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ABSTRACT We carry out a detailed bifurcation analysis for a common class of electrostatically driven nanowires in a multiphysics
model. A finding is that the nanoscale system can exhibit distinct chaotic states: chaos with symmetry breaking and extensive chaos
possessing the full symmetry of the system. Potential applications such as nanoscale random number generator and controlling
extensive chaos to achieve desirable performance are articulated.
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anoelectromechancal (NEM) systems are character-

ized by their small size, extremely low power con-

sumption, and ultrafast speed. Due to these ben-
efits, the fundamentals of NEM systemshave beeninvestigated
and they have also been explored widely for applications
ranging from zeptogram scale mass sensing' to single
electron spin detection® and RF communication.” In the
nonlinear regime of NEM systems, complex phenomena
such as spring harding,* hysteresis,” and pull-in phenomena®
have been investigated experimentally. Parallel to this, there
have been theoretical and computational studies on the
critical pull-in voltage value,” dynamical range,® excitation
of nonplanar motion,” boundaries of basins of attraction,”
etc. The nonlinear dynamical properties of NEM systems can
be exploited for applications. For example, suspended
carbon nanotubes can be used as memory devices based
on their nonlinear pull-in behavior,'® nanotube-based twee-
zers'' are actuated by nonlinear electrostatic force, and
nonlinear NEM resonators can be used to improve the
measurement precision of resonant frequency'? and mass
detection sensitivity.'?

The intrinsic nonlinear dynamical characteristics of NEM
systems lead naturally to the question as to whether chaos
can arise and, more importantly, whether one can explore
chaos to enhance its applicability. For the class of systems
of larger scale known as microelectromechanical (MEM)
systems, chaos can occur and has been examined. For
example, chaotic oscillations have been found in the canti-
lever of atomic force microscopy,'* in the electrostatic
tuning comb drive actuator for signal encryption,'® and in
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nonlinear, parametrically excited resonators.'® In electro-
statically driven MEM systems, the period-doubling route to
chaos has been found.'”"'® Despite the occurrence of chaos
in MEM systems, there has been little work on chaos in NEM
systems.'? Especially for suspended nanowire resonators it
has been assumed in most previous works that the oscilla-
tion occurs in a single plane. Only recently, Conley et al.’
obtained analytically and numerically the onset of nonplanar
motion. The onset value agrees well with published experi-
mental results, leading to their conjecture that exploiting
nonplanar and other nonlinear dynamical phenomena in
such resonators can find applications in signal processing,
filtering and encryption. Due to the potential advantages
offered by chaos in dynamical systems*® and due to the vast
potential of nanoscale devices, we investigate their dynamics
using a partial differential equation (PDE) model® and its
consequences with an eye toward applications.

In this Letter, we present the first evidence of extensive
chaos in NEM systems. The class of nanoscale systems that
we explore is electrostatically driven Si nanowires,?'*?
which is theoretically modeled and discussed in the work of
ref 9. By design, a nanowire is supposed to oscillate in a
plane. However, nonplanar motion of the wire can occur
under certain conditions.” We find that, in the regime of
nonplanar motion, chaos can be rather common. In addi-
tion, the dynamical phenomenon of crisis can occur where
two symmetry-broken chaotic attractors can collide simul-
taneously with their basin boundaries to form a much larger,
single chaotic attractor possessing the full symmetry of the
system. Chaotic oscillations associated with the resulting
attractor are extensive in the sense that they occur in phase-
space regions even at all scales that were inaccessible before
the crisis. We conduct a bifurcation analysis to uncover the
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FIGURE 1. (a) An electrostatically driven, suspended nanowire and (b) illustration of wire’s rotation associated with nonplanar motion.

dynamical and physical mechanism leading to extensive
chaos and articulate potential applications. We mention that
our work is inspired by ref 9, where the prediction of
nonplanar motion makes possible generating extensive
chaos in nanowire systems.

Figure 1a shows the device configuration of a suspended
nanowire.” It is a solid structure with two ends bridging the
sidewalls. The electrostatically driving force is exerted from
the gate electrode. Under a small force, the nanowire oscil-
lates vertically in the Z direction as a doubly clamped beam.
However, when the applied voltage is sufficiently large to
yield substantial bending and consequently strong axial
stress, the vertical vibration (planar vibration) is no longer
stable and the wire tends to bend to its sides (Y direction)
and rotate in the Y—Z plane. A schematic illustration of this
rotating motion is shown in Figure 1b.

A dynamical analysis of electrostatically driven nanowires
requires combined solutions to the mechanical, electrical,
and fluid equations governing the physics and the motion
of the wire. In the following we treat these respective
aspects.

Mechanical Equations. Here we consider a partial dif-
ferential equation (PDE) model to study the chaotic whirling
motions of suspended nanowires. The formula of the nano-
wire mechanical PDE equation together with electrostatic
force model are previously proposed and studied in ref 9,
where the theoretical and simulation results from this model
have been compared with several experimental results, with
good agreement. Consider the circular cross-sectional area
A (radius r), the PDEs governing the displacements Y(x, ¢)
and Z(x, t) of the wire in the Y and Z directions, respectively,
are
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where F, is the electrostatic force on the wire, Ff and F#
are the viscous damping force in the Y and Z directions,
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respectively, E is Young’s modulus, and I = zr*/4 is the
moment of inertia of the wire’s cross-sectional area. Here
we briefly show the derivation of electrostatic force model
which is skipped in literature.” The electrostatic force on a
bending nanowire depends on its deflection shape and is
spatially dependent. A nanowire actuated by electrostatic
force can be approximated by a sequence of short-length
wire segments, each segment being parallel to the planar
gate electrode. The segment at position x, in conjunction
with the gate electrode, then forms a capacitor charged by
the driving voltage with capacitance per unit length given
by C(x, t) = 2me dx/{In[4(go + u(x))/dl}, where g, is the (x-
independent) wire-center-to-electrode gap when the entire
wire is in the inactivated state, u(x, t) is the instantaneous
deviation of the segment’s Z-coordinate from go [s0 go +
ux, t) = Z(x, 01, dis the wire diameter, and ¢ is the dielectric
constant of the homogeneous gaseous medium in which the
NEM is immersed. It is assumed that, for all £, d < go + u(x, 0)
so that the expression for C(x, f) is valid. For a single segment
at position x, the work of electrostatic force of pulling the
nanowire with distance of u(x) toward the gate electrode
from original position is

2
_ Cx,pv? GOV
W(x, t) = > >
_ meV” dx eV’ dx
In{4lg, + u1/d} In{4g,/d}
where V(f) = Vpc + Vac cos(2aft) is the combination of a dc

bias voltage and an ac voltage of frequency f. The electro-
static force per unit length acting at x on the nanowire at
time ¢ is then

—meV?

o + u)){In[4(g, + uG)/d)}
(2)

dW() 1

Feto = du dx

Gas Damping Force. To achieve high sensitivity or large
dynamical response of NEMS sensors and actuators which
utilize their resonant behavior,?>** many fundamental stud-
ies on NEMS resonators were performed in ultrahigh vacuum
and at low temperatures to reduce the damping effect. The
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FIGURE 2. (a) Cross-sectional view of a nanowire moving in the Z
direction, (b) equivalent shell structure subject to the same damping
force, and (c) small section of shell of angular extension df.

resulted damping coefficient can thus be decreased by
hundreds of times,* resulting in very weak dissipation in
the system which is beneficial for NEMS devices that utilize
their resonant behaviors. However, in forced vibrating string
or beam systems, it is known that to generate and utilize
chaotic motions, certain amount of damping is necessary.*®
Otherwise, the complex motions would be easily eliminated
by the crisis mechanism.?” Another concern of ultrahigh
vacuum and low temperature is that these rigid working
conditions impose difficulties in the packaging and integra-
tion of NEMS devices, which could hamper the potential
range of applications. On the other hand, several recent
experimental works**~?° show that actuation and sensing
of NEMS vibration under room conditions (300 K tempera-
ture and 1 atm pressure) can be successfully achieved. In
this paper we thus study devices operated under room
environment, which is the easiest accessible condition. Due
to the small scale of the wire size, under room conditions,
its vibrations in a gaseous medium (e.g., air) are governed
by molecular regime physics for which the drag force on the
wire is due to momentum exchange with the surrounding
gas molecules. Here, we derive the drag force on the wire
along the Z direction (the force in the Y direction has the
same form). Consider the cross-sectional view of the nano-
wire moving in the Z direction, as shown in Figure 2a. We
divide the cross section into a set of segments, each with
small angle increment d6. Examining the two symmetrically
opposite segments shown in Figure 2a, we see that the
frictional force due to air on each segment is the same as
that on one of the thin camber shells, as shown in Figure
2b. Thus, in the molecular regime, the structure shown in
Figure 2a is subject to the same damping force as the one
in Figure 2b. To obtain the full damping force on the
structure in Figure 2b, we first consider a small segment at
angle 0, as shown in Figure 2c. This small segment of angular
extension df can be regarded as a thin rectangular plate in
a Y—Z plane tilted by angle (w/2 — 0), moving in the Z
direction with velocity Z. Since Z; can be decomposed into
a component moving in the direction normal to the surface
(Z") and another component parallel to the surface that does
not contribute to the frictional force on the thin plate, only
ZN contributes to the drag. The drag force on a thin plate
moving in a gas in the direction normal to its surface at
speed Z" is given by
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where P is the pressure of the gas, As is the plate surface
area, vy = (KgT/m)'? is the molecule velocity at temperature
T, m is the molecule mass, and Ky is Boltzmann constant.
Force per unit x direction length opposing the motion of this
small segment can then be written as

.2
Pr sin“(0) 67, @

dF = dF;sin(0) =
T

The total drag force acting on the camber shell per unit
length, which is equal to that acting on the nanowire per unit
length, is
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for the wire segment located at x. Similarly, we have

ﬂ—PdYt(x, t)

Flx, ) =
f 4v,

(6)

One can see that the damping coefficient of the round
nanowire compared to the square one with the same width
only drops by a factor of m/4. We have examined the
theoretical gas-damping model with several experimental
data for different sizes of nanowires working under room
conditions.’ The theoretical results of quality factors ob-
tained by the gas-damping model agree reasonably with the
experimental data to within about 20% on average.
Multiphysics simulation of the nanowire is carried out
based on egs 1, 2, 5, and 6. In our simulation, a standard
finite element method (FEM)®' is employed to deal with the
spatial differential and integral terms in the equation and a
forward fourth-order Runge—Kutta method is employed to
perform the time integration. The method is validated by
using an electrostatic MEMS fixed—fixed beam model in-
cluding nonlinear elastic term and compaired with the
results generated by a different numerical method.?* In our
simulations, we use a 3 um x 20 nm (L x d) doubly clamped
nanowire made of silicon. The gate trench height is h = 0.2
um. The device is operated under room conditions (P = 1
atm and T = 300 K). The natural frequency of device is
obtained as f, = 3.56(El/(L*pA))!>.° Here, we set the fre-
quency of the ac voltage to be f = 3f,. For silicon, the
material parameters are E = 169GPa and p = 2332 kg/m”.
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FIGURE 3. (a) A typical bifurcation diagram for the nanowire: local
extrema of Y(L/2) versus Vc. The detail of a part of the period-
doubling bifurcation is shown in the inset. (b) Schematic illustration
of the occurrence of distinct oscillatory states.

The molecular mass of air is m = 5.6 x 1072° kg. Thirteen
spatial elements and time step of (2 x 107°)Pe, where Pe =
1/fo is the period of the resonant state, are used to solve the
nonlinear PDE.

Our calculations have revealed the existence of four
characteristically different vibration states of the nanowire
as the ac voltage is increased. A representative bifurcation
diagram is shown in Figure 3a, where the possible local
extrema in the displacement of the center of the nanowire
in the Y direction are plotted as a function of the ac voltage.
A schematic diagram of the bifurcation process is shown in
Figure 3b. In the simulation, the dc bias voltage is set to be
Vbe = 12 V. As Vjc is increased from zero, the system first
reaches a planar vibration state, denoted as PV, where the
motion of the device is time periodic and is confined
physically in the X—Z plane. In this case, the displacement
and the velocity of the nanowire in the Y direction are zero,
corresponding to a single point at the origin of the two-
dimensional phase-space slice defined by [}_’E Y= L/2), dY/
df], shown as a cross in Figure 4a. As Vac is increased
through a critical value Vac" & 0.5947 V, the planar motion
becomes unstable and the nanowire begins to exhibit non-
planar vibrations and rotations in the phase space, as shown
in Figure 4b. We denote this state as NPV. As Vac is increased
further, a cascade of period-doubling bifurcations occurs,
which leads to chaotic vibrations for Vac > Vac® =~ 6.8818
V. In this regime, there is symmetry breaking in the sense
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that for any initial condition the trajectory lands on a chaotic
attractor that does not possess the full symmetry of the
system. In fact, there exist two symmetric attractors, each
with its own basin of attraction, as shown in Figure 4c. We
denote such a chaotic state as NCV (nonplanar chaotic
vibration). Finally, as Vac is increased through another critical
point Vac® =~ 6.9457 V, the two symmetrical attractors
merge to form an extensive chaotic attractor, as shown in
Figure 4d. In this state, the system symmetry Y(—x) = —Y(x)
is restored, and the gaps present in each symmetry-broken
chaotic attractor in the NCV regime and the gap between
the two symmetrical attractors are filled.

For a nanowire under large electrostatic force, the transi-
tion between the PV and the NPV state can be understood
physically, as follows. In a PV state, the vibration amplitude
of the nanowire in the Z direction is relatively small but it
increases as the external ac voltage is increased. For Vac =
Vac'V, the stress induced by the vibration of the wire in the
axial direction reaches a critical value that can barely keep
the motion of the wire in the X—Z plane. As Vac! is
exceeded, the stress is no longer able to keep the wire in
this plane. To gain more insight into the transition, we
examine the equation of motion in the Y direction:

_ J'L'PdY _ E—AY

pAY, + EIY ATl
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This is basically the equation of motion for a param-
etric resonator driven by the term f§Z,2 dx. To inves-
tigate the stability of the planar vibration N
{Z(x.0, Z(e,0, Y0e,0, Yo, Y(x,t) = 0, Y(x,t) = 0}, we focus
on the perturbed dynamical equations near N
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The behavior of the perturbed vibration can be characterized
by the escape exponent defined by M = lim .. In[(d(x,))/
(0(0,x))]/t forany 0 < x < L. If N is stable, we have d(t,x) — 0
as t — oo so that M < 0. If N is unstable, we have O(t,x) — o
as t — oo and so M becomes positive. Near the transition
between PV and NPV states, we expect to see a rather abrupt
change in the value of M from a negative to a positive value
as shown in Figure 5.

In the macroscopic forced string system, chaotic motion
is numerically predicted®® and experimentally verified®” as
generated through period-doubling bifurcations. The Shilni-
kov mechanism’* is conjectured as the mechanism for
chaotic motion.?®>® This period-doubling phenomenon is
also identified in our bifurcation diagram (Figure 3a and its
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FIGURE 4. Phase-space representations of attractors for the nanowire system in distinct regimes: (a) planar-vibration (PV) state for Vyc =
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inset) as the creation route of NCV state. In the classical
theory of a forced damped string system, chaotic vibration
is found to be generated from a branch of NPV which is
separated (either isolated or connected by saddle-node
bifurcations) from the NPV coming from PV through Hopf
bifurcation.”® In the electrostatically driven nanowire sys-
tem, by examining the frequency response curve, we ob-
served the same phenomenon that two branches are sepa-
rated. In the theory of chaotic dynamical systems, the
mechanism through which an extensive chaotic attractor
with full-system symmetry is created is merging crisis,’®
where two coexisting chaotic attractors collide simulta-
neously with the boundary between their respective basins
to merge into a larger attractor. The basin boundary is the
stable manifold of a mediating unstable periodic orbit cre-
ated at the original saddle—node bifurcation, where the node
leads to the observed chaotic attractors through period-
doubling bifurcations. If the system possesses certain sym-
metry, the merging crisis can restore the symmetry in the
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final, extensive chaotic attractor.’” At the crisis, the gaps at
all scales in and between the symmetry-broken attractors
are filled,”® due to the creation of new unstable periodic
orbits through the horseshoe mechanism as a result of the
“collision” of the chaotic attractors with the stable manifold
of the mediating unstable periodic orbit (effectively ho-
moclinic tangencies). All these have been established for
dynamical systems of relatively low dimensions described
by discrete-time maps or ordinary differential equations.
O’Reilly et al.’” analyzed a similar mechanism in macro-
scopic forced string system using a constructed Shilnikov
type map and had identified the “homoclinic explosion” at
which two symmetrical Réssler-like attractors disappeared
and one Lorenz-like attractor was born. The numerical result
of such phenomenon was also reported.® The phenomena
described in these papers are similar to the generation
process of the NECV state in electrostatic nanowire system.
Note that, as compared with the macroscopic forced string
systems, the complexity of equation is enhanced by non-
linear electrostatic force and by the square term of ac voltage
which induces another frequency component of the excita-
tion. Although the bifurcation mechanism could be similar,
the resulted attractors may be qualitatively different, e.g.,
NECV versus NCV.

To explore the possibility of NECV in fabricated nanowire
devices, we have simulated the PDE model (1) of an experi-
mental device' operated under room conditions. The nano-
wire device has the dimensions of 4.9 um x 88 nm (L x d),
which is suspended on the driving electrode with a gap of
250 nm. Setting excitation to be at resonant frequency fo =

DOI: 10.1021/nI902775m | Nano Lett. 2010, 10, 406-413
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27.78 MHz and biasing the nanowire with Vpc = 18.75 V,
we observe NCV and NECV, as shown in parts a and b of
Figure 6, respectively. The NECV parameter region of ac
voltage extends a few volts, indicating the feasibility of
experimental observation.

We now articulate a potential application of extensive
chaos. An important application of chaotic systems is ran-
dom number generators (RNGs), which are commonly used
in secure communication. RNGs based on chaotic oscilla-
tions have been realized in chaotic CMOS ICs*® and quite
recently in chaotic semiconductor lasers.*' In such an ap-
plication, the chaotic output is sensed by a transducer as an
electrical signal and then transformed by an analog-to-digital
converter (ADC) to a string of digital random numbers. The
generating speed, system complexity, cost, reliability, and
sensitivity to control parameters are among the consider-
ations associated with RNGs. Due to potential advantages
such as ultrahigh resonant frequency (e.g., gigahertz), rela-
tively low fabrication cost, and small dimension, a chaotic
nanowire-based resonator can be a promising candidate for
minimization of highly integrated, high-speed RNGs.

In electrostatically driven MEMS and NEMS, previously
reported nonextensive chaotic states (e.g., those generated
though period-doubling bifurcations)'” may not be useful for
RNG applications, for the following two reasons. First, the
degree of randomness associated with nonextensive chaotic
motion may not be high enough for communication applica-
tions. Usually, nonextensive chaotic vibrations possess a
strong periodic component.'” In this case, the sampling rate
must be low relative to the frequency of the underlying
periodic component to overcome the strong autocorrelation
in the displacement signal. Second, nonextensive chaotic
states typically have fewer symmetries than those in the
system itself. This lack of symmetry can produce bias in the
generated random numbers. In order to overcome the bias,
additional circuit components may be needed. The extensive
chaotic state in electrostatically driven nanowires uncovered

v © 2010 American Chemical Society

111

c [

o] a .0

§ @ 5

o) o)

s 05 =

o 5

o (&)

[e] 0 o

5 5

X 4 2 0 2 Z

At(s) , 400

> >

£ 0.04/(C) =004/ (d)
e} e}

S o002 3

S o. 2 0.02

— —

x a

-100 0 100 900 0 o

Random number Random number

FIGURE 7. Autocorrelations of 7-bit random number sequences from
(a) NECV and (b) NCV signals. (c, d) Distributions of 7-bit random
numbers from the NECV and NCV signals, respectively.

in this Letter, however, naturally overcomes these two
drawbacks. In particular, extensive chaos possesses a much
higher degree of randomness than a nonextensive chaotic
state. In addition, as we have demonstrated, the dynamical
mechanism that generates an extensive chaotic state is
symmetry-restoring.

To provide a concrete illustration of the advantage of
exploiting extensive chaos in RNG applications, we compute
and compare the RNG characteristics between NCV and
NECV states in a Si nanowire of dimension 1 gm x 40 nm
(L x d), as shown in Figure 7. The sampling rate is set as the
resonant frequency. The nanowire displacement signal in
the Y direction is converted to an 8-bit digital number
(including sign) in each sampling period and is then trimmed
as a 7-bit digital number by removing the highest bit. Our
results show that, although both NCV and NECV states are
chaotic, the performances of using these two kinds of motion
as RNG can be quite different. In particular, Figure 7a and
Figure 7b illustrate the autocorrelations of the 7-bit random-
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number sequences from NCV and NECV, respectively. It can
be seen that the autocorrelation associated with NECV is
approximately a o-function, signifying a much higher degree
of randomness. Figure 7c and Figure 7d show the histo-
grams of the sampled data from the NCV and NECV outpults,
respectively. Apparently, the random numbers from the
NECV signal are more evenly distributed than those from
the NCV signal.

Further applications of extensive chaos in nanowires are
the following.

(i) Control of extensive chaos for desirable system perfor-
mance. NECV offers the ability to control the motion of the
wire into any desirable state. In particular, a chaotic attractor
has embedded within itself an infinite number of unstable
periodic orbits and one can apply small perturbations to
stabilize the motion of the wire about a desirable periodic
orbit.*® Since the nanowire is a driven dynamical system,
we conceive using resonant perturbations to control chaos.**
For example, in addition to the primary driving, a small
driving signal of incommensurate frequency can be applied
to stabilize the wire about an unstable periodic orbit. For
extensive chaos, such an orbit can extend the dynamics into
phase-space regions that were not accessible to the wire
when it isin a PV, NPV, or even NCV state. Extensive chaos
can also enrich, often significantly, the frequency response
of the wire.

(ii) Experimental setting of desirable initial state. In the
experiment to explore the basin structure of a bistable NEM
device, it is necessary to spread the initial states of the
system over the phase space.” This is usually done by using
the method of stochastic interrogation,*> where different
initial conditions are realized by switching between stochas-
tic and deterministic excitations. The existence of extensive
chaos can facilitate this task, as the system can be driven
into a NECV state first and then quickly switched back to the
intended operational regime, where the initial condition is
essentially the state of the system in the NECV regime before
the switching.

In the above context, we consider the perfect model with
ideal circular cross-section area. The imperfection, e.g., the
residual stress (tensile or compressive) and initial slack with
bow shape, could affect the creation of nonplanar motion.’
Here, we shall describe and discuss how the prestress, initial
slack, and imperfect cross-section area affect the generation
of extensive chaotic motions. Tensile or compressive stress
can be implemented in model (1) by modifying the stretch-
ing elastic nonlinear terms in the Z and Y directions as
—ZulSA + EAIQL2L[E(Y: + Z3) dx] and —Yy[SA + EA/
(L) f5(Y2 + Z2) dx] where S is the residual tensile or com-
pressive stress. The tensile force can harden the beam and
enhance the linear resonant frequency. This effect shifts the
onset of nonplanar motion® and is likely to increase the
required excitation to generate NECV. To verify this conjec-
ture, we simulate the nanowire with a tensile stress of S =
7.4 MPa. The parameters of the wire are the same as those
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in in Figure 3 for which the stress can almost double the
resonant frequency. In our simulations, we observe that the
onset of Vac for NECV increases by a few tens percent. On
the other hand, compressive prestress can make the wire
buckle. Our numerical observation shows that, with electro-
static excitation, the buckle of the beam will be led to the
direction of electrostatic force. This is due to the fact that
for a fully symmetrical rod, without external load, the buckle
can happen to any arbitrary direction, but with the load, it
is likely to be compliant to the external load’s direction. The
nanowire with compressive stress of S = —7.4 MPa is
simulated. This value of stress causes 34 nm in the displace-
ment of initial buckle at the center of the wire. In this case,
it is observed that NECV exists and the onset of Vac reduces
by tens of percent from its stress-free value. This may be
due to the initial prestress that makes the wire more unstable
and more easily to undergo complex nonplanar rotation.
Nanowire may have initial slack even without prestress due
to imperfections in fabrication. In this case, model (1) needs
to be modified as a curved beam model.** This effect will
cause a symmetry breaking in the dynamical model and
induce quadratic nonlinearity. Moreover, the slack can
induce two eigenmodes with fixed directions and frequency
mistuning.” To mimic the effect of initial slack, we add a
constant force in the Y direction, which breaks the symmetry
by biasing the beam for 37 nm in the Y axis. We also
artificially double the resonant frequency in Y axis motion
to mimic frequency mistuning. Simulation results show that
NECV still exists but its onset has shifted by a few tens of
percent. In reality, the nanowire may not have a perfectly
circular cross-section shape. The imperfection can cause dual
eigenmodes and frequency mismatch between the modes.
The eigenmodes may not have a direction in the plane of
excitation. These effects are similar to the case of a nanowire
with initial slack and its effect to NECV is expected to be
similar. In short, based on our simulation results, qualita-
tively speaking, the existence of NECV is robust for the
effects of residual stress and fabrication imperfections.

In summary, we have carried out numerical simulations
and analysis of a nonlinear PDE model for an electostatically
driven Si nanowire, taking into account physical effects such
as electrostatic and gas damping forces. A computationally
intense bifurcation analysis reveals that the wire can be
driven into chaos with symmetry breaking and then to
extensive chaos by inheriting back the full symmetry of the
system. Such an extensive chaotic state has not been
predicted for nanoscale systems before, and we have ar-
ticulated a number of potential applications including nano-
wire-based RNG. Exploiting nonlinear dynamics and chaos
for nanodevices promises to be a potentially relevant area
of research,” and we expect our findings to stimulate further
work.
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