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Abstract Given deficient and noisy movement data
from a pedestrian crowd—a class of active body sys-
tems, is it possible to uncover the hidden group inter-
action patterns or connections? Yes, it is possible.
Here, we develop a general framework based on an
optimal combination of the conventional compressive
sensing (L1 minimization) and L2 optimization pro-
cedure to achieve optimal detection of the contact
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network embedded in pedestrian crowd under the data
shortage conditions. Different from previous publica-
tions, in our framework, the optimal weights of the
L1 and L2 components in the combination can be
determined specifically from the noisy data, which can
obtain more accurate detection for the corresponding
system. To detect hidden interaction patterns from spa-
tiotemporal data has broader applications, and our opti-
mized compressive sensing-based framework provides
a practically viable solution. In addition, we provide
a relative entropy perspective to facilitate more gen-
eral theoretical and technological extensions of the
framework.

Keywords Active body system · Compressive
sensing · L1-regularized least squares · Optimal
detection

1 Introduction

Movements of people or pedestrian crowd constitute a
complex spatiotemporal dynamical system, where the
output data are time series of individuals’ instantaneous
positions and velocities. Such data sets have become
widespread, but the available analysis tools have been
limited. For example, a task of interest is to uncover any
hidden connection patterns or the interaction networks
among the individuals. The pedestrian interaction sys-
tems represent a prototypical class of active body

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-019-04769-1&domain=pdf
http://orcid.org/0000-0001-9648-3067


14 C.-W. Su et al.

systems, in which the interactions among the individ-
uals can be described by certain forms of social forces
[1–4]. The resulting mutual interactions among the
individuals lead to continuous updates of the under-
lying dynamical processes that can be measured and
characterized by the velocities and positions of the indi-
viduals. For example, for a group of friends or acquain-
tances, the dynamical patterns of their movements can
be quite distinct from those with complete strangers.
Often, individuals in a pedestrian crowd tend to self-
organize into mesoscopic groups with certain interac-
tion structure. To decipher the mesoscopic interactions
and then to map out the interaction network of the
whole system are essential to detecting and analyzing
the emergence of collective behaviors in the underlying
complex system.

The discovery of the special groups and the interac-
tion rules has generated considerable interest in active
body systems [5–13], which are relevant to real-world
systems such as fish shoals and insect swarms [14–17].
Most previous works were on developing and analyz-
ing various statistical techniques that often require a
large amount of data. In complex dynamical systems,
recent years have witnessed a growing interest in solv-
ing a variety of inverse problems based on data, where
the central goal is to uncover the equations govern-
ing the system dynamics and the connection topol-
ogy among the components of the system [18–22].
A general class of methods that have proven to be
effective in detecting system equations and network
structures [22–35] is those based on sparse optimiza-
tion paradigms such as compressive sensing [36–40]
that typically require only limited amount of data. In
this paper, to solve the problem of group and pattern
detection in active body systems, we develop a gen-
eral framework based on an optimal combination of
compressive sensing (L1) and the L2 optimization pro-
cedure. The optimal weights of the L1 and L2 compo-
nents can be determined solely from data through the
basic optimization principle. Using pedestrian crowds
as a prototypical system and based solely on data, we
demonstrate that the framework can uncover the under-
lying interaction network, group structures, and collec-
tive behaviors efficiently and accurately, even when the
available data are noisy and with small amount. Active
body systems are ubiquitous not only in social sys-
tems, but also in physical, chemical, and biological sys-
tems [3–6,41]. The completely data-driven framework
developed represents an effective approach to under-

standing, predicting, and even controlling active body
systems.

2 Sparse signal detection based on compressive
sensing

To solve the dynamical network reconstruction prob-
lem associated with active body system using com-
pressive sensing, it is necessary to formulate the prob-
lem into the standard linear form: Y = M · a, where
Y ∈ R

T×1 is a vector that can be obtained through data
with T being the number of discrete data points sam-
pled from the original time series data, M ∈ R

T×N is
a matrix that can also be calculated from the observed
data, a ∈ R

N×1 is the coefficient vector to be solved,
whose N entries constitute a faithful representation
(e.g., power series or Fourier expansion) of the orig-
inal dynamical system that is assumed to be nonlinear
and complex. The vector a is sparse when most of its
elements are zero (Fig. 1a). In this case, application of
compressive sensing [36–38] through minimizing the
corresponding L1 norm can lead to a unique solution
for a. In particular, the solutions of Y = M · a form an
(N−T )-dimensional hyperplane in the N -dimensional
space. The norm contour surface of a is a polyhedron
with vertices located on the axes. Let the polyhedron
grow up from the origin, we get â with minimum L1

normat the first contact of the polyhedronwith the solu-
tion plane: â ≈ arg min

Y=M·a ||a||1, as shown in Fig. 1b,

even if the matrix M has a low rank in the sense that it
has far more columns than rows.

The L1 normoptimizationmethod performswell for
noise-free systems, while for noisy data, a more effec-
tive variant of compressive sensing named L1- regu-
larized least squares (L1-RLS) [34,42] can be adopted.
The L1-RLS takes into account a term of L2 norm to
enhance the generalization ability of compressive sens-
ing framework especially for systemswith noise,which
reads

â ≈ argmin {||Y − M · a||2 + λ||a||1}. (1)

Note that, under noise, we have Y = M · a + ξ , for
which the solution a is located somewhere inside a
quasi-3D block, just like the shaded block in Fig. 1c,
rather than the 2D plane Y = M · a. The thickness of
the 3D block is determined by the weight parameter λ

in Eq. (1), where a larger value of λmakes the 3D block
thicker. Theweight parameter λ plays an important role
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Optimizing optimization: accurate detection of hidden interactions 15

Fig. 1 (Color online) Sparse solution estimation by L1 mini-
mization and L1-RLS. a Sketch map for the underdetermined
linear inverse problem with the expected solution a to be sparse.
b For a noise-free system with Y = Ma, L1 minimization leads
to a sparse solution on the solution plane. c Extracting the sparse
solution by L1-RLS from the noisy systemdata thatY = Ma+ξ ,
with ξ denoting the effect of noise. L1-RLS defaults to assume
the noise to be Gaussian

in adjusting the relative weights of the L1 and L2 terms
in the objective function. If the value of λ is too large,
e.g., as λ exceeds a threshold value λth, since the origin
has already been contained in the 3D block, one would
always obtain â = 0 from Eq. (1). However, if λ is
too small, the 3D block would be too thin, which leads
to larger errors. The L1-RLS optimization approaches
the least squares procedure for further decreases of λ,
say λ → 0. Thus, a suitable weight parameter λ in the
L1-RLS is quite necessary.

3 L1-RLS reconstruction for relationship network
in active body system

Casting the reconstruction problem for an active body
system into the standard form for compressive sens-
ing requires some minimal rules about the underly-
ing dynamics. As the system is intrinsically extremely
complex, we resort to a physically intuitive approach.
First, the interactions among the acquaintances are dif-
ferent from those among strangers. The systemcan then
be regarded as a friendship network, where each link
connects a pair of friends, and the number of links that
agent i has is the degree ki . Next, consider a pair of

friends (nodes): i and j . If they are apart, they tend to
be attracted toward each other. If they are too close, they
tend to repel each other to avoid invasion of personal
space. The consideration suggests that the interaction
between a pair of friends be modeled through the fol-
lowing form of spring type of “social force”:

F f (i, j) = κ(1 − r0
||r ji || )

r j i
||r ji || , (2)

which is a function of the relative position between
nodes i and j , i.e., r j i = r j − r i in the plane
r i = (xi , yi ). The parameters κ and r0 are the elas-
tic coefficient and the “comfortable” distance between
two friends, respectively. Finally, for a pair of strangers,
the interaction between them can be described by the
empirical pedestrian interaction model [4] extracted
from real data:

Fs(i, j) = −
[
ke−τ/τ0

|vi j |2τ 2
(
2

τ
+ 1

τ0

)] [
vi j

− |vi j |2xi j − (vi j · xi j )vi j√
(vi j · xi j )2 − |vi j |2[|xi j |2 − (Ri + R j )2]

⎤
⎦ ,

(3)

where vi j = vi − v j is the relative velocity of the two
nodes, R is the equivalent radius of an agent, τ is the
mean “free time” for the currentmovement state, which
corresponds to the timeduration between two collisions
with other agents in the network. The parameters k and
τ0 are set as constants.

Let r(t) = (x(t), y(t)) and v(t) = (vx (t), vy(t))
be the measured position and velocity of agent i at a
set of discretely sampled time: t = t1, t2, . . . , tn . The
increment in the x-component of the velocity can be
written as

Δvi x = vi x (t + Δt) − vi x (t)

=
∑
j �=i

[
ai j

F f x (i, j)(t)

m

+(1 − ai j )
Fsx (i, j)(t)

m

]
Δt

=
∑
j �=i

ai j Mi j (t) + Ri (t), (4)

where vi x , Ff x , and Fsx are the x components of vi ,
F f , and Fs , respectively, m is a parameter charac-
terizing inertia, Δt is the time step of the dynam-
ics determined by the evolution rate of the system,
Mi j (t) = [Ff x (i, j) − Fsx (i, j)]Δt/m, and Ri (t) =
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Fig. 2 (Color online)
Hidden connections in a
dynamical pedestrian
crowd. Agents are specified
by circles or squares, and
the interactions between
friends, as characterized by
Eq. (2), are represented by
links. For example, the focal
agent i (square) in the
sketch map has five friends.
Red and yellow links
correspond to exclusion and
attraction, respectively. The
line width indicates the
associated strength of the
connection or interaction
“force”

∑
j �=i Fsx (i, j)Δt/m. Thematrix elementai j indicates

the possible existence of a link between agents i and
j : If i and j are friends, i.e., they interact with each
other according to Eq. (2), we have ai j = 1. Other-
wise, ai j = 0. What is needed for Eq. (4) is pairs of
successive data points with Δt apart, and these pairs
do not need to be consecutive. Equation (4) can be
written in matrix form as Δv = M · a + R, where
Y ≡ Δv − R = M · a.

For any agent, the connection coefficient vector
a characterizing the agent’s relationship with other
agents in the crowd is sparse because the expected
number of friends ki is generally much smaller than
the system size N , making it applicable for the com-
pressive sensing framework. Once Y and M have been
calculated from data, the vector a for each agent can
be estimated through L1-RLS optimization. Matching
the local connection structures of all agents gives the
topology of the underlying network.

As a concrete example, we consider a crowd of
N = 100 agents that move according to the interac-
tion rules in Eqs. (2) and (3) in a 2D domain with peri-
odic boundary conditions. Figure 2a–d shows exam-
ples of the friendship network of a focal agent revealed
by our method. To characterize the performance, we
define the following prediction errors for existent and

nonexistent links: ε1 = (1/ki )
∑

j∈ |âi j − ai j | and
ε0 = [1/(N − ki − 1)]∑ j /∈ |âi j − ai j |, respectively,
where Ω is the set of ki neighbors of node i . Figure 3a
shows the errors of the L1-RLS method versus the
movement noise, whereas for comparison, the results
from the conventional compressive sensing method are
displayed in Fig. 3b. We see that the prediction error
increases monotonically with σ̃ . Due to noise, the con-
ventional compressive sensing method leads to large
errors, but those associated with the L1-RLS method
are much smaller. The movement noise refers to the
noise or stochastic fluctuations in agents’ velocity, with
strength given by σ̃ ≡ σ/〈|Δv|〉, where σ is the stan-
dard deviation of Gaussian noise, and 〈|Δv|〉 is the
absolute velocity increment averaged over all agents
in the system. Figure 3c, d shows ε1 and ε0 versus the
data amount T/N , respectively. In general, in the pres-
ence of noise, the errors with L1-RLS are smaller than
those with L1 method.

4 Optimal detection based on L1-RLS

We now address the issue of optimal detection. The key
parameter in the L1-RLSmethod (Eq. 1) is λ, on which
the performance depends, especially when strong noise
is present. Figure 4a shows the prediction error ε1 ver-
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Optimizing optimization: accurate detection of hidden interactions 17

Fig. 3 (Color online) Compressive sensing-based reconstruc-
tion of hidden relationship in a pedestrian crowd. a, b Prediction
error as a function of the relative noise strength σ̃ , where ε1 and
ε0 are the errors for the existent (ai j = 1, friend) and nonexistent
(ai j = 0, stranger) links, respectively. The normalized amount
of data for prediction is T/N = 0.9. c, d Errors ε1 and ε0 ver-

sus the normalized data amount T/N , respectively, for a number
of values of σ̃ (0, 0.01, 0.02, and 0.05). The parameter setting
is N = 100, κ = 2, k = 0.5, τ0 = 0.5, R = 0.01, m = 60,
Δt = 0.1, andλ = 10−3 for L1-RLS.All the results are averaged
over 1000 independent network realizations

sus η ≡ − log10 λ, where the value of λ varies over
several orders of magnitude. For large values of λ, the
method yields â = 0. As a result, the values of ε1
are about one in the region of small η values. As η is
increased from one, a non-monotonic behavior in ε1
arises. The overall behavior of the error indicates the
existence of an value of λopt = 10−η0 , at which ε1 is
minimized. For values of η much larger than η0, the
error is saturated, where the contribution of ||a||1 item
in Eq. (1) becomes negligible and the method degener-
ates to the conventional least squares.

From the result in the inset of Fig. 4d, we see that
the optimal value λopt increases as the noise strength
σ̃ becomes larger. This average result suggests that if
you want to apply the L1-RLS method to a system
under stronger noise, you should take a larger value
of λ. However, a complication is that the value of λopt
may fluctuate in a wide range even for the same noise
level. To determine the actual value of λopt is thus an
issue of practical significance. One possible approach

is to find the zero point in the gradient of ε1. As shown
in Fig. 4b, the zero point can be obtained numerically
basedon the incrementΔε1 as a functionofη.However,
in order to achieve this goal, the prior knowledge of the
connection structure of the system as characterized by
a is needed for calculating Δε1 and the value of λopt.
But in realistic applications, the true vector a is not
available and thus this way cannot get through. Is it
possible to extract available information from the data
itself? Now let us answer this question. The deviation
of â from the actual vector due to the variance of λ (or
equivalently, the variance of η) can be characterized by
the following quantity:

δ Â(η) ≡ 1

N − 1

N−1∑
j=1

|âi j (η) − âi j (η + δη)|, (5)

where âi j (η) is the L1-RLS prediction for a specific η

value, and δη is a small positive variation. Figure 4c
shows the value of δ Â(η) as a function of η, where it
can be seen that the optimal parameter λopt for which
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Fig. 4 (Color online) Optimizability of L1- RLS: emergence of
optimal weighting parameter λopt. a Prediction error ε1 and b the
corresponding increment Δε1 versus η ≡ − log10 λ. c Value of
δ Â versus η, in which the beginning point (marked by the arrow)

of the large peak corresponds to the value η0 for which ε1 is min-
imized. Other parameters are T = 0.9N and σ̃ = 10−2. d–f The
average quantities corresponding to those in a–c, respectively,
over 500 realizations
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Optimizing optimization: accurate detection of hidden interactions 19

ε1 is minimized (Fig. 4a) is related to the starting point
of the large peak, as marked by the yellow arrow in
Fig. 4c. The value of λopt can then be estimated through
the following steps: (I) To calculate Y , M, and then â
based on Eq. (1), (II) to plot δ Â(η) as a function of η

(cf., Fig. 4c), and (III) to identify the startingpoint of the
large peak. In addition, for weak noise, two large peaks
of similar size can emerge. In this case, the second
peak can be chosen to determine the value of λopt. The
existence of an optimal value of λ thus makes L1-RLS
a powerful method for solving the data-based inverse
problemof active body systems in a noisy environment.

5 Relative entropy interpretation for L1-RLS

Theoretical insights into the emergence and determi-
nation of the optimal parameter λopt can be gained
through the concept of relative entropy [43]. In par-
ticular, Eq. (1) can be rewritten as

â ≈ argmin {||Y − M · a||22 + λ||a||1}. (6)

This form of objective function allows us to obtain
an explicit relation between optimizing L1-RLS and
the relative entropy minimization. Assume that the ele-
ments a j of the vector a follow the Laplace distribution
[44]: a j ∼ Laplace(0, b) for j = 1, 2, . . . , N −1. Fur-
ther assume Gaussian distribution for the elements ξm
of the bias vector ξ = Y − M · a: ξm ∼ N(0, σ 2) for
m = 1, 2, . . . , T . The weighted relative entropy for the
empirical distributions P(a) and P(ξ) with respect to
the model Laplace and Gaussian distributions [PL(a)

and PG(ξ), respectively] can be written as

H(a) = N · E[log P(a) − log PL(a)]
+ T · E[log P(ξ) − log PG(ξ)]

= −{N · E[log PL(a)] + T · E[log PG(ξ)]}+C

= −
⎡
⎣∑

j

log PL(a j ) +
∑
m

log PG(ξm)

⎤
⎦ + C

= [1/(2σ 2)](||Y − Ma||22 + (2σ 2/b)||a||1)+C

where C is a constant and E[·] denotes the expecta-
tion value. The weights N and T are the numbers of
samples for a and ξ , respectively. The parameter b char-
acterizes the sparsity of a: A sparser a corresponds to
a smaller value of b. Remarkably, the form of the rela-
tive entropy H(a) is identical to the objective function
in Eq. (6), suggesting that minimization of H(a) has a

similar effect as L1-RLS optimization in Eq. (1). This
similarity leads to λopt ∼ 2σ 2/b, a qualitative relation
of the optimal value λopt with the sparsity parameter b
and the noise strength σ . While the scaling relation for
λopt is obtained under the assumptions of PLaplace(a)

and PGauss(ξ), these distributions are the basic approx-
imations employed in the development of the compres-
sive sensing framework. The scaling relation indicates
that for sparser connection with larger noise variance
σ 2, the optimal value λopt generally takes on larger val-
ues, which coincides qualitatively with the numerical
results.

6 Summary and discussion

To summarize, we have developed an optimal compres-
sive sensing-based framework for uncovering hidden
connections (relationships) in pedestrian crowds based
on individual movement data. The framework naturally
inherits the appealing virtue of compressive sensing,
whichmeans the lowdata requirement. The remarkable
feature is, by incorporating L2 optimization into L1-
based compressive sensing, an optimal relative weight-
ing of the two types of optimization arises, at which the
framework can accurately predict the hidden network-
ing relationships even in the presence of strong noise.
We provide a practical method to estimate the opti-
mal weights. This overcomes a fundamental difficulty
in compressive sensing-based reconstruction method
[22] that noise causes severe performance degradation.
Active body systems arise in various fields of science
and engineering and are a class of complex dynami-
cal systems that have not been extensively studied. Our
optimized compressive sensing framework represents
the first attempt to address the inverse or reverse engi-
neering problem for such systems.

Our relative entropyperspective excavates the intrin-
sic connotation for the L1-RLS optimization, and the
relationship λopt ∼ 2σ 2/b we obtained has practical
significance in promoting the feasibility of compres-
sive sensing for real-world systems with noise. In the
L1-RLS optimization as Eq. (1) shows, the L1 term
is rooted in the fact that the solution to the problem
is known a priori to be sparse and can be roughly
described by Laplacian distribution, while the L2 term
is presented based on the central limit theorem which
states that the system noise can be approximated as
Gaussian. Actually, the framework we proposed for the
given original inverse problem can also be extended to
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more general cases, rather than limited to the form of
Eq. (1). It depends onwhat the specific prior knowledge
is. What is more, as the objective function is designed
through combining different characteristics of the sys-
tem according to the particular prior knowledge and
the minimum relative entropy principle, our optimiza-
tion technique can be adopted based on an appropriate
weight parameter to explore the better optimal solution,
namely to optimize optimization.
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