information dimensiorD;, and the correlation
dimensionD; [24]) be all equal.

Our system is similar to the system analyzed by Bohr and Rand [26], in which a relation between the information
dimension and the KS entropy is given as follows:

h
Dy = “KS
Ina

(6)

This relationship, which was first derived in [28] and corresponds to the Kaplan—Yorke conjecture [29], is also valid
for our model. Thus, if the fractal dimension exhibits a devil-staircase behavior, so does the topological entropy,
and vice versa.

For concreteness, in the analyses that follow, we:fix 6 and choos@ to be the bifurcation parameter, as in
[11-13]. For this value of, thecrisis occurs forb € [ba, b5] = [3, 3]. Our aim is to provide a rigorous calculation
for the behavior of the topological entropy and fractal dimensior fiorthis range.

3. Integration over fractal measures

The topological entropy of a chaotic system is the asymptotic rate of growth of the number of periodic orbits with
respectto the length of the period [27]. Recently it was proposed that [20] for one-dimensional maps, the topological
entropy can be computed by averaging the number of preimages with respect to the maximal entropymeasure
[27]. Consider a one-dimensional mixing systgim X — X, where the functiory is piecewise monotone and
continuous orV branches. Its topological entropy is then given by [20],

ht = Inf P(x) dus(x), (7)
X

whereP(x) : X — {0,1,2,..., N} represents the number of preimagesfoét the pointx, restricted to the
support ofu,. For Eq. (1), there are only two preimages fok b1, which givesht = In 2. Forb > by, there are
four preimages so that the topological entropgiis= 2In 2. Eq. (7) is also applicable to cases whieke (b1, b2),
since the measure of maximal entrgpy is uniformly distributed over the invariant set and may be approximated
by an iteration procedure. Fig. 3(a) shows the branches of the map ifi. To take into account the coupling with
the left-side branch of the system, we use two auxiliary functiyis) = | f3(x)| and fs(x) = | fa(x)|. Pointb
splits the invariant sef* into two parts:P, and P,. Forx < b belonging toS™, there exist four preimages, while
for x € Py, there are only two. Making use of formula (7), we obtain

b X
ht=1In |:4/ du*(x)—i—Z/ bd,u*(x)] =In2+In[1+ M], (8)
Xa b

where the relative weigh¥ of the subseP, depends o and is given by
b
M= [ duo. (©)

1 Maximal entropy measure of an invariant set is a measure that carries the same weight on each interval ofitbevevatie of the set, for
anyn. Itis also the order zero Gibbs measure [1,26,39].
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Fig. 3. (a) Right branch of the system. To describe the influence of the left branch of the system, we use auxiliary (nonexisting) fsinctions
and fs. The pointsx; andx, are located at the centers of two primary gaps of the wigthThe support of the invariant set can be divided
into two parts:Ps, for which each point has four preimaggs®(x), and P, for which there exist only two preimages. This figure is done for
b=b = % and the dividing poinb is located at the right edge of the gap which corresponds to the first primary dimension plateau of

D =1In(1++/3)/In6. (b) Forb = by 3 = i—‘l’, for which b is located at the pointy 3. It is the preimage of the point; with respect to the
function f3(x) and is located in the center of the secondary gap of the width ¢p/a. In this case, we have the sBf consisting of two
intervalsA U B.

From Eq. (6), we obtain aexactresult for the fractal dimensiofP of the chaotic saddlI# for Eq. (1) ata = 6,

_In2+1In[1 + M]

In6 (10)

To compute the fractal dimensiab, it is thus necessary to computé, which can be obtained by successive
approximations to the fractal measure.,d Since the map (1) is piecewise linear, the meaguyrés distributed
uniformly on the Cantor-like sef. To obtain the crudest (zeroth order) approximatia®?, we use the interval
So = [x4, xp] instead of the fractal set™. This is equivalent to using in Eq. (9) the Lebesgue measuie place of
the fractal measureyd.. The relative weight o4 is then approximated by the ratkd®(b) = (b — x4)/(xp — xa),
which, when substituted into Eq. (10), yields

In2
Irr:_6 forb < 2,
PO ) — In2+1In [(4an /GO 2.3 (11)
2In2 3
W forb > 5-

A better approximation is obtained by taking into account the two main gaps in ti§é s€hese primary gapg:
andg» are determined by the points in which the functigids f5, fs, and f4 cross the liney = x,. These gaps are
centered at the pointsg = 1 — »/6 andx2 = 1+ b/6, and they have the widtlp = 115(4 — b). Note that both
positions and widths of the gaps varylashanges. Choosing a uniform measure on the set

S1 = [xa, xp] \ [x1 — €0/2, x1 + €0/2] \ [x2 — €0/2, x2 + €0/2] ,
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we obtainM D, the first-order approximation of the integral equation (9). Substituting this integral into Eq. (11),
we obtain the first-order approximation of the fractal dimension of the chaotic saddle

In2

e forb < 2/3,
IN2+IN[(13b — 7)/(4b — 1)]
e forb [%, %—3],
IN2+1In[(9% —1)/(8b — 2)] 3
= forb e [12, 2]
Oy — ] IN2+1In[(27> — 18)/(8b — 2)] 17 13
DY (b) = e forb e [13, 31 (12)
N2+ IN[(15 — 5)/(8b — 2)]
e forb e [13. 151,
N2+ In[(14b — 11)/(4b — 1)]
s forb e [1£, 3],
2In2 3
W fOI’b > 5.

This function is not differentiable at six points for which the bifurcation paranteteincides with the edges of
the gaps1 andgz. Every gap in the invariant fractal sécorresponds to a specific plateau in the functio®@b),
which is a devil staircase. To visualize this structure in a more transparent way, we show in Fig. 3(b) a more precise
sketch of the invariant set*, in which the secondary gaps are indicated. These secondary gaps are the preimages
of the primary gapsy ~1(g1) and f ~1(g»). There are four secondary gaps for the valué n§ed in this graph; for
larger values ob two or four new gaps appear in the central pddtand E. These secondary gaps have the width
€1 = go/a and are centered at the preimages of the paingndx.. In Fig. 3(b), the symboat; 3 denotes the point
f3*1(x2), etc. The se$; 1 can then be constructed by removing fréprthe preimages of all its gaps. Definipg
to be a uniform measure on the Sgtwe can compute the number

The sequence of the measuggsconverges in a weak sense;tg, so the sequence of integrals”) converges to
M, defined as an integral over a fractal measure. A similar technique of computing dynamical entropies for various
dynamical systems was discussed in [20,30,31].

Fig. 4 shows the dependence of the fractal dimension of the chaotic saddl¢the parameter. Both approx-
imations D@ (b) and DD (b) are represented by the thin piecewise continuous lines. Due to a large contraction
factor @ = 6), the convergence dif @ is fast: the numerically obtained fifth-order approximation of the fractal
dimensionD® (b) (represented in the picture by a thick line) is already hardly distinguishable from the fourth-order
one D™ (b). Vertical lines indicate positions of the primary plateaus. Observe that the deperfdéndeetween
them, say fow € (%, %), is similar to the dependence in the entire intei¢al 5,). Formula (10) thus allows for
a simple interpretation of the existence of the dimension plateaus, if the paranseteeps the gaps of the fractal
setS, integral (9) remains constant, and so is the dimengion
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Fig. 4. Devil staircase of the fractal dimensibras a function ob. Narrow lines represent continuous approximation®®¥ (») and D® (b),
respectively, while the thick line represeim® (b). Points at the edges of the main dimension plateaus computed from the roots of the topological
polynomials are collected in Table 1.

4. Method of transition matrix

For some values of the paramebethe topological entropy of the chaotic saddle can be computed by identifying
a Markov partition and constructing the Stefan transition matrix [32]. The entropy is given by the logarithm of the
largest eigenvalug of the transition matrix [32—34]. Consider the special dase- %, given by the solution of
fs(b) = x4, as shown in Fig. 3(a). Note that this valuetofmarks the right end of the first primary dimension
plateau. The primary gaps and g» divide the setSy into four parts:A, B, C, D. Let A’B’C’ and D’ be the
sets that are symmetric with respect to the origin, which are contained in the left part of the chaoticSsaddle
These eight intervals form a Markov partition for the map. Action of this map can be regarded as relations
A— AUBUCUD,B — A’,C - A’andD — AU B U C U D, where the arrow means that one set is mapped
onto a union of others. These relations, together with four others that are symmetric to exchanging of the primes,

lead to the following transition matrix:

0

01= (13)

OkFRr P ORFR OO
OO OOk OO0k
OO O0OOFr OO0k
OO O0OOFr OO0k
P OORFr ORFRPk
P OOk OO0OOOo

POORrOOOO
P OO R OO OoQg

The vectors are ordered 88, B, C, D, A’, B’, C’, D'}, while the nonzero entries represent the fact that one set is
mapped byf onto the other one. The characteristic polynomiapafis

Wi(z) = 28(z% — 27 - 2), (14)

where its largest root is; = 1+ /3. For convenience, we make use of the symmetry of the sygtand identify
the setsA and A’. Modifying relationsB — A andC — A allows us to represent the same dynamics by the
following smaller matrix:
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1
0
1

S
R
[

wherer = 0. It is straightforward to check thag is its largest eigenvalue. Moreover, the matgl¥ allows us to
obtain the dimension fdr, € [i—g, %], for which the upper limit of integral (9) sweeps across the other primary gap
g2. Such a case is described by~ AUBUCUD,B - AUBUC,C - AUBUC,andD - AUBUCUD,
represented by the matr®  , with = 1. Its characteristic polynomial 82(z) = 7%(z% — 2z — 2). The largest
root of this topological polynomiah» = 2 + +/2, determines the topological entropy = In(x»). Applying the

relation (6), we obtain

M ~ 0.5609305 D(by) = M

D(by) =
(by) In6 In6

~ 0.6853303 (16)
which agrees very well with the numerical data obtained in Section 3 and those in [11,12].
The same procedure can be applied to yield exact values for the dimension of the smaller plateaus corresponding
to the secondary gaps centeredcgg. For example, consider the intervale [%”, 17%7], as shown in Fig. 3(b).
The allowed transitionsaret - FUGUH, B - DUE,C - AUBUC,D - AUB,E - AUB,

F—-AUBUC,G— DUE,andH — F UG U H; and the corresponding transition matrix is

000O0UO0 1 1 1
00011000
11100000
11000000
913=11 1 000 0 0 0| (17)
11100000
00011000
(00000 1 1 1

The largest root of the characteristic polynomii 3(z) = z° — 272 — 2z + 2 (denoted as [1-2, —2, 2]), gives

the exact value of the entroy and the dimensio®. Analytical results for each of the six secondary plateaus are
collected in Table 1. Note that the topological polynomials contain even coefficients only. It is not difficult to find
higher-order polynomials associated with the higher-order gagsaimd shorter stairs of the devil stairca3éb).

For example, the last third-order plateau corresponds to the polynomia#{ D, 0, —2], which leads to the value

of the dimensionD ~ 0.967988.

We remark that another quantity characterizing nonattracting chaotic saddles, the decajlra8d, can be
obtained in an analogous way. In particular, note that any trajectory starting with initial condition not belonging
to the invariant sef escapes to infinity. Iterating the mgf on an initially uniform measure, causes the mass of
points to decay exponentially in time: expcn). The relationship between decay ratand the topological entropy
is shown by Tél [1,39] and Bohr and Rand [26],

k=Ina—hks=IN6—In2— In[1+ M], (18)

which can be obtained by estimating the integwato various orders. Similar to the topological entropy and fractal
dimensiong versush also exhibits a devil-staircase behavior.
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Table 1

Fractal dimension of the repeller (1) at dimension plateaus with respectto variation of the pata®elsequent columns contain, respectively,
leftand right edges of the plateabs,andbg, pointx; (orits preimagef“ inthe center of the gap labeling each plateau), topological polyndmial
its largest root., integralM and the fractal dimensio® =Ini/In6

bL br Xi Polynomial A M D
2 (0.6667) 2 (0.6667) b1 [1,-2] 2.0 0.0 0.386852
22 (0.6822) % (0.7130) X2.3 [1,-2,0,-2] 2.35930 0.17965 0.479063
2 (0.7157) % (0.7476) x13 1, -2 -22] 2.48119 0.24060 0.507177
12 (0.7647) 17(0.9444) x1 1, -2 -2] 2.73205 0.36602 0.560930
192 (0.9626) 197 (0.9907) x15 1, -2 -2 -2] 2.91964 0.45982 0.597993
1(1.0) 1(1.0) bm [1,-3] 3.0 0.5 0.613147
2 (1.0139) 77 (1.0548) x16 [1,-4,2 2] 3.17008 0.58504 0.643925
13 (1.0833) 1 (1.3077) X2 [1,-4,2] 3.41421 0.70710 0.685330
108 (1.3377) 107 (1.3718) x14 [1,-4,2 -2] 3.59867 0.79934 0.714697
108 (1.4305) 107 (1.4657) Xo.4 [1,-4,0,2] 3.86620 0.93310 0.754717
315 315 by [1,—4] 4.0 1.0 0.773705

aThe symbol [1 -2, —2] represents the polynomiaf — 2z — 2 = 0, whose root gives the topological entropy at the first primary plateau.
For comparison, we added the value$ abrresponding to the first, the middle and the last tangency, and marked#y andb,, respectively.

5. Effect of nonhyperbolicity and multifractality

The analytic results in Sections 3 and 4 rely heavily on the fact that the model equation (1) is hyperbolic. In
particular, the Lyapunov exponent of the chaotic saddle remains constant when the pabasetaied so that
Do = D1, ht = hks and, consequently, it is possible to demonstrate, analytically, the devil-staircase behavior.
To be more realistic, one has to consider the effect of nonhyperbolicity. Chaotic saddles in nonhyperbolic systems
typically possess multifractality. In this cagey = D; is no longer valid, and it is necessary to use the dimension
spectrumD, [35,63-65] to characterize the multifractality. Here we address the following question: does the
devil-staircase behavior still persist when the dynamics is nonhyperbolic and multifractal? We are not able to
answer this question analytically and, therefore, our approach will be to perform detailed numerical analyses using
a class of nonhyperbolic maps.

We consider a class of maps derived from the analytic model equation (1) but the maps are no longer piecewise
linear, which allows for nonhyperbolicity and multifractality. The map is given by [12]

—a+b)(x+1D%+b, x<0O,

(2a+b)(x —12—b, x>0, (19)

glx) = {

wherea andb are parameters. As in Eq. (1), we fixand choos# as the bifurcation parameter. The map has two
guadratic components in> 0 andx < 0, respectively, and it has alocal maximumat —1 and a local minimum

atx = +1. As for Eq. (1), before crisis, there are two isolated chaotic saddlessirD andx < 0O, respectively.

The first tangency occurs when the local maximum (minimum) at—1 (4+1) touches the lower (upper) side of

the square in which the chaotic saddlexi- 0 (x < 0) lies [cf. Fig. 2(b)]. This marks the beginning of the crisis.
The last tangency, or the end of the crisis, occurs when the local maximum (minimuma) atl (+1) touches the

upper (lower) side of the square [cf. Fig. 2(c)]. The following relation determines the critical parameter values for
the first and the last tangencies:
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1 Jeat b+ +3
2(2a+b)+ 2a +b ’

(20)

where the “” and “+” signs are forbc (the first tangency value) ankt (the last tangency value), respec-
tively.

Throughout our humerical experiments, we dix= 6. It is found thath; 2> 0.6 andb; ~ 1.46. We therefore
choose the parameter intervak [0.6, 2.0] and compute the various dynamical invariants of the chaotic saddles
for 1000 values ob uniformly distributed in this interval. Specifically, we will compute: (1) the fractal dimensions
D, forq =0, 1, 2, 3; (2) the Lyapunov exponeit (3) the escape raig (4) the KS metric entropys; and (5) the
topological entropy:t. Our carefully controlled numerical computations reveal a devil-staircase-like behavior in all
these dynamical quantities. In particular, at each tangency, all the dynamical invariants changes suddenly. However,
unlike the piecewise linear system equation (1), all dynamical invariants, except for the topological entropy, no
longer remain constant but change continuously in parameter subintervals between any two successive tangencies,
as a result of change in the distribution of the natural measure. The topological entropy, on the other hand, remains
constant in these parameter subintervals and, hence, its variation versus the system parameter is still a devil staircase.
In what follows, we detail our computations.

5.1. Modified PIM-triple algorithm for computing continuous trajectories on the chaotic saddle

To compute various dynamical invariants, it is necessary to obtain a long, continuous trajectory on the chaotic
saddle for each parameter value. We make use of the PIM-triple (proper interior maximum) algorithm [36], with
significant modifications, to compute trajectories on the chaotic saddle. To see why modifications are necessary
for our problem, we first briefly describe the algorithm. Given a parameter value, one selects an initial inter-
val [x4, xp], uniformly distributesNsyp points in the interval, and computes the lifetifiei.e., the time during
which the trajectory remains finite, for each point. One then selects three consecutive{poirtis x}, or a
triple, with the property tha?" (xm) > T (x)), T (xr). Because of this property, the triple is called a PIM-triple.

One then letsA,, x5] = [x1, xr] and repeats the refining procedure until the size of the triple is very small, say,

(xr — x1) < €. In so far as the triple is PIM, it contains points on the chaotic saddle. This is a refining pro-
cess. To obtain a continuous trajectory on the chaotic saddle, the triple is iterated under the map, where if the
size of the triple exceeds the refining procedure is carried out. Iterating the triple, together with the refining
process, can usually yield an approximate, arbitrarily long trajectory on the chaotic saddle [36]. The PIM-triple
algorithm so described, as in [36], is suitable when the dynamical and topological properties of the saddle do not
change appreciably in the parameter interval of interest. In our problem, however, these properties can change
suddenly and drastically. We find, through trials and errors, that it is necessary to make the algddfitiveas

the system parameter changes. Specifically, when the fractal dimensions are small, if the Nypbépoints

utilized to search for PIM-triples is small, then it can occur thatMllp points have the same lifetime and,
hence, no PIM-triple can be found. On the other handydfy is large, then the computation becomes intense

and even formidable. In our actual implementation, for a given parameter value, w&/gla#t a small value,

say, 2. When a set ofVgy, points fails to yield a PIM-triple Nsyp is increased by a factor of 2. The process is
repeated until at least one PIM-triple is found. Usually, given an interval, several PIM-triples can be found, in
which case we select the one with maximum difference in lifetitigs— 7i and T, — 7. With these modifi-
cations, we find our algorithm can readily yield robust PIM-triple trajectories with more th&pdifts, which

is necessary for computing the various dynamical invariants. Because of the adaptivity, the computation is also
efficient.
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Fig. 5. (a—d)Do, D1, D2, and D3 versusb, respectively, for the nonhyperbolic quadratic map equation (19).

5.2. The dimension spectrufy,

To define the fractal dimension spectrum, one utilizes a grid of boxes of sikd compute the natural measure
w; contained in each box. It is known that the PIM-triple algorithm can typically yield the natural measure of the
chaotic saddle [37]. The dimension spectriipis then defined as follows [35,63-65]:

) 1 InYy K
D, = lm —— —=—=

21
e=0g—1 Ine (21)

whereK = K (¢) is the total number of boxes with; > 0. The dimension spectrul, characterizes the fractal
structure of the natural measure at different scales. In particular, smaller and smaller scales are charagjerized as
is increased. Amongst the infinite number of dimensidnsis the box-counting dimensiom); is the information
dimension, and; is the correlation dimension. Generally, is a nonincreasing function gfi.e.,Dg > D1 > D>.

For the map equation (19), for each valué pive compute a PIM-triple trajectory of $@oints. We then distribute
a set of boxes in the interval € [—2, 2] with box sizee ranging from ! to e 2. The natural measure in each
box is approximated by the frequency of visit of the PIM-triple trajectory to the box. The slopes of the linear fits
of In Z,K:lu? versus Ire give approximate valuesof D,. We find that the confidence interval DY, is typically
about 1% of the value ab,. Fig. 5(a—d) showDg, D1, D>, and D3 versusb, respectively. Apparently, the values
of these fractal dimensions change abruptly when a tangency occurs, and in the parameter subintervals between
tangencies, they decrease continuously. These behaviors can be understood by examining the PIM-triple trajectories
of the chaotic saddles. Fig. 6(a) and (b) show two PIM-triple trajectories, 50 000 points each, one before a tangency
and another after fab = 1.1516 (Dg ~ 0.52) andb = 1.1530 (Do ~ 0.89), respectively. We see that due to the
tangency, the chaotic saddle suddenly acquires more pieces, leading to an abrupt increase in the fractal dimension.
After the tangency, ak is increased further (but before the next tangency), the primary gap on the chaotic saddle
widens continuously, resulting in a gradual decrease in the fractal dimensitmgeneral, the curves ab,’s

2 For the information dimensioP, the fit isY"; wi In w; versus Ire.
3 A similar situation occurs in the logistic magix) = rx(1 — x), where there is a chaotic saddle for 4 and its box-counting dimension
decreases continuously asaries further beyond.
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2 (a) b = 1.1516, before tangency

-2 0 2
X

n
2 (b) b = 1.1530, after tangency

1 N !

Fig. 6. For Eqg. (19), PIM-triple trajectories of 50 000 points for:{a} 1.1516 (Dg ~ 0.52, before a tangency), and (b)}= 1.1530 (Do ~ 0.89,
after the tangency).

versush contain an infinite number of sudden jumps caused by the infinite number of tangendies fobg, bs].
This behavior is typical of that of a devil staircase.

Note that for majority of the values of parameben Fig. 5(a—d), the dimensions satis®y > D1 > D2 > Ds.
Nonetheless, there are a few parameter values for which these inequalities are violated by our numerical results. In
particular, for about 1% of values &f we actually observe that, e.d)y is slightly less thanD1. This behavior
occurs exclusively near tangencies about which the valugs ¢énd to exhibit large fluctuations. The fluctuations
are understandable because, near tangencies, we expect that the PIM-triple algorithm typically yields trajectories
that less accurately represent the natural measure of the chaotic saddle. Such a numerical inaccuracy, however, does
not affect the conclusion that the dimension spectrum exhibits a devil-staircase behavior.

5.3. The Kolmogorov—Sinai metric entrofys

For chaotic saddles in one-dimensional maps, the KS metric entropy can be related to the Lyapunov éxponent
and the escape ratethrough the following relation [1,28,39]:

hks = A — k. (22)

Since both. andx depend on the distribution of the natural measure, we expect these two quantities, and consequently
the KS entropy, to exhibit a devil-staircase-like behavior similar to those,t8 in Fig. 5(a—d). Fig. 7(a) shows

X versusb, where each value of is computed by using a PIM-triple trajectory of®lpoints. In contrast to the
behavior of the fractal dimensions, at each tangehdgcreases abruptly, due to the sudden appearance of pieces

of the chaotic saddle near the critical points- 1 which have near zero derivatives. In between the tangencies,
increases because the gaps around the critical points widen, so that the average derivative of points on the chaotic
saddle increases. To computdor each value ob, we distribute 16 initial conditions uniformly in the interval

x € [—2, 2] and monitor the numbeW (n) of trajectories that are still in the interval at time Typically, N (n)

decays exponentiallyv (n) ~ e, and the escape rateis obtained by a linear fitting of ItV (n) versusn. We
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Fig. 7. (a) For Eq. (19), the Lyapunov exponentersush, and (b) the escape rateversush.

find thatx versush exhibits a similar devil-staircase-like behavior as that odis shown in Fig. 7(b). Fig. 8 shows
the KS metric entropy versus which also exhibits a devil-staircase-like behavior.

5.4. The topological entroplyr

Before the crisis, there are two isolated chaotic saddles, each is topologically similar to that in, say, the logistic
map f (x) = rx(1 — x) for r > 4. Thus, the topological entropy is In 2. After the last tangency, the chaotic saddles
are connected and hyperbolic, as shown in Fig. 9. We see that the chaotic saddle is topologically equivalent to those
in the piecewise linear model equation (1) after the crisis and, hence, wéavén 4 forb > bs. Thus, we expect
hT to increase during the crisis from In 2 to In 4. To numerically compagtaeve utilize a simple counting method
derived from the physical interpretation of the topological entropy: suppose a symbolic dynamics can be defined,

2 L
1.51
2)
X
<
1 4
0.5 T T ™ — T T
0.6 0.8 1 1.2 1.4 1.6 1.8 2

b

Fig. 8. For Eq. (19), the KS metric entropys versush.
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Fig. 9. A hyperbolic chaotic saddle with topological entrdgy= In 4 after the crisis in Eq. (19) plotted for= 1.68.

then atrajectory in the phase spaeg}g° corresponds to one inthe symbolic space, denot¢ad 3§, whereo takes

on allowed symbols. The numba, of distinct symbolic sequences of lengthypically increases exponentially
with n: N,, ~ exp(htn). Our model map equation (19) possesses two critical points and is discontinuogs@t
i.e., the map has four branches. Thus, four symbols are necessary for the symbolic dynamics. Thatisaeach
take on four possible values, say, 0, 1, 2, and 3. In numerical experimaraisnot be too large because the number
of symbolic sequences can scale like We usen < 9. Specifically, for eacly value, we generate a PIM-triple
trajectory of 49 points, translate it into a trajectory in the symbolic space, and then egurifypically, we find

1.4

1.31

1.2

0.9

0.81

0.7 T . T . . .
0.6 0.8 1 1.2 1.4 1.6 1.8 2
b

Fig. 10. For Eg. (19), the topological entropy versusb. A nonmonotonic behavior visible aroudy 1.2 is due to numerical artifacts.
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that the slope of the linear fitting betweenNp andrn for 2 < n < 8, which is approximateljtt, has a confidence
interval that is at least two orders of magnitude smaller than the vall¢ it$elf, indicating that the computation

of ht is reliable. Fig. 10 showaT versush, which is clearly a devil staircase, A remains constants in between

the jumps at which tangencies occur. This is consistent with our understanding that the topological changes in the
chaotic saddle only occur at tangencies.

6. Discussions

The principal results of this paper are analytical and numerical confirmations for the devil-staircase behavior of
dynamical invariants in crisis of chaotic scattering. For a class of hyperbolic maps, we make use of the concept of
integration over a fractal measure and the transition matrix method to obtain analytically, to arbitrarily high-order
approximations in principle, the fractal dimension and the topological entropy of the chaotic saddle going through a
crisis. While the model that allows for such a treatment is a piecewise one-dimensional map, we argue that it captures
the essential feature of chaotic scattering: interaction of chaotic saddles via an infinite number of tangencies between
stable and unstable foliations. For nonhyperbolic maps, we perform carefully controlled numerical experiments
which yield results that are similar to those obtained from the analyzable model. As such, we believe that the
devil-staircase behavior of the fractal dimension or the topological entropy is a characteristic feature in physical
phenomena that involves the parametric evolution of nonattracting chaotic saddles [38,66—68].

Our result has implications to communicating with chaos, a problem of recent interest. It was argued [17,59]
that a coding scheme, which is necessary to encode a digital message into the waveform of a chaotic oscillator
under the restriction of grammar of the dynamics, leads to trajectories that live on a chaotic saddle embedded in
the chaotic attractor. Mathematically, this problem can be addressed as follows. Consider, say, the logistic map
Xn+1 = X, (1 — x,) for which the generating partition [28] for symbolic dynamics is the critical peint %

Suppose we are interested in trajectories that never visit a small gap region.oteiziered at¢. The dynamical

invariant set that supports such trajectories is a nonattracting chaotic saddle [17,59]. We ask, how does the topological
entropy of the chaotic saddle depend on the gaps§i2doting that increasing the gap size is equivalent to removing
preimages of the critical point (or tangencies), we see that the topological entropy must be a nonincreasing function
of the gap size. Numerical evidence and analysis using transition matrices indicate that the topological entropy
indeed follows a devil-staircase behavior [17,59]. In fact, the method of integration over a fractal measure can be
employed to compute the topological entropy of chaotic saddles embedded in a chaotic attractor of piecewise linear
maps [20].
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