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Abstract

This paper examines the dynamical origin of low-frequency fluctuations (LFFs) in semiconductor lasers subject to time-
delayed optical feedback. In particular, we study chaotic transitions leading to the onset of LFFs by numerical integration of
Lang–Kobayashi equations for a laser pumped near threshold. We construct a bifurcation analysis scheme that enables the
classification of the different operation regimes of the laser. We use the scheme to study the coexistence of the LFFs and
stable emission on the maximum gain mode (MGM), which was the subject of recent experiments [T. Heil, I. Fischer, W.
Elsäßer, Phys. Rev. A 60 (1999) 634]. Our computations suggest that as the feedback level increases, the regime of sustained
LFFs alternates with regions of transient LFFs, where the laser can achieve stabilization on the MGM. Exploration of the
parameter space reveals strong dependence of the structure of the LFF dynamics and the coexistence regime on the value of
the linewidth enhancement factor. © 2000 Elsevier Science B.V. All rights reserved.

PACS:05.45.−a; 42.55.Px; 42.65.Sf
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1. Introduction

Semiconductor lasers are of tremendous value to a large variety of applications including digital communication.
In a typical application, the presence of small optical feedback is inevitable. The feedback can be from the end mirrors
of the laser cavity itself, or it can come from reflections off other optical components in the system. As such, the
feedback is typically time-delayed. Dynamically, semiconductor lasers subject to optical feedback are then described
by differential equations with a time-delay. If one intends to model such a system by using first-order autonomous
differential equations, one finds that an infinite number of them is required. The phase-space dimension of the
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model is thus infinite. Although in certain cases the asymptotic dynamics, or attractors, may be low-dimensional,
analysis and numerical computation of delay differential equations still presents challenging problems in nonlinear
dynamics.

The aim of this paper is to study one phenomenon of semiconductor lasers with optical feedback which is
commonly observed in experiments at moderate levels of feedback strength when biased close to solitary threshold.
The phenomenon is calledlow-frequency fluctuations(LFFs) in the power output of the laser. In particular, it has
been known for more than two decades that the power of such a laser can typically exhibit dropouts, even down to
zero, at somewhat irregular time intervals [1]. The average frequency of the power dropouts is much smaller than
that of the solitary laser relaxation oscillations or the external-cavity modes (ECMs) (hence the term “LFFs”). The
power fluctuations are quite annoying in practical applications and, therefore, it becomes important to study the
mechanism for these fluctuations. There has been tremendous amount of work on LFFs in semiconductor lasers
[2–12] targeting different aspects of the phenomenon. One important recent observation is that in some regions of
the parameter space the LFFs coexist with stable emission on themaximum gain mode(MGM) [13,14]. In such
cases it may be speculated that the LFFs are only a transient phenomenon [13]. That is, the laser output can become
stable after a (long) period of initial transient time. If this were true, then LFFs would not be a serious problem in
practice.

The main question we address in this paper is: How prevalent is the transiency of the LFF phenomenon? In
order to answer this question, a good understanding of theglobal properties of the underlying chaotic invariants
is required. Since analytic study of nonlinear systems generally reveals only local properties (even in the case of
simple low-dimensional systems), investigation by means of numerical modeling becomes essential. Our approach
is to perform a detailed numerical bifurcation analysis in order to understand LFFs from the perspective of chaotic
dynamics. Our principal result is that LFFs can be either transient or sustained, depending on the basin structure
of coexisting attractors that physically correspond to different operational modes of the laser. In particular, when
the laser is pumped near the lasing threshold of a solitary laser, the value of the linewidth enhancement factorα

[15,16] strongly influences the operation regime of the laser. For smallα, the laser settles into a stable operation
on the MGM for all levels of the delayed optical feedback, while for largeα, the laser operates in a sustained LFF
regime, which also persists for all levels of feedback. However, in the intermediate range ofα values, the regime of
sustained LFFs alternates with “windows” of transient LFFs, where the laser eventually stabilizes at the MGM [34].

The rest of the paper is organized as follows. In Section 2 we describe the Lang–Kobayashi equations [17],
which have been established to be the fundamental equations for semiconductor lasers subject to optical feedback.
System evolution at different feedback levels obtained from the numerical solution of Lang–Kobayashi equations
is described in Section 3. In Section 4 we construct a two-dimensional Poincaré surface of section passing through
all the stationary solutions, which is particularly useful for analyzing the chaotic transitions and the phenomenon
of LFFs. Results of the bifurcation analysis which lead to our principal conclusion about the dynamical nature of
the LFFs are presented in Section 5. We conclude with a discussion in Section 6.

2. Lang–Kobayashi equations

The dynamics of semiconductor lasers subject to optical feedback is described by the Lang–Kobayashi equations
[17] for the intracavity complex electric fieldE(t) and the carrier populationN(t), as follows:

dE(t)

dt
= 1

2(1 + iα)(G(N, E) − τ−1
p )E(t) + γ exp(−iω0τ)E(t − τ),

dN(t)

dt
= J − N(t)

τs
− G(N, E)|E(t)|2, (1)
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whereα is the linewidth enhancement factor [15,16],ω0 the laser frequency without feedback,τp the photon lifetime,
τs the carrier lifetime, andJ is the injected current density. The external-cavity parameters are the feedback parameter
γ that measures the amount of the light reflected back into the laser cavity, and the delay timeτ = 2Lext/c, which
is the round-trip time of the light in the external cavity of lengthLext. This model assumes single-mode operation
and neglects multiple reflections. Despite recent discussions about the importance of multimode behavior for the
description of LFFs [11], we believe this model remains suitable for our study, since in the experiments the LFFs
persist even when an etalon is inserted, forcing the laser to operate in single-mode [14]. Also, in order to isolate
purely deterministic properties of our analysis, we neglect the effect of spontaneous emission noise, which is not
crucial for the occurrence of the LFFs, even though it can significantly influence the statistics of the dropout events
[9].

The modal gain per unit timeG(N, E) = G0(N)(1 − εE2) contains the linear gainG0(N) = GN(N − N0),
whereGN is the gain constant andN0 is the carrier density at transparency, and intensity reduction of the gain due to
spatial and spectral hole burning and carrier heating, withε being the gain saturation coefficient [18,19]. The effect
of nonlinear gain saturation was extensively studied by Masoller [19] and was found to lead to the stabilization of
the laser dynamics, so that the onset of chaos and chaotic transitions is shifted towards higher feedback levels. Since
the purpose of this work is to investigate chaotic transitions in the system with delayed feedback, we will ignore the
saturation effects and setε = 0. The electric field is normalized so thatVc|E(t)|2 is the total photon number in the
laser wave guide, whereVc is the volume of the active region. The parameterJth = Nth/τs is the lasing threshold
current density of a solitary laser andNth is the threshold carrier density.

For the sake of numerical convenience, we measure time in units of the photon lifetime and introduce the
normalized excess carrier number densityn(t) ∼ N(t) − Nth. We rewrite the Lang–Kobayashi equations in the
following normalized form [20]:

dE(t)

dt
= (1 + iα)n(t)E(t) + η exp(−iω0τ)E(t − τ), T

dn(t)

dt
= P − n(t) − (2n(t) + 1)|E(t)|2, (2)

whereη = τpγ, T = τs/τp, andP ∼ J − Jth. The above equations describe dynamics of three independent real
variables, sinceE(t) = ER(t) + iEI(t). To integrate these equations starting att = 0, it is necessary to define initial
conditions for the three variables everywhere in the time interval−τ ≤ t < 0.

While analytic studies of Eq. (2) are infeasible at present, the stationary solutions (fixed points) and their stability
can still be obtained. One can readily see that the system allows for the stationary solutions in the form

E(t) = Es exp(i(ωs − ω0)t) and n(t) = ns. (3)

If we write the complex electric fieldE(t) in the form

E(t) = E(t) exp(i(φ(t) − ω0t)) (4)

and introduce the variable1(t) = φ(t) − φ(t − τ), which is the phase delay during the external-cavity round-trip
timeτ , then the stationary solutions are the fixed points in the configuration space of the three variablesE(t), n(t),
and1(t). Substitution of the stationary solutions into Eq. (2) yields

ns = −η cos1s (5)

and

E2
s = P − ns

1 + 2ns
≥ 0, (6)

where1s ≡ ωsτ are the solutions to the implicit equation

1s − ω0τ = −ητ(α cos1s + sin1s) = −ητ(α2 + 1)1/2 sin(1s + arctanα). (7)
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At low feedback levels this equation has only one solution, which is close to the solitary laser frequencyω0. With
increasingη, additional solutions appear in pairs. The feedback level at which a new pair of fixed point solutions
is created can be determined by approximating the extrema of the RHS of Eq. (7) with parabolas, resulting in the
following formula:

η ≈ β + (β2 − 2)1/2

2τ(α2 + 1)1/2
, (8)

whereβ = ω0τ + arctanα + (2n − 1
2)π, n = 1, 2, . . . . The approximation improves with increasingn.

A stability analysis [21] shows that one of the points is inherently stable and is thus identified with the ECM of
the laser, while the other is the saddle-point instability, often called anantimode, which physically corresponds to
destructive interference between the external cavity and laser fields [8]. The stability condition is given by

1 − ητ(α sin1s − cos1s) > 0. (9)

Because of the conditionEs ≥ 0, some of the solutions of Eq. (7) are not allowed whenP < η.

Fig. 1. Two trajectories originating in the vicinity of the saddle point on the opposite sides from the stable manifold (E0 = Es, n0 = ns, and
10 = 1s ± 0.005). One trajectory (dashed line) is attracted to a stable fixed point which is the MGM, while the other trajectory (dotted line)
converges to a limit cycle. Open circles and crosses denote the external-cavity modes and the antimodes, respectively. The feedback parameter
is η = 0.0012. The integration time is 50τ .
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3. Chaotic dynamics of the Lang–Kobayashi model

We study the dynamics of the Lang–Kobayashi equations using fourth-order Adams–Bashford–Moulton predictor–
corrector method [22], and view the system in the(E, n, 1) configuration space. As an example, we consider dy-
namics of the system with parameter valuesα = 6, τ = 1000, ω0τ = −1, T = 1000, andP = 0.001, and see how
it evolves as the feedback parameterη increases.

A large variety of chaotic transitions occurs with increasing feedback level. Each new mode with more negative
1s is stable upon creation, but then becomes unstable due to the Hopf bifurcation at higherη. Fig. 1 shows two
trajectories originating in the vicinity of the saddle point with initial conditions slightly displaced towards the
neighboring fixed points. One of the trajectories is attracted to the stable fixed point, while the other one approaches
the limit cycle that appeared after the fixed point destabilized via a Hopf bifurcation at a lower feedback level. Let us
follow the evolution of this limit cycle as the feedback strength grows. First, the cycle undergoes a period-doubling
bifurcation atη ≈ 13.25 × 10−4 (Fig. 2(a)), and then after a cascade of bifurcations it is replaced by a chaotic
attractor atη = 13.5 × 10−4, as shown in Fig. 2(b).

This attractor grows in size, occupying more space between the neighboring saddle points until atη ≈ 14.08×10−4

it merges with the attractor ruins of another ECM, which were inaccessible at a lower feedback level (Fig. 2(c)).
Meanwhile the attractor gets closer to the saddle separating it from the basin of the MGM, and atη ≈ 14.34×10−4

a boundary crisis occurs: after spending some time on the chaotic attractor, the trajectory escapes across the saddle

Fig. 2. Different stages in the evolution of the ECM attractor: (a) limit cycle after a period-doubling bifurcation; (b) chaotic attractor; (c) merger
of the ECM attractor with attractor ruins of the neighboring ECM; (d) boundary crisis of the chaotic attractor. In all cases the integration is
initialized at the ECM and the trajectory between 100 and 250τ is plotted. The duration of the transient in (d) is 207τ .
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to the neighboring ECM (Fig. 2(d)). Thus, at this feedback level the chaotic behavior of the system istransientand,
after a finite time interval, is replaced by a limit cycle around the MGM.

4. Poincaré surface of section

The sequence of transition events (stable ECM→ ECM attractor→ merger with lower gain attractor ruins→
transient towards MGM) repeats qualitatively for higher feedback levels until a large attractor containing many
ECMs is created. The LFF regime, which has been called also theSisyphus effect[8], occurs when the system
evolves on this large attractor made of the attractor ruins associated with many ECMs. We call this large attractor
theSisyphus attractor. Fig. 3 shows a Sisyphus attractor atη = 0.015. One can see that the evolution of the system
on the Sisyphus attractor is quite complicated. Therefore, it is convenient to characterize the system dynamics
by constructing the Poincaré surface of section. Since our main focus is on transitions between attractor ruins of
different ECMs, we define the Poincaré section in such a way, that it passes through all the fixed points of the
system. Namely, the point(Ei, ni, 1i) is on the surface of the section if (cf. Eq. (6))

E2
i = P − ni

1 + 2ni

. (10)

Fig. 4 shows points(1i, ni) on the Poincaré surface of positive crossing (increasing electric fieldE) of the surface.
The system parameters are the same as in Fig. 3. A high degree of localization around the fixed points can be seen
in the phase delay coordinate, while the carrier number range of values is much broader.

Fig. 3. Sisyphus attractor at the feedback levelη = 0.015. The trajectory is traced for 200τ after a 100τ pre-iteration run. The open circles
denote the external-cavity modes, the crosses indicate the saddle points, and the solid circle denotes the MGM.
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Fig. 4. Points on the Poincaré surface of section. The system parameters are the same as in Fig. 3. The plot contains 20 000 points.

To study the time evolution of the system, we plot the return map of the delay coordinate1i+1 vs. 1i . The
result is shown in Fig. 5. Because of the localization of the delay coordinate around the fixed points, the return
map shows clearly transitions of the system between different ECMs. Points along the main diagonal represent
trajectories returning to the same fixed point after one loop through the three-dimensional coordinate space, while
points below (above) the diagonal correspond to the transitions towards higher (lower) gain. This description of the
laser dynamics allows for direct statistical analysis of system evolution, e.g., calculation of transition probability,
Pnm from nth to mth ECM. Note that points below the diagonal are mostly confined to two closest sub-diagonals,
indicating gradual evolution of the system towards MGM via nearest or next-to-nearest neighbor transitions. On the
other hand, the evolution away from the MGM takes the system across 4–5 ECMs in a single loop. Note also the
presence of a relatively small number of points in the upper-left corner of Fig. 5. These points indicate the special
character of the transitions away from the ECMs close to the maximum gain: after the system visits these modes,
both electric field magnitude and excess carrier density drop to zero, while change in the phase delay coordinate
takes the system all the way to the solitary laser frequency, where it starts crossing the Poincaré surface again. We
would like to stress that our ability to observe and classify transitions among the ECMs stems entirely from the
particular choice of the Poincaré surface of section adopted for this study.

5. Bifurcation analysis

In order to study different regimes of laser operation and transitions among them, we need to understand how
the system dynamics depends on the choice of the system parameters. Within the dynamical systems approach,
this is usually accomplished by the construction of bifurcation diagrams. A bifurcation diagram shows what part
of phase space is occupied by the system at different parameter values. Typically, the diagram is constructed by
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Fig. 5. Return map constructed from the points shown in Fig. 4.

plotting one of the system variables vs. a gradually varying system parameter. For systems with a simple structure
(a single attractor for any fixed set of parameters), the appearance of the bifurcation diagram is not sensitive to
the choice of the initial condition. However, as we have seen in Section 3, the dynamics of the system described
by the Lang–Kobayashi equations may have several attractors separated by the basin boundaries. Therefore, the
appearance of the bifurcation diagram depends on where the dynamics is initialized. That is, only attractors whose
basins contain the initial point will appear on the bifurcation diagram.

We use this feature of the bifurcation diagram of structurally complex systems to distinguish between different
types of chaotic transitions in the system. Specifically, we want to address the question of the accessibility of the
MGM from the Sisyphus attractor as well as that of stability of the MGM with respect to the merger with the
Sisyphus attractor. In order to answer these questions, we construct two bifurcation diagrams for a given set of
parameters: first, with initial condition at the MGM, and second, starting at one of the ECMs that belongs to the
Sisyphus attractor.

Fig. 6 shows the bifurcation diagram with initial condition at the MGM. The construction of the diagram is as
follows. We fix parametersα, T , P, ω0, τ , and increaseη from zero in increments of 1.0 × 10−5. At a given value
of η we find all stationary solutions and initialize the integration of Lang–Kobayashi equations at the MGM. After
a 500τ pre-iteration run, we accumulate values of the phase delay coordinate1i at points of intersection with the
Poincaré surface during the following 2000τ and plot them in the bifurcation diagram.

Several important features of the system dynamics can be extracted from this diagram. All the modes are stable
upon creation and gradually destabilize with increasing feedback level. For the first five MGMs (η < 0.005), the
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Fig. 6. Bifurcation diagram of the delay coordinate on the Poincaré surface for the dynamics initialized at the MGM (see text for details). The
system parameters areτ = 1000, ω0τ = −1, T = 1000, P = 0.001, andα = 6.

attractor is confined to the region around the mode for all values of feedback. However, starting with mode number
6, a merger of the MGM attractor with those of other modes occurs before the next mode is born. At this value ofη

the Sisyphus attractor contains all ECMs. Note also that forη > 0.016 the probability of visiting the MGM is very
low, so that it is practically inaccessible to the Sisyphus attractor.

Information about the stability of the Sisyphus attractor with respect to the escape to a different attractor (the
MGM) in the same range of parameter values can be obtained form the bifurcation diagram shown in Fig. 7, where
the integration is initialized within the Sisyphus attractor. For low levels of feedback we see regions where the
Sisyphus attractor collapses to a single-mode high-gain attractor. In these regions the Sisyphus effect (LFFs) is only
a transient phenomenon. However, with increasing feedback, the width of the regions decreases, until the transient
disappears completely forη > 0.008, after which LFFs are sustained.

The same bifurcation analysis scheme can be used to explore the regimes of laser operation at different parameter
values. For example, in Fig. 8 we present a bifurcation diagram for a smaller value of the linewidth enhancement
factorα = 4. Note that even though the diagram looks very much like the one in Fig. 6, the interpretation of the
system evolution is different, since the dynamics in Fig. 8 is initialized within the Sisyphus attractor and should be
compared with that in Fig. 7. We see that, when the linewidth enhancement factor is smaller, the regions of transient
LFFs persist for higher levels of feedback, alternating with the regions of sustained LFFs.

This observation suggests that the stabilization of the laser operation on the MGM is more likely for lasers with
smaller values of the linewidth enhancement factor. In order to explore this dependence, we map the regimes of laser
operation in the parameter plane ofα andη. To distinguish between LFFs and stable operation on the MGM, we
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Fig. 7. Bifurcation diagram for the same parameters as in Fig. 6, but the dynamics is initialized within the Sisyphus attractor.

monitor the range of variation of the delay coordinate1i , which is large when the system evolves on the Sisyphus
attractor and small when the dynamics is localized around the MGM. As a quantitative measure, we use the standard
deviation

σ 2
1 = 〈12

i 〉 − 〈1i〉2, (11)

where the brackets denote a sample average. Fig. 9 shows in gray scale the dependence ofσ 2
1 on the values ofα

and normalized feedbackη′ ≡ η(α2 + 1)1/2. We useη′ instead ofη in order to fix the number of available ECMs
at different values ofα (the number of available ECMs is constant along vertical lines on the plot). Depending on
the value ofα, we see three qualitatively different regimes: (i) forα < 3 the system operates around the MGM for
all values of feedback, (ii) forα increasing from 3 to about 4.5 the regions of sustained LFFs appear and grow until
(iii) for α > 4.5, they merge together and the LFFs become sustained for all values of feedback. The bifurcation
diagrams in Figs. 7 and 8 correspond to the regimes (iii) and (ii), respectively. Another important observation is that
the Sisyphus attractor appears to be much larger in the regime (ii) than in the regime (iii), even though the same
number of ECMs is available. The sharp boundary between the regions with large and small attractors suggests that
we observe a transition between two structurally different Sisyphus attractors. However, the reason for the attractor
size disparity in regimes (ii) and (iii) is unclear and requires further detailed exploration of the phenomenon.

We have also explored the influence of the pumpingP on the coexistence of the regions of transient and sustained
LFFs in regime (ii). The result is shown in Fig. 10. As expected, increasing the pumping current has destabilizing
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Fig. 8. Same as in Fig. 7 with a different linewidth enhancement factorα = 4.

Fig. 9. Range of variation of1i for different parameter values in the parameter planeα vs.η′ ≡ η(α2 + 1)1/2. Other parameter values are fixed
atτ = 1000, ω0τ = −1, T = 1000, andP = 0.001. The standard deviationσ 2

1 is calculated from a sample of1i gathered during a 1000τ run
after a 2000τ pre-iteration.
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Fig. 10. Range of variation of1i for different parameter values in the parameter plane ofP and η. Other parameter values are fixed at
α = 4, τ = 1000, ω0τ = −1, T = 1000. The standard deviationσ 2

1 is calculated from a sample of1i gathered during a 1000τ run after a
2000τ pre-iteration.

effect on the individual ECMs, so the regions of stable emission on the MGM gradually shrink and disappear as the
pumping is increased.

6. Discussion

We have presented a bifurcation analysis scheme that allows detailed exploration of the structure and properties
of the LFF regime in a semiconductor laser with delayed optical feedback based on the Lang–Kobayashi model.
The results show that LFFs can be either transient or sustained, depending on parameter values of the system. From
the dynamical approach, this can be easily understood. In typical situations, the LFFs are due to wandering of
trajectories of the system on a chaotic attractor, the Sisyphus attractor, that is created as the result of many crisis
events that convert small chaotic attractors associated with a hierarchy of external-cavity modes into nonattracting
chaotic saddles. The Sisyphus attractor is basically the dynamical union of all these chaotic saddles. The maximum
gain mode, on the other hand, can be a separate attractor that coexists with the Sisyphus attractor. Depending on
the basin structure of these attractors, LFFs can be either transient or sustained: they are sustained if the basins of
the two attractors are completely separated; and they are transient if the Sisyphus attractor collides with the basin
boundary and “invades” the basin of the attractor associated with the MGM. In the latter case, a trajectory starting
from the original basin of the Sisyphus attractor typically stays near the remains of this attractor for a finite period
of time and eventually asymptotes to the MGM attractor. This behavior is in good agreement with the experimental
observations [13,14], where parameter regions for both transient (coexistence of LFFs and stable emission) and
sustained LFFs were found.
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Exploring the dependence of the system behavior on the linewidth enhancement factor, we have observed three
different regimes, with transient LFFs more prevalent for lasers with smallerα. The reduction in “stability” of the
LFFs with decreasing linewidth enhancement factor can be understood from the fact that the Sisyphus attractor
exists because of the coupling between the ECMs. This coupling is induced by the large value of the linewidth
enhancement factor in semiconductor lasers, and its strength decreases for smallerα. These results are consistent
with recent experiments [23] that show the reduced region in parameter space of the sustained LFFs and the
broadened coexistence region (transient LFFs) for smaller values ofα.

We conclude this paper by mentioning several problems that are related to the control of semiconductor lasers.
First, if LFFs are sustained, how to apply control to induce escape of a trajectory from the Sisyphus attractor to
the stable emission attractor so as to eliminate the power-dropout events? Second, if the parameters of the laser
are such that LFFs are only a transient phenomenon, what is the typical distribution of transient lifetime? In cases
where the lifetime is extremely long, how to apply control to stabilize the laser? While there has been a tremendous
amount of work on control of chaotic dynamics [24–31] and on control of chaotic diode resonators [32,33], the
problem of controlling a semiconductor laser with optical feedback remains to be challenging due to the extremely
high dimensionality of the system.
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