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Abstract. In this paper, we numerically investigate the fraction of nonhyperbolic parameter 
values in chaotic dynamical systems. By a nonhyperbolic parameter value we mean a 
panmeter value at which there are tangencies between some stable and unstable manifolds. The 
nonhyperbolic parameter values are h p o m t  because the dynamics in such cases is especially 
pathological. For example, near each such parameter value, there is another parameter value 
at which there are infinitely many coexisting amctors. In particular, Newhouse and Robinson 
proved that the existence of one nonhyperbolic parameter value t y p i d y  implies the existence 
of an interval (‘a Newhouse interval’) of nonhyperbolic parameter values. We numerically 
compute the fraction of nonhyperbolic parameter values for the Henon map in Ihe parameter 
range .where there exist only chaotic saddles (i.e., nonamcting invariant chaotic sets). We 
discuss a theoretical model which predias the fraction of nonhyperbolic parameter values for 
small Jacobians. Two-dimensional diffeomorphisms with similar chaotic saddles may arise in the 
study of Poincar6 rem map for physical systems. Ow results suggest that (1) nonhyperbolic 
chaotic saddles am common in chaotic dynamical systems: and (2) Newhouse intervals can be 
quite large in the parameter space. 

AMS classifcation scheme numbers: 58Fxx 

1. Introduction 

Chaotic saddles (in the plane) are closed, bounded, nonattracting, chaotic invariant sets with 
a dense orbit such that each point of the set has a stable direction and an unstable direction 
[l]. Chaotic saddles arising in nonlinear dynamical systems can be either nonhyperbolic or 
hyperbolic. For hyperbolic chaotic saddles, all the angles between the stable and unstable 
directions are uniformly bounded away from zero. If the angles are not bounded away from 
zero, we say the chaotic saddle is nonhyperbolic. 

A fairly typical example of a chaotic saddle occurs in the forced damped pendulum 
system [Z] 

T Present address: Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, 
B3ltimore, MD 21205, USA. 
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Figure t For the forced damped pendulum system of equation (1). (a) the nonhyperbolic 
chaotic saddles A and B ,  and (b) the histogram of 1000 angles on the chaotic saddle A, that 
is, the angle between stable and unstable manifolds from a numerical mjectory of 1WO points 
lying on A. The minimum angle observed here 

dx 

about 0.01. 

2 = -0.2y -sinx +2cos(z) 
dt 
dz - = I  
dt 

For this system, the Poimar€ retum map has two ked point attractors and a number of 
chaotic saddles, two of which are shown in figure I@). Such sets are typically Cantor 
sets. We compute a trajectory on the chaotic saddle that is labelled A in figure l (a)  and 
at each trajectory point we compute the angle between the stable and unstable directions. 
Figure l(b) shows a histogram of the angle, which suggests that the chaotic saddle at 
this parameter value is nonhyperbolic because the minimum angle between the stable and 
unstable directions may be arbitrarily close to zero as one examines longer and longer 
segments of the trajectory. Whether it goes to zero is uncertain and further experiments are 
difficult because of the difficulty of making these computations for a system of differential 
equations. Maps such as the Hinon map are computationally much more tractable, and 
the errors in iterating are smaller. Fi,wes 2(a) and 2(b) show the chaotic saddle and the 
histogram of angles for the Hinon map: 

where a = 1.6 and b = 0.3. Figure 2(b) suggests that the chaotic saddle in this case is 
also nonhyperbolic. For the Hhon  map at a = 3.0 and b = 0.3, the chaotic saddle is 
hyperbolic, as suggested by figures 3(a) and 3@), where the minimum angle between the 
stable and unstable directions is about 0.57. Histograms like figures I(b) and 2(b) show a 
complicated structure without much regularity near .9 = 0. This irregularity persists even 
with much longer trajectories, that is, with much more data included in the histogram. This 
lack of regularity makes it impossible to extrapolate reliably to very small angles. 
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Figure 2. For the Henon map of a = 1.6 and b = 0.3, (a) the nonhyperbolic chaotic saddle, 
and (b) a histogram of 20000 angles on the chaotic saddle. 
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Figue 3. For the Hinon map of n = 3.0 and b = 0.3, (a)  the hyperbolic chaotic saddle, ;md 
(b) a histogram of 20000 angles on the chaotic saddle. Note that the angles are bounded away 
from 0. 

The objective of this paper is to examine how often nonhyperbolic chaotic saddles occur 
in nonlinear dynamical systems. Newhonse [3] and Robinson [4] proved that for a lar,:e 
class of two-dimensional dissipative dynamical systems, the existence of one nonhyperbolic 
parameter value implies the existence of an interval of such nonhyperbolic parameter values 
(we call such an interval a Newhonse interval). Hence, if we vary the parameters over 
an interesting finite range, the fraction of the set of nonhyperbolic parameter values is 
nonzero. We have developed an efficient numerical procedure to estimate this fraction 
of nonhyperbloic parameter values. Our computation suggests that this fraction is quite 
significant and, therefore, nonhyperbolic chaotic saddles &e apparently common in chaotic 
dynamical systems. Furthermore, our computation also suggests that the Newhouse intervals 
can be rather large in parameter space. We primarily investigate the Hinon map, in the 
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parameter range where there is no attractor. Although our computation is for the Henon 
map, we believe that nonhyperbolic chaotic saddles occur even more often in physical 
systems such as the forced damped pendulum system. 

There are many reasons why it is necessary to know how often dynamical systems 
are nonhyperbolic. (i) Since most of the results in the theory of dynamical systems have 
been proved for hyperbolic systems, it is desirable to h o w  whether a particular system 
we are dealing with is hyperbolic or not. For example, the shadowing lemma (which 
tells us whether there is a hue trajectory in the neighbourhood of a computer-generated 
trajectory) only holds for hyperbolic systems [5,6]. Indeed, shadowing is usually impossible 
for nonhyperbolic invariant sets. Another example is the unstable periodic orbit theory 
for multifractal characterization of chaotic systems [7] which only applies for hyperbolic 
systems. (U) For the application of particular numerical techniques to chaotic trajectories, it 
is often important to determine the extent to which the chaotic trajectories avoid tangencies 
between stable and unstable manifolds. For example, the computer-aided proof of the 
finite time shadowing property [%lo] for nonhyperbolic systems relies on the fact that the 
particular trajectory investigated avoids tangencies between stable and unstable manifolds. 
Another example arises in the context of noise reduction technique for chaotic systems, 
which is important in dealing with experimental data. An efficient noise reduction scheme 
discussed by Hammel [ll] for chaotic dynamical system depends on the trajectory being 
hyperbolic. For trajectory points near tangencies of stable and unstable manifolds, this 
scheme may yield results ,with dramatic errors. 

We now preview our method for determining the fraction and distlibution of the 
nonhyperbolic parameter values for the Hhon map. For each parameter (a. b)  of interest, 
we find a single trajectory on the chaotic saddle by using the 'PIM-triple' method [12] 
mentioned in the appendix. The chaotic saddles we examine are unstable. Trajectories near 
them tend to diverge rapidly. The PIM-triple method produces numerical trajectories of a 
map F, that is, I"+, = F(x,J + E,, where the errors E, move the trajectories back to the 
chaotic saddle (or more precisely, back to the stable manifold of the chaotic saddle). The 
resulting trajectory seems to be typical within the class of trajectories that remains near the 
saddle. For the H&on map, almost all trajectories diverge to 00 for most of the parameter 
values we examine. The chaotic saddle we see are 'relative' attracting, that is, they are 
attractors for the class of trajectories that remain bounded as n + W. Chaotic saddles 
which are not relative attractors may be common, but ul,ey cannot be seen by the PIM- 
triple method. In our experience with the Henon map, initializing the PJM-triple method 
differently produce different numerical trajectories that sketch out the same relative attractor. 
We note that the PIM-hiple method has a rigorous justification only for hyperbolic chaotic 
saddles [12]. 

We test the minimum angle between the stable and unstable directions along the 
trajectory on the chaotic saddle. Our numerical studies with multiple initial conditions 
indicate that the results do not depend on the initial point. We find that if one chaotic 
trajectory on the chaotic saddle is nonhyperbolic, then typically they all are. In general, the 
angle between the stable and unstable directions is defined as follows. Each point on the 
chaotic saddle has a stable direction and an unstable direction, which are the local tangent 
vectors of the stable and unstable manifolds of that point, respectively. We say s is the stable 
direction for a map T at x if there is a constant K < 1 such that IDT"(z)(s)l < K"lsl as 
n + 00. We say U is the unstable direction at z if IDT-"(z)(u)l < K"lul as n + 00. 

We let e(%, a, b)  E [O, q/2] be the angle between the stable the unstable directions at z, 
where I is a point of the invariant set. Note that for rare points x, it is possible for s 
and U to be identical so S(z, a, b) would be zero. For a trajectory x.+l = T(I", a. b), 

' 
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we define the lower bound of the angle to be ei,,,(x,,,a, 6) 5 infi=,,,l.z ..._, OITi(xg), a, b], 
where xo is the initial condition. Since we investigate only a finite number of iterates, 
we study B,(xo,o,, b, N )  = mini,o,l,z ,._.. ~e[T'(zO),a,bl .  While B[T'(xo),a, b] is the 
angle at a point, &(xo, a, 6, N )  is the minimum of the angle for ( N  + 1) points of the 
trajectory. ' Since our investigation indicates negligible dependence on initial data, we ignore 
the dependence of @&so, a, b)  or Bm(xor a, b) on the initial point xo and write Oior(a, b) 
or e,(a, b, N ) ,  where Oi,r(a, b) = 1imN-,-em(a, b, N). We beiieve that the procedure we 
have developed allows us to test with reasonable reliability whether 8 ~ ( a ,  b) is 0, despite 
the fact that we examine only upto lo7 iterates of a trajectory. Though uncertainties remain 
in individual cases, we feel we can reliably report the fraction of the parameter values 
studied that are nonhyperbolic. See section 4 for a discussion of our criterion. 

Our main results concern a study of the H6non map for an interesting set of parameter 
values (a, b). Specifically, we restrict b E (0,l). Given b, let a,@) be the crisis value, the 
value at which the main attractor is destroyed (the attractor collides With the basin boundary 
[l]), and let ah@)  be the 'last tangency value' so that for a z Uh(b), the chaotic saddle is 
hyperbolic. Figure 4(a) shows, schematically, the nature of various chaotic invariant sets 
in different ranges of parameter a for a given b value. Figure 4(b) shows the boundary of 
the parameter regime of interest [namely, the a;(b) and ah(b) curves]. We investigate a 
between ~ ( b )  and a,(b). In this interval, the fraction of nonhyperbolic parameter values 
for most values of b is larger than 0.2 and the m i m u m  length of the Newhouse interval is 
the order of IO-'. Wejirthennorefrnd that the nonhyperbolicfractwn of [ac, ah] tends to 1 
as b + 0. A theoretical model explaining the small b results is given in section 5. Our 
major result is shown in figure 5, where we plot the numerically calculated nonhyperbolic 
parameter values for b E (0, 1) and a E [U,(b),'ah(b)]. Altogether,.70000 parameter pairs 
(a, b) have been tested in the region shown in figure 4(b) between the curves aC and ah. 
Of them about 0.9% result in attractors. 

Chaohc Attractors 

or Stable 

Periodic Orbits 

IJI 

c- 

Chaotic Saddies ChaGtie Saddles 

(can be nonhyperbolic) (hyperbolic) 

Hyperbolic 
Chaotic 
Saddles 

0.6 2.0 3.4 4.8 6.2 
a 

Figure 4. Parameter regime that we investigate. (a) For a given b "due, the nahlre of vdous 
chaotic invariant sets in different ranges of a. (b) The panmeter boundaries of interest [the 
o,(b) and ah(b) curves]. For a i &(b), there are chaotic amctors, while for n > nh(b). the 
chaotic saddles are hyperbolic. 

The organization of this paper is as follows. In section 2, we briefly review the 
Newhouse lemma. In section 3, we describe our method to calculate angles between the 
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Figure 5. Hdnon map. set of parameter values with 
nonhyperbolic chaotic saddles. An average of 7W 
values of a were tested for each of I00 values of 
b. As discussed in section 4, about 33% of the 
nonhyperbolic parameter pain are missed and about 
1 I% are incorrectly platted (see section 4 for details). 
These ermm should have virtually no effect on the 
overall configuration shown above. The left and right 
edges of this set coincide with the curves shown in 
figure 4(b). 

Figure 6. The stable and unstable manifolds of a saddle 
point I,, for (a) II < PO. (b )p  = P O .  and ( e )  II > PO. 

stable and unstable directions for points on the chaotic saddle. In section 4, we discuss our 
criterion to detect the nonhyperbolic parameter values. In section 5 we present a theoretical 
model which explains why the nonhyperbolic fraction of [a,, ah] tends to 1 a? b goes to 0. 
In section 6, we present our results for the H h o n  map. 

2. The Newhouse lemma 

We consider the following one-parameter family of two-dimensional maps: 

Z"+l = z.(z"; P )  

where x is in the plane, f i  denotes the parameter to be varied and the function T is three- 
times continuously differentiable. We assume that T has a periodic point xp of period n, i.e., 
xp is invariant under the map 7': T"(z,, p) = xp. We assume that the periodic point z p  is 
a saddle point, i.e., the eigenvalues of the planar linear map DT(x,) satisfy Ihzl < 1 < Ihi I .  
Newhouse assumes lhlh21 < 1. The one-dimensional stable manifold of xpr S,, is the set 
of points y such that IlT"(y, p) - xpll + 0 as n + 00. The one-dimensional unstable 
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manifold of x p .  U,, is the set of points z such that llT-"(z, p) -xp[l + 0 as n + W. As 
the parameter p varies, S, can be tangent to U, at some PO. A typical situation is shown 
in figure 6. For p < PO, U,, is away from S,; for p = /LO, U, is tangent to S, at PO; and 
for p ,> /LO, U, intersects S,, transversally. Furthermore, if the following two conditions 
iiIe satisfied (i) the tangency is quadratic and (ii) the tangency is reached smoothly as /I 
varies through PO, i.e., the rate of approach of the two manifolds is bounded away from 
zero, then we say that the tangency of S, and U, for p = is nondegenerate. We call 
po a nondegenerate tangency value. For such nondegenerate tangencies, Newhouse [3] and 
Robinson [4] proved the following lemma: 

Let po be a nondegenerate tangency value for T .  Then for every E > 0 there is a 
nontrivial interval (positive length) I in (po - E ,  po + E )  such that I contains a dense set of 
nondegenerate tangency values. The interval I does not necessarily contain po. 

We call interval I the Newhouse interval. This lemma tells us that one nonhyperbolic 
parameter value implies the existence of an interval I of nonhyperbolic parameter values. 

3. Angle calculation 

In this section, we present our numerical method for calculating angles between stable and 
unstable directions for points on the chaotic set (which can be either a chaotic attractor 
or a chaotic saddle). The method is demonstrated with numerical examples for the Hinon 
map and for the forced damped pendulum system. We also discuss the convergence of our 
method. 

3.1. Numerical procedure for calculating the angle 

In order to detect whether a chaotic invariant set is nonhyperbolic or hyperbolic, the first 
step is to calculate the angles between the stable and unstable directions for points z 
along a trajectory on the chaotic set., Since in a i s  section, we calculate angles for a chaotic 
trajectory at fixed parameter values, we denote 9(x) = 9(x ,  a,  b ) .  Our numerical procedure 
for calculating the angles is as follows. First, we calculate a single orbit on the chaotic set 
either by directly iterating the map T' (for a chaotic attractor) or by using the PDd-triple 
method [12,13] for a chaotic saddle (cf., appendix). Second, we calculate the stable and 
unstable dEections for each point on the chaotic set. After we find the stable and unstable 
directions at the point x, we then choose 0(x) to be the smaller of the two angles defined 
by the two straight lines along the stable and unstable directions at z. Hence, we have 

In order to find the stable direction at the point x ,  we first iterate this point forward 
under the map N times and get a trajectory T'(x), T 2 ( z ) ,  . . . , T N ( z ) ,  as schematically 
shown in figure 7(a ) .  Now imagine we put a circle of radius E (with E arbitrarily small) on 
the point T N ( x ) ,  if we iterate this circle backward once, the circle will become an ellipse 
at the point T N - ' ( z )  with the major axis along the stable direction of the point TN-'(x) .  
We continue iterating this ellipse backwards, while at the same time keeping the ellipse's 
major axis of order E via some necessary normalizations. When we iterate the ellipse all 
the way back to the point x, the ellipse becomes very thin with its major axis along the 

0 < 0(x )  < np. 
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Figure 7. Schematic illushtion of our numerical method to calculate (a) the stable b c t i o n ,  
and (b) the unstable direction for a point x on the chaotic set. 

stable direction at point x. This is the basic idea to calculate the stable direction at point 

In practice, instead of using a small circle, we take a unit vector at the point fN(z )  
since the Jacobian matrix of the inverse map T-' rotates a vector in &e tangent space 
of T towards the stable dmtion.  Thus, we iterate a unit vector backward to point x by 
multiplying by the Jacobian matrix of the inverse map at each point on the already existing 
orbit. We normalize the vector after each multiplication to the unit length. For SuffcientIy 
large N ,  the unit vector we get at point a is a good approximation of the stable direction at 
x. A key point in the calculation is that we do not actually calculate the inverse Jacobian 
mahix along the trajectory by  iterating the point T N ( z )  backwards using the inverse map 
T-'. The reason is that if we do so, the trajectory will usually diverge from the original 
trajectory T N ( s ) ,  TN-l(z) ,  . . . , T1(z) after only a few backward interations. What we do 
is to store the inverse Jacobian matrix at every point of the orbit T'(x) (i = 1, . . . , N )  
when we iterate forward the point x beforehand. 

Similarly, as shown schematically in figure 7(b), to find the unstable direction for point 
I on the chaotic set, we first iterate x backward under the inverse map N times to.get a 
backward orbit T- j ( z )  with j = N, . . . , I .  We then choose a unit vector at point ThN(x)  
and iterate this unit vector forward to point z by multiplying by the Jacobian matrix of 
the map N times since the Jacobian matrix of the forward-map rotates a vector towards 
the unstable direction. We normalize the vector to the unit length at each step. The final 
vector at point z is a good approximation of the unstable direction at that point if N is large 
enough. Again, to avoid divergence from the original trajectory, we do not actually iterate 
the inverse map. What we do in this case is to choose x to be the end point of a forward 
orbit, all the points before a are the inverse images of e and we store the Jacobian matlix 
of forward map at those points. 

3.2. 'Numerical examples 

3.2.1. The Hhwn map. For the Hknon map of equation (Z), we fix b = 0.3 and vary a. First, 
we choose a = 1.4. For this parameter value, we have numerically verified that the map has 
a chaotic attractor. Figures S(a) and 8(b) show the stable and unstable directions of 2000 
points on the chaotic attractor, respectively. Both stable and unstable directions agree very 
well with the rigorous calculation of the stable and unstable manifolds at the corresponding 
trajectory points [14]. We then choose a large number of points on the chaotic attractor and 
calculate the angle between the stable and unstable directions at each point. Figure S(c) 
shows the histogram of angles for 20000 points on the attractor. Figure S(c) suggests that 
the chaotic attractor is nonhyperbolic because there exist points on the attractor at which 
the angles between stable and unstable directions are arbitrarily close to zero. 

5. 
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As we increase a from a = 1.4, a boundary crisis occurs at a, x 1.426 in which the 
chaotic attractor is destroyed [l] and transformed into &I invariant chaotic saddle for a > a,. 
Figure 2(a) shows the picture of the chaotic saddle at a = 1.6, which we calculated using 
the PIM-triple algorithm. Figure 2(b) shows the histogram of 20000 points on the chaotic 
saddle for a = 1.6. Figure 2(6) is suggestive that there exist tangency points of stable and 
unstable manifolds. Hence, the chaotic saddle at a = 1.6 is nonhyperbolic. 

A hyperbolic chaotic saddle can be obtained if we choose a = 3.0. Figre 3(u) shows 
the chaotic saddle at a = 3.0. Figures 3(b) shows the angle distribution for 20000 points on 
the chaotic saddle. It is clear from figure 3(b) that the angles of all the points considered are 
bounded away from zero and the minimum angle of these 20000 angles is approximately 
0.57. , .  

3.2.2. The forced dmpedpendulum system. The forced damped pendulum system is given 
by equation (1). It is known that 121 for this set of parameter values, the time2z map has 
two stable fixed points and several invariant chaotic saddles, two of which are in the basins 
of these two fixed points and are shown in figure l(a) (denoted.by A and 5). We take the 
Poincar.4 surface of section at t = 2nz, n = 0,1,. . ., andwe  the PIM-triple method to 
calculate those chaotic saddles. 
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The evolution of an infinitesimal tangent vector of a set of N first order differential 
equations: 

Fi(x,,xz,. . . , xn)  i = 1,2,. . . , N (4) 
&i 
dt 
-= 

is given by: 

where DF(x) is the N x N Jacobian matrix with the following matrix elements: 

We solve equations (4) and (5) by using the fourth order Runge-Kutta algorithm. We 
then calculate the local stable and unstable directions for 1000 points on each chaotic saddle 
A and B in figure l(a). Figure l(b) shows a histogram of 1000 angles on the chaotic saddle 
A.  From figure l(b), apparently there exist angles approaching zero. The histogram of 
angles on the chaotic saddle B has similar behaviour. Therefore, both chaotic saddles for 
this set of parameter values for the forced damped pendulum system are nonhyperbolic. In 
fact, if one chaotic saddle is nonhyperbolic, the other must also be nonhyperbolic due to 
the symmetry [t + t + x, z + t + r, x + -XI in the equations. 

3.3. Convergence rate 

In this subsection, we brie0y discuss the convergence rate of our method for calculating the 
angle. To calculate the local stable (unstable) direction for a point x on the chaotic set, we 
need to iterate forward (backwad) this point N times to the point T N ( x )  [ T N ( x ) ) ]  and 
then iterate a unit vector backward (forward) to point x by evolving the Jacobian matrix. 
In our subsequent numerical experiments, we use N = 100. As we will explain below, 
N = 20 is quite adequate. Let AB? (ABy(x)) be the error between the calculated unit 
vectors at point x and the local stable or unstable direction at x. By convergence rate we 
mean the average rate at which the error decreases as N increases. The average is over an 
ensemble of unit vectors, where one vector is calculated at each x, for a large number of 
x values chosen with respect to the natural measure on the chaotic set. More specifically, 
we have 

A B y  = AB0 exp(--G,,"N) (6) 
where 6, and 6, are the convergence rates for stable and unstable directions, respectively, 
and AB0 is the error in the initial angle. 

Figures 9(a) and 9(b)  show the dependence of AB; and AB; on N on a semi-logarithmic 
scale, where the average is over 1000 points on the chaotic saddle for the H6non map at 
a = 1.6 and b = 0.3. With N = 10, the error in the stable direction is about e-" - 
While with N = 20, the error is about IO-'. The convergence rates for the stable direction 
8, and for the unstable direction 8. are approximately 2.13 f 0.02 and 2.07 & 0.02 (least 
square fit), respectively. We have also'calculated the convergence rate for particular points 
x near tangencies of the stable and unstable manifolds to verify the applicability of our 
numerical method in this case. For instance, for a point x near such a tangency in which 
the angle B between the stable and unstable manifolds is less than 1.91 x we found 
that 6, = 2.54 z t  0.01 and 6, = 2.15 & 0.02. Therefore, we conclude that our method for 
calculating the angle converges quickly both for typical points on the chaotic set and for 
points near tangencies of stable and unstable manifolds. 

' 



How often are chaotic saddles nonhyperbolic? 789 

I , , , ,  

3 12 15 18 21 
N N 

Figure 9. For the Henon map of a = 1.6 and b = 0.3, the average error over 1000 points on 
the chaotic saddle versus the number of iterates in calculating (a) the stable direction, and (b) 
the unstable direction. 

4. Criterion for detecting whether the minimum angle is zero 

In this section, we establish a criterion for detecting whether the lower bound angle E+&, b) 
for a particular parameter value (a, b) is zero for the Hhon  family. The parameter regime 
of (a, b) is shown in figures 4(a) and 4(b). For the 70000 pairs (a, b) tested (cf. figure 5), 
only about 0.9% are attractors. For the rest, the PIM-triple method is used to generate a 
numerical trajectory. Figure 10 shows the minimum angle &(a, b, N )  versus a forb = 0.3, 
where we use N = IO4 iterates for each of the 10000 tested values of a. In figure 10, 
the diamonds plotted at height 0.5 denote parameter values at which there exist attractors. 
Typically, for a > a,, the basins of these amactors ate small and these attractors only occur 
in small parameter intervals 1151. 

,. . .  , .  

Figure 10. H h o n  map with b = 0.3, a plot of the 
minimum +@e &(a, b, N) versus a, where we use 
N = lo4 iterates for each of the 10 000 tested values of 
a. Thne diamonds platted at height 0.5 denote parameter 

1.4 1.9 2.4 2.9 3.4 3.9 4.4 values at which there exist atuactors. Of these 10000 
tested a values, about 1% result in amacto~.  a 

Our goal is to detect whether the angles &(a, b, N )  tends to zero as N + W. We of 
course exclude the attractors from consideration. We calculate &(a, b, N) for N = lo4. If 



I90 Eng-Cheng Lai et a1 

this minimum angle is small enough, it is likely that the chaotic saddle is nonhyperbolic 
and, hence, @,(a, b, N )  will likely go to zero as N + CO. The result of increasing the 
number of iterates is shown in figures l l ( a )  and l l (b) ,  where b = 0.3, a E [1.46.1.51], 
N = lo4 and I@ for figure ll(a) and figure ll(b), respectively. On the other hand, if 
@,(a, b, N )  is not small, then the chaotic saddle is more likely to be hyperbolic. In the 
hyperbolic case, it is likely that @,(U, b, N )  will not decrease even if we increase N .  

0.008 

0.006 

0.008 7 
1 1 0.006 

U- 
0 
3 

2 0.004 - & 0.004 

E a 6 a 
0,002 0.002 

0.0 0.0 
1.46 1.47 1.48 1.49 1.50 1.51 1 

a 

L 

,, , I 

1.47 1.48 1.49 1.50 1.51 
a 

Figure 11. The effect of increasing the number of iterates on the minimum angle. Forb = 0.3 
and a E 11.46, 1.511, &(a, b, N )  versus n for (a) N = lod, and (b) N = los. 

We need to establish a criterion for deciding that a pair (a ,  b)  is nonhyperbolic in order 
to estimate the fraction of dl pairs between a, and ah that are nonhyperbolic. Whatever 
criterion we propose, we will have errors, both including some that should not be included 
and excluding some that should he included. Our criterion will be of the following form. 
We choose a value and count the pair as nonhyperbolic if @,(a, b, lo4) < @dt. 

Fractio* 

Passing 

0.4 

0.2 

0 
105 Figure U. The fraction of parameter values 

that pass the ten-times-improvement lest versus the 
minimum angle %,(a, b, le). 
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lo-*) 
into 12 subintervals and for each subinterval we randomly select 50 pairs (a, b) (from ow 
data base) having B,(a, b, 104) in that subinterval. We now determinet if &,(a, b, 10') i 
#,(a, b ,  lo4). If yes we say that the pair (a ,  b )  passes a ten-times-improvement test. 
We believe that those passing the ten-times-improvement test are extremely likely to be 
nonhyperbolic (although we are unable to prove that the chaotic saddle is not hyperbolic with 
extremely small minimum angle), while almost all those failing are presumably hyperbolic. 
Figure 12 shows essentially that the smaller O,(a, b, 104) is, the more likely (a, b)  is to 
pass this test. Based on figure 12, we use the following criterion: 

Is such a test reasonable? As shown in figure 12, we devide the interval 

Given aparameterpair (a, b )  of the Hinon map, ifthe minimum angle between the stable 
and unstable manifold8 chosen among a trajectory of lo4 iterates is less than e,, = 0.002, 
then the chaotic saddle is counted as nonhperbolic: 

Based on the ten-times-improvement test, the above stated 0.002 criterion for the 
detection of the nonhyperbolic parameter values has 33% false negative and 11% false 
positive. That is, of these parameter pairs counted as hyperbolic, about 33% are actually 
more likely to be nonhyperbolic, while of those pairs counted as nonhyperbolic, about 
11% are more likely to be hyperbolic. Notice that the ten-times-improvement test is too 
computationally intensive to be used except for the small number of test cases shown in 
figure 12. We believe that our numerical studies establish for example that the fraction of 
nonhyperbolic parameter values for a, < a < ah varies kom 0.2 (for b z 0.25) to 1 (for b 
approaching 0). S e e  section 6 for details and section 5 for a theoretical argument predicting 
this result. 

5. Theoretical model for the fraction of nonhyperbolic parameter values for small b 

In this section we develop a theoretical model which predicts that the fraction of parameters 
in the range between a ,  and ah, for which the chaotic saddle is nonhyperbolic, converges to 
1 as the Jacobian b goes to 0. This is a probabilistic model which equates the probability 
that a particular parmeter is nonhyperbolic to the probability of unbounded growth in a 
stochastic 'birth-death' process. Integration of this probability over the parameter range of 
interest then gives f, the expected fraction of nonhyperbolic parameter values. 

Some facts concerning the geomeQ of the Hinon map are as follows. There are 
two fixed points Q and p as shown in figure 13(a). For parameters a below a,.every point 
sufficiently close to Ua(p), the unstable manifold of p ,  is attracted to U&). For parameters 
above a, a subset of U,@) limits on the left branch of U,(q) and under iteration goes to 
infinity. A parameter value is hyperbolic if all the 'bends' in the curves comprising the 
closure of lJ,(p) go to~infinity under iteration. If some of these bends do not iterate to 
infinity then the parameter is nonhyperbolic or there are small bounded attractors. (Since 
the measure of the set of parameter values for which there exist these small attractors is 
believed to be,negligibly small [15], in this section we ignore the possibility for those 
small attractors. In fact, as we will demonstrate later, the estimate of the fraction of 
nonhyperbolic chaotic saddles so obtained in this section agrees reasonably~ well with our 
numerical computations.) There are a Cantor set of such bends. These bends are~the points 

Note that for nonhypmbok chaotic saddles. shadowing may fd after N - E-'/' iterates, where E is the machine 
precision [S-IO]. In OUI computation we use E - IO-", so the maximum number of iterates for which we can 
make reliable computation is ,about IO'. 
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Y 

, .  

x 

Figure 13. Forthe Henon map with a = 2 and b = .3. (=)The fixed points p and q, the curve 
e. the unstable manifold of p .  and the U-shaped pordon of the stable manifold of q are shown 
for the Hhon  map when a = 2 and b = 0.3. (b) An enlargement of the small box. 

at which maximum bending of the curves of the closure of U,@) takes place under further 
iteration and are the analogue of critical points in one-dimensional maps. From here on they 
will be called the critical points C. This definition is rather vague, particularly when the 
chaotic saddle is nonhyperbolic, for a precise technical definition one should see the work 
of Benedicks and Carleson [16] (although they apply this concept to the case of chaotic 
amactors). 

The critical points lie on a curve 1 as drawn in figure 13. Thus the set of critical points 
C is (at least when the chaotic saddle is hyperbolic) the intersection of the curve L with 
the closure of U,@). To a first approximation this is a Cantor set with hi" pieces of size 
hz", where hl and hz are the two Lyapunov numbers for the chaotic saddle. We fix our 
parameter b to be a small positive number and our parameter a to be between a, and ah. In 
this parameter range the two Lyapunov numbers for the,chaotic saddle are approximately 

The behavior of the critical points under iteration can be seen as follows. Those critical 
points which on some iteration lie outside the U-shaped region bounded by the part of the 
stable manifold &(q) depicted in figure 13(a) will limit on the left branch of UJq) under 
iteration and thus go to infinity. Critical points which are sufficiently close to each other 
so that on a given iteration they can all fall to the right of S,(q) in the small box depicted 
in figure 13(a) are treated as efectively one critical point for that iteration. As the critical 
points are iterated, on the average they locally separate at an exponential rate close to ln(h1). 
These critical points are originally more or less a Cantor set with hi" m 2" pieces of size 
hz" % (4,". Consider a piece of size (b/2)", after n(ln2 - In b)/(ln 2) iterations its size has 
lenghened to be of order 1. So we see that the number of effective critical points grows at 
an exponential rate of (In 2)2/[ln2 - lnb]. If a representative critical point contained in an 
effective critical point lies to the right of &(q) in the small box on a given iteration, we 
assume that all the critical points in that effective critical point likewise lie to the right of 
Sa (4) and on further iteration go to infinity. 

We now describe the 'birth-death' process which we use to heuristically estimate the 
probability that the parameter a is nonhyperbolic. Since the number of effective critical 
points grows at an exponential rate of approximately (lnZ)*/(ln2 - Inb) and for small b 
values this rate is small, we assume that on any given iteration each effective critical point 

hi % 2 and AZ % 4. 
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has a probability of order (ln2)'/[1n2 - Inb] of stretching into two effective critical points 
(birth). In addition, we assume, on each iteration, that each effective critical point which 
has not yet fallen outside of the U-shaped region will fall along a curve of U&) in a 
random place inside the union of the U-shaped region and the small box. Therefore, since 
the parabolic curves comprising the part of Ua@) in the small box have lengths of order a, we have that on any iteration each effective critical point has probability of order 
a ~ o f  falling outside of the U-shaped region (death). So, for each effective critical 
point there is a probability of 1 minus a term of order + (In2J2/[ln2 - Inb] that 
the effective critical point neither stretches into two effective critical points nor falls outside 
of the U-shaped region. We assume that each effective critical point behaves independently 
of all other effective critical points on each iteration, and thus this is a classic 'birth-death' 
process. 

We now calculate G, the probability that the effective critical points all eventually iterate 
to infinity given that we start with exactly one effective critical point (that is, we calculate 
the probability that the parameter is hyperbolic). Since we assume that each effective critical 
point behaves independently of all others on each iteration, we see that the probability that 
the effective critical points all eventually iterate to infinity given that we start with exactly 
fwo effective critical points is G2. Also, the probability that a given effective critical point 
stretches into two before it falls outside the U-shaped region is of order 

(1112)' 
(1112)~ + (In2 - 1 n b ) a '  

H =  

Using conditional probabilities, we can write G = (1 - H )  + HG2, which we solve to find 
the probability that 

s. (1 - ~ H )  ln2-Inb 
H (In 2)2 

G=-- . -  

We now estimate the fraction of hyperbolic parameter values between a, and ah by 
averaging ( w a )  for parameters a between a, and ah, bearing in mind that 
ah - ac is of order b. That is, we compute 

& 2(ln 2 - In b) 
f i d n  = : lb ln&;: 3(1112)~ 

and thus the fraction of hyperbolic parameter values is of order -&ln($). Since the limit 
as b decreases to 0 of -&In($) is 0, we see that the predicted fraction of hyperbolic 
parameter values goes to 0. Therefore, the predicted fraction of nonhyprerbolic parameter 
values goes to 1 as b goes to 0. Figure 15(b) illustrates the numerical evidence which 
supports the contention that the nonhyperbolic fraction goes to 1 as b goes to 0. 

6. Conclusions: fraction of nonhyperbolic parameter values and the sue of Newhowe 
intervals 

Based on the criterion in section 4, we have calculated the nonhyperbolic parameter values 
(a, b) for b E (0, 1) (IJ = b) and a E [a,(b),ah(b)] of the Hinon map. The result is 
shown in figure 5, where the dots denote the nonhyperbolic parameter values. The fraction 
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Figure 14. Fraction of nonhyperbolic parameter values 
versus lJI(= b) fora&) c a <ah@).  Note thatforall 
the IJI values considered. the fraction of nonhyperbolic 
parameter values is larger than 0.2. We have not plotted 
the fraction when IJI < 0.03. See next figure for the 
range 0 c IJI c 0.03. 

Figure 15. (a) Nonhyperbolic parameter values for 0 c IJI c 0.03 and n, c a < ah. (b)  me 
fraction of nanhypeholic parameter values for small Jacobian (0 c IJI c 0.03). Note that the 
fractions are close to one. The continuous curve in the figure derives from a heuristic argument 
of section 5 for small Jacobian. 

of nonhyperbolic parameter values for b E (0, 1)  is shown in figure 14 where we see that 
for each value of b considered, at least 20% of the parameter pairs tested are nonhyperbolic 
for a&) < a  < ah@). 

The most striking feature of figure 14 is that for small values of the Jacobian, the fraction 
of nonhyperbolic parameter values is close to one. Figure 15(a) shows the nonhyperbolic 
parameter values for 0 < JJI < 0.03 and a, < a < ah. Figure 15(b) shows the fraction 
of nonhyperbolic parameter values for 0 < IJI < 0.03. Based on our numerical studies 
and the heuristic argument in section 5 ,  we conjucture that the fraction of nonhyperbolic 
parameter values tends to 1 as I J I + 0. 

Figures 16(a) and 16(b) show the distribution of our calculated Newhouse intervals 
with length larger than 0.02 and 0.04, respectively. For each b ,  an interval is plotted if all a 
in that interval tested positive and the length of the inteval is at least 0.02 [figure 16(a)] or 
0.04 [figure 16(b)]. We have also calculated the maximum Newhouse intervals for all the b 
values considered. We find that the maximum Newhouse interval is large (about 0.12). This 



How often are c b t i c  saddles nonhyperbolic? 795 

1 

b 

a 
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a 

Fiyre 16. Computed Newhouse intervals with (a) length > 0.02, and (b)  length =- 0.04, 

is surprising because it was believed previously that the Newhouse intervals are typically 
small 1171 (of order 

While it is important to estimate the size of Newhouse intervals, we cannot guarantee 
that what appears to be a Newhouse interval is one in fact. We studied two values of b in 
detail, b = 0.3 and b = 0.7. Our procedure is as follows. Given a value 6 ,  we choose a 
grid of 700 values of a in (ac, ah). For each a we compute &,(a, N = IO4). We choose 
the largest interval for which all the tested a values are nonhyperbolic according to our 
criterion discussed in section 4. We call this interval an ‘apparent Newhouse interval‘. 
Obviously there could be small undetected gaps of hyperbolic parameter values in such an 
interval. To increase the plausibility of our suggestion $at we actually have a Newhouse 
interval, we decrease the grid size by a factor of 10 in the apparent Newhouse interval. We 
then use the criterion discussed in section 4 to test whether the new parameter values are 
also nonhyperbolic. If one of these values should fail the test, we perfonn the ten-times- 
improvement test for this parameter value. In other words, we compute further upto lo7 
iterates of the map to see whether the minimum angle can be ten times smaller than that 
obtained using lo4 iterates. Some parameter values that fail our criterion would still fail 
the ten-times-improvement test. Hence, they are apparently hyperbolic parameter values. 
However, we found those values to be always near the ends of the apparent Newhouse 
interval. Thus, our testing procedure only results in small decreases in the length of the 
apparent Newhouse interval. 

Reader beware. We predict that more rigorous investigation will validate our numerical 
findings that nonhyperbolic chaotic saddles are common, especially for small Jacobian. 
Nonetheless, chaotic saddles can have complicated structure on many different scales and 
this complexity is hinted at by the histograms of angles shown in figures l(b) and 2(b). 
Therefore, there is currently no rigorous assurance of the reliability ofour estimate of the 
fraction of nonhyperbolic pareeter values. 
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Appendix. PIM-triple method 

In this appendix, we briefly describe the PIM-triple method [12,13] to find a trajectory on 
chaotic saddles existing in a given region for a diffeomorphism F : R2 -+ R2. A PIM- 
(Proper Interior Maximum) triple is three points (a. c, b) in a straight line segment L such 
that the interior point c (i.e., c is between a and b) has an escape time (time for leaving the 
region) that is larger than the escape times of both a and b, that is, (a, c, b) has a proper 
interior maximum. 

The steps of the PIM-triple procedure are as follows: 
1. Specify a region of interest. If there is (are) attractor(s) coexisting in the region, 

isolate the attractor(s) with circles of appropriate radii. If a trajectory asymptotes to any 
attractor, this trajectory is considered to have escaped from the region. 

2. Choose a line segment LO in the above region that straddles the stable manifold of 
the chaotic saddle. Distribute uniformly a number (say, 30) of points on the line segment 
and calculate the escape time for each point. Choose any PIM triple (a, c, b) from the 30 
points (Do not include both end points of the original interval). In principle, the number 
30 may have to be increased but that was not necessary in this study. There are often 
many PIM-triples that can be selected. One PIM-triple can be chosen at random, or one 
can choose one systematically, choqsing c to have the largest escape time. 

3. It is known [12] that PIM-triple trajectories in the plane can be generated for 
arbitrarily many iterates, that is for n (the length of the trajectory) as large as desired. For 
nonhyperbolic systems, we occasionally encounter a segment L, that has no PIM-triple. In 
this case, we back up to, say, L,-s and choose a different PIM-triple. 

4. Use the PIM-triple as the new line segment and repeat step (2) until the length of 
the PIM-triple so obtained is less than, say, (denoted by IO). Write IO = R(L& that 
is, IO is our refined LO. 

5. Iterate the end points of IO forward under the map. The two images are end points 
of a new segment denoted by L1. If the le& of L1 exceeds we apply step (3) until 
its length is less than and we then replace L1 by R(L1). 

6. Repeat step (4) to find a sequence of PIM-triple intervals [L,],,o. 
7. Write z, for the midpoint of L.. It follows that 0,+1 = F(z,) + E,, where E, is 

typically on the order of 
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