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INTRODUCTION
An outstanding problem in the field of
complex dynamical systems is to con-
trol non-linear dynamics on complex
networks. Indeed, the physical world in
which we live is non-linear, and com-
plex networks are ubiquitous in a vari-
ety of natural, social, economical, and
man-made systems.Dynamical processes
on complex networks are thus expected
to be generically non-linear. While the
ultimate goal to study complex systems
is to control them, the coupling be-
tween non-linear dynamics and complex
network structures presents tremendous
challenges to our ability to formulate ef-
fective control methodologies. In spite
of the rapid development of network
science and engineering toward under-
standing, analyzing and predicting the
dynamics of large complex network sys-
tems in the past 15 years, the problem
of controlling non-linear dynamical net-
works remains to be outstanding.

Control of non-linear dynamical
systems
Controlling chaos in non-linear dynam-
ical systems has been studied for more
than two decades since the seminal work
of Ott, Grebogi, and Yorke [1]. The ba-
sic idea was that chaos, while signify-
ing random or irregular behavior, should
not be viewed as a nuisance in applica-
tions of non-linear dynamical systems. In
fact, given a chaotic system, that there
are an infinite number of unstable peri-
odic orbits embedded in the underlying
chaotic invariant set means that there are
an equally infinite number of choices for
the operational state of the system de-
pending on need, provided that any such

state can be stabilized. Then, the intrinsi-
cally sensitive dependence on initial con-
ditions, the hallmark of any chaotic sys-
tem, implies that it is possible to apply
small perturbations to stabilize the sys-
tem about any desirable state. Control-
ling chaos has since been studied exten-
sively, and examples of successful exper-
imental implementation are abound in
physical, chemical, biological, and engi-
neering systems [2]. The vast literature
on controlling chaos, however, has been
limited to low-dimensional systems, sys-
tems that possess one or a very few unsta-
ble directions (i.e. one or a very few posi-
tive Lyapunov exponents). Complex net-
works with non-linear dynamics are gen-
erally high dimensional, rendering inap-
plicable existing methodologies of chaos
control.

Linear controllability of complex
networks
In the past several years, a framework
for determining network controllability
based on control and graph theories
emerged [3–5], leading to quantitative
understanding of the effect of network
structure on its controllability. For ex-
ample, a structural controllability frame-
work was proposed [4], revealing that
the ability to steer a complex network to-
ward any desired states, as measured by
the minimum number of driver nodes,
is determined by the set of maximum
matching, which is the maximum set of
links that do not share starting or end-
ing nodes. A main result was that the
number of driver nodes required for full
control is determined by the network’s
degree distribution [4]. The framework
was established for weighted and di-
rected networks. More recently, an alter-

native framework, the exact controllabil-
ity framework, has been formulated [5],
which is based on the principle of max-
imum multiplicity to identify the min-
imum set of driver nodes required to
achieve full control of networks with ar-
bitrary structures and link-weight distri-
butions. The deficiency of such rigorous
mathematical frameworks of controlla-
bility is that the nodal dynamical pro-
cesses must be assumed to be linear.
Even for linear dynamics, when a com-
plex network is controllable according to
themathematical controllability theories,
often the actual controlwould require un-
reasonably large amount of energy, rais-
ing the serious issue of physical control-
lability of complex networks. For non-
linear nodal dynamics, the mathemati-
cal framework on which the controllabil-
ity theories are based, namely the clas-
sic Kalman’s controllability rank condi-
tion [6, 7], is not applicable. While con-
trollability for non-linear control can be
formulated based on Lie brackets [8],
it may be difficult to implement the ab-
stract framework experimentally for com-
plex networks. To control non-linear dy-
namics on complex networks is at the
present an outstanding and challenging
problem.

PERSPECTIVE OF CONTROLLING
COMPLEX, NON-LINEAR
DYNAMICAL NETWORKS
That chaos control can be done for low-
dimensional systems and controllabil-
ity theory of complex networks is lim-
ited to linear dynamics calls for dras-
tically different approaches to control-
ling non-linear dynamics on complex
networks. While there have been pre-
vious works on specific control meth-
ods such as pinning control [9–11] and
brute-force control that relies on alter-
ing the state variables of the underlying
system that in realistic situations can be
difficult to implement, a general frame-
work for actual control of complex net-
works with non-linear dynamics through
realistic, physical means has not been
achieved. The main difficulty in this field
lies in the extremely diverse non-linear
dynamical behaviors that a network can
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generate, making it practically impossi-
ble to define generalmathematical frame-
work for control. Our idea is that, in
the formulation of control of non-linear
networked systems, a physically mean-
ingful approach may not require de-
tailed control of all state variables. Po-
tentially, this would enable us to develop
a general framework of controllability of
non-linear dynamical networks based on
physical/experimental considerations.

The general philosophy underlying
our idea is the fact that the traditional
control theoretical tools for linear dy-
namical systems aim to control the de-
tailed states of all of the variables, which
is in fact an overkill for most systems. A
common feature of non-linear dynamical
systems is the emergence of a large num-
ber of distinct, coexisting attractors [12].
Often the performance and functions of
the system are determined by the par-
ticular attractor that the system has set-
tled into, to which the detailed states of
the dynamical variables are not relevant.
The key is thus to develop control princi-
ples whereby we nudge a complex, non-
linear system from attractor to attractor
through small perturbations to a set of
physically or experimentally feasible pa-
rameters. Here, we wish to convey the
message that a controllability framework
can be developed for non-linear dynam-
ical networks based on the control of at-
tractors.

Todescribe generally howcontrol can
be articulated and implemented,we recall
that the reason for control is that the cur-
rent system is likely to evolve into an un-
desirable state (attractor) or the system
is already in such a state, and one wishes
to apply perturbations to bring the sys-
tem out of the undesirable state and steer
it into a desirable state. The first step is
then to identify a final state or attractor
of the system that leads to the desirable
performance. The next step is to choose
a set of experimentally adjustable param-
eters and determine whether small per-
turbations to these parameter can bring
the system to the desirable attractor.That
is, under physically realizable perturba-
tions there should be a control path be-
tween the undesirable and the desirable
attractors. The path can be directly from
the former to the latter, or there can be

intermediate attractors on the path. For
example, due to the physical constraint
on the control parameters and the ranges
in which they can be changed, one can
drive the system into some intermediate
attractor by perturbing one set of param-
eters, and then from the intermediate at-
tractor to the final attractor by using a
different set of parameter control. For a
complex, non-linear dynamical network,
thenumberof coexisting attractors canbe
large. Given a set of system performance
indicators, one can classify all the avail-
able attractors into three categories: the
undesirable, desirable, and the interme-
diate attractors. We say a non-linear net-
work is controllable if there is a control
path fromanyundesirable attractor to the
desirable attractor under finite parame-
ter perturbations. Regarding each attrac-
tor as a node, and the control paths as
directed links or edges, we can construct
an ‘attractor network’, whose properties
determine the controllability of the origi-
nal networked dynamical system. For ex-
ample, the average path length from an
undesirable to a desirable attractor and
the ‘control energy’ (or the amount of
necessary parameter perturbations) can
serve as quantitative measures to charac-
terize the controllability of the original
network.

CONSTRUCTION OF ATTRACTOR
NETWORKS
Given a non-linear dynamical network,
the attractor network can be constructed,
as follows. We first identify all possible
asymptotic states, or attractors, of the sys-
tem. We then choose a set of system pa-
rameters that can be perturbed. Setting
the system in a specific attractor i, for a
reasonable combination of adjustable pa-
rameters, we can determine the set of at-
tractors into which the system can evolve
from the original attractor i. Effectively,
under the given set of parameters, there
is a link from attractor i to any of the new
attractors after the parameter perturba-
tions. Repeating this procedure for all at-
tractors in the system, we build up an at-
tractor network that provides a blueprint
for driving the whole networked system
from any attractor to any other attrac-

tor in the system, assuming at the time
the latter attractor would lead to desir-
able function of the system as a whole. All
these can be done using small perturba-
tions. We have obtained preliminary ev-
idence, using a class of gene regulatory
networks (GRNs) of increasing size, that
our idea of attractor network is effective
and represents an innovative, experimen-
tally implementable way to control non-
linear dynamical networks.

The idea of attractor network provides
a realistic framework to control non-
linear dynamics on complex networks.
Strikingly, it leads to another counterin-
tuitive idea that control can be benefited
fromnoise. In particular, more than three
decades of intense research in non-linear
dynamical systemshas led to great knowl-
edge about the role of noise, in terms
of phenomena such as stochastic reso-
nance, coherence resonance, and noise-
induced chaos [12], etc. Common to all
these phenomena is that a proper amount
of noise can in fact be beneficial, for ex-
ample, to optimize the signal-to-noise ra-
tio, to enhance the signal regularity or
temporal coherence, or to facilitate the
transitions among the attractors. Since
the foundation of our method is control
paths in the attractor network that char-
acterizes how ‘easy’ or ‘difficult’ for the
system to transition from one attractor to
another, we speculate that, under a given
set of physical control parameters and
given rangeof parameter variations, noise
can facilitate the transition process, lead-
ing to the emergence of control paths that
were previously not possible or to more
favorable control paths with less energy
requirement. The inevitable presence of
noise in any realistic system and the pos-
sibility that noise has the potential to
greatly facilitate the control of non-linear
dynamical networks open up a new av-
enue to harness complex, non-linear net-
worked systems in realistic applications.

To demonstrate these ideas, we
have carried out detailed studies using
small non-linear networks at Arizona
State University. The models include
a two-node GRN with four coexisting
attractors and a three-node GRN with
eight attractors, both being derived from
experiments. We identify the coupling
strengths as control parameters, because
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they can be experimentally adjusted by
applying targeted drugs. Under the con-
straint that the control parameters can
be perturbed in given ranges, attractor
networks are constructed, providing
complete information about the feasi-
bility of driving the system from one
attractor to another and consequently a
quantitative understanding of the con-
trollability of the underlying network.
There is also preliminary evidence that
noise can enhance the controllability
significantly.

CONCLUSION
The ability to control complex networks
is of uttermost importance to many criti-
cal problems in science and engineering,
and has the potential to generate great
technological breakthroughs. We argue
that it is possible to develop a controlla-
bility framework for complex, non-linear
dynamical networks based on the idea
of attractor networks. For the field of
complex dynamical systems, the frame-
work will lead to landscape changes, rev-
olutionizing our ability to control the
systems. Another field that will benefit
tremendously from this is systems and
synthetic biology, where a basic problem
is to control GRNs. To be able to control
complex, non-linear networks will also
have significant impacts on fields such
as computer networks,wireless networks,
cybersecurity, biological networks, and
even social and economical networks.

Our framework of attractor networks
has the appealing features that (a) it is
applicable to non-linear dynamical net-
works in general, (b) the attractor net-
work can possess quite simple structure
even for large, complex networks, and
(c) noise can enhance the controllabil-
ity.The benefit of noise, while counterin-
tuitive, has its origin in well-known phe-
nomena in non-linear dynamical systems
such as stochastic resonance and coher-
ence resonance.There are, however, diffi-
culties with the attractor network frame-
work. For example, for large networks the
construction of an attractor network may
be quite challenging—the scalability is-
sue. In addition, the structure of the at-
tractor network in general depends on
the system parameters. While we empha-
size the need to focus onphysicallymean-
ingful and experimentally accessible pa-
rameter perturbations, there can still be
a large number of attractor networks de-
pending on the parameters, making it
difficult to formulate a rigorous mathe-
matical framework.We believe that these
issues can and will be satisfactorily ad-
dressed in the near future, finally realizing
the grand goal of controlling non-linear
dynamical networks.
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Theoretical progress and practical
challenges in controlling complex networks
Yang-Yu Liu1,2

The issue of control has gained signifi-
cant prominence in engineering, useful
for aircraft control, manufacturing pro-
cesses, communication systems and so

on. Yet, the control of complex networks
was barely studied, as we lack powerful
theories to address it in a quantitative
fashion.

Fair recently, considerable efforts
were made to address the controllability
issue of complex networks [1]. As a
key notion in control theory, control-
lability concerns our ability to drive a
dynamic system from any initial state to
any final state in finite time [2], which
agrees well with our intuitive notion of
control. To model complex networks
as dynamic systems, we normally adopt
the so-called nodal dynamics, i.e. we
associate each node in a network with
a state variable, whose time evolution
crucially depends on the state variables
of the node itself and/or its neighbors.
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