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Abstract The asymptotic attractors of a nonlinear
dynamical system play a key role in the long-term
physically observable behaviors of the system. The
study of attractors and the search for distinct types of
attractor have been a central task in nonlinear dynam-
ics. In smooth dynamical systems, an attractor is often
enclosed completely in its basin of attraction with a
finite distance from the basin boundary. Recent works
have uncovered that, in neuronal networks, unstable
attractors with a remote basin can arise, where almost
every point on the attractor is locally transversely
repelling. Herewith we report our discovery of a class
of attractors: partially unstable attractors, in pulse-
coupled integrate-and-fire networks subject to a peri-
odic forcing. The defining feature of such an attrac-
tor is that it can simultaneously possess locally stable
and unstable sets, both of positive measure. Exploiting
the structure of the key dynamical events in the net-
work, we develop a symbolic analysis that can fully
explain the emergence of the partially unstable attrac-
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tors. To our knowledge, such exotic attractors have not
been reported previously, and we expect them to arise
commonly in biological networks whose dynamics are
governed by pulse (or spike) generation.
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1 Introduction

A variety of physical, biological, and chemical pro-
cesses can be described by dissipative dynamical sys-
tems, for which the asymptotic behaviors are deter-
mined by attractors—a fundamental class of dynami-
cal invariant sets. The concept of attractor plays a piv-
otal role in the development of nonlinear dynamics and
chaos theory [1], and it is also important for understand-
ingmany fundamental phenomena in nature. For exam-
ple, the computational capability for neural networks
is determined essentially by the attractors [2]. Multi-
ple attractors may coexist, where an essential goal is to
analyze the related global dynamics [3,4].

Attractors in nonlinear dynamical systems are often
asymptotically stable in the sense that they “attract”
nearby initial conditions.Associatedwith an attractor is
its basin of attraction, where an initial condition in this
region leads to a trajectory that approaches the attractor
asymptotically. There can be another type of attractors
for which does not require the local stability. Mathe-
matically, such an attractor can be defined in terms of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3490-5&domain=pdf
http://orcid.org/0000-0002-1797-1642


H.-L. Zou et al.

its basin measure that must still be positive in order
for it to attract initial conditions. These are the Mil-
nor attractors [5], which are typically chaotic, possess
locally unstable directions, and have strength zero [6].
One class of Milnor attractors are those with a riddled
basin [7–23]. Specifically, for such an attractor, there
exists a set of measure-zero points on it with trans-
versely unstable dynamics. Because of the “repulsion”
in the transverse direction, infinitesimally away from
the attractor there is a set of positive measure, initial
conditions from which approach asymptotically some
different, coexisting attractor in the phase space. As a
result, for any initial condition attracted to the Milnor
attractor, there are initial conditions arbitrarily nearby
that generate trajectories toward another attractor. The
basin of theMilnor attractor is thus riddledwith “holes”
that belong to the basin of the other attractor; hence, the
term riddled basins [7–23].

A different type of Minor attractors is unstable
attractors, which constitute locally unstable saddles
but with a “remote” basin of positive measure [24,25].
Such attractors are ubiquitous in a generic class of bio-
logical systems: networks of pulse-coupled integrate-
and-fire oscillators, which have been studied exten-
sively for the collective dynamics of biologically real-
istic networks [26–31]. For example, such model has
been widely used to study the emergence of irregular
states [32–38] and the stabilities of various dynami-
cal states [39–42]. For the unstable attractors, there are
generic dynamical events that can make the phase dif-
ferences among the oscillators grow, effectively driv-
ing the system away from the unstable attractor [43].
The existence of unstable attractors in pulse-coupled
integrate-and-fire oscillator networks has been estab-
lished for four [44] and an arbitrary number of globally
coupled oscillators [45].

An advantage of unstable attractors, due to their
unstable local dynamics, is that they can be exploited
for control and information processing. In particu-
lar, points arbitrarily close to an unstable attractor
can approach another unstable attractor, forming het-
eroclinic connections [46–48]. As a result, switching
among the attractors can occur following the natural
dynamical evolution, into which information reflect-
ing the input signal can be encoded [49]. If the system
possesses a large number of unstable attractors, they
can form a complex network through heteroclinic con-
nections in the phase space, which can be exploited
for complex logical computation [49,50]. In addition,

the unstable attractors can display certain metastable
phenomena and be used to identify the input driven
dynamics [51].

The unstable attractors reported in previous works
all have a common feature: Their local dynamics are
purely unstable. In this paper, we report our finding of
a novel class of attractors: They possess both unstable
and stable local dynamics. In particular, we investigate
systems of pulse-coupled integrate-and-fire oscillators
subject to a periodic driving force [52] and uncover
attractors that exhibit two distinct types of response to
perturbation: stable and unstable. We name the attrac-
tors partially unstable attractors. There is a key differ-
ence between the partially unstable attractors reported
in this paper and the attractors with a riddled basin: For
the former, the set of unstable local points on the attrac-
tors has a finite measure while for the latter, the set has
measure zero. We shall demonstrate that the dynamical
origin of the partially unstable attractors can be fully
understood through analyzing the dynamical events.
In addition to being fundamental to the dynamics of
integrate-and-fire networks, partially unstable attrac-
tors can be advantageous from the standpoint of con-
trol, as the existence of both locally unstable and stable
dynamics offers richer possibilities for control.

This paper is organized as follows: In the second sec-
tion, we describe the model and the simulation method
for the system; in the third section, we show examples
of partially unstable attractors; in the fourth section,
we investigate the effect of parameters on the emer-
gence of partially unstable attractors and show that
these attractors exist in systems with various sizes or
different coupling topologies; in the fifth section, the
symbolic events are used to understanding these attrac-
tors; finally, the conclusion and discussion are drawn.

2 Networks of pulse-coupled integrate-and-fire
oscillators subject to periodic force

2.1 Description of the model

Networks of pulse-coupled integrate-and-fire oscilla-
tors arise commonly in neuronal systems where, for
example, each unit can be a particular type of neu-
ron [25]. The dynamics of an individual integrate-and-
fire oscillator is equivalent to that of a phase oscilla-
tor, and the phase variable can be obtained through
a nonlinear transformation [25,26]. Previous studies
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focused on the case where the driving or stimulation to
each oscillator is constant so that the resulting attractors
are usually of period one (with respect to an arbitrar-
ily chosen reference oscillator) [24,43–45]. In realistic
situations, more complicated driving can be expected.
For example, in biological systems periodic forcing is
common. We thus set out to investigate the dynamics
of networks of integrate-and-fire oscillators subject to
a periodic forcing [52]. In this case, periodic attractors
with various periods can be generated.Mathematically,
such a system of N oscillators can be described by

dVi
dt

= −γ Vi + I + B cos (ωt) +
N∑

j=1

∑

k∈Z

+ εi, jδ
(
t − t sj,k − τ

)
, (1)

where Vi denotes the state of oscillator i and γ accounts
for the dissipation or leaky effect [52], which is fixed
to be unity in our study. The parameter I is the constant
bias of the applied current, B cos (ωt) is the external
periodic driving current of frequency ω and amplitude
B, and the function δ(·) is the Dirac delta function.
When the state of the i th oscillator reaches a threshold
(conveniently set to unity), its state is reset to zero and
a pulse is generated. The pulse will be received, after
a time delay τ , by other oscillators that have incom-
ing links from oscillator i . The summation term on the
right-hand side of Eq. (1) accounts for the action of
pulses from other oscillators on oscillator i , where εi, j
is the normalized coupling strength from oscillator j
to oscillator i : εi, j = ε/ki with ki being the number
of incoming links of oscillator i . The normalization is
essential to the study of network collective dynamics
such as synchronization [39]. For a globally coupled
network, any two oscillators are coupled but self-links
are excluded. Thus, we have εi, j = ε/(N − 1) for
i �= j . To be concrete, in this paper we consider exci-
tatory coupling, i.e., ε > 0.

2.2 Dynamics of free evolution

For each oscillator, there are two distinct dynamical
events: It can generate pulses when its state reaches
the threshold or receive pulses from other oscillators.
Between two successive events, the stateVi of oscillator
i evolves freely according to

dVi
dt

= I + B cos (ωt) − Vi , (2)

the solution of which is

Vi (t) = Ce−t + B[ω sin (ωt) + cos (ωt)]
1 + ω2 + I. (3)

Here C is a parameter determined by a specific initial
condition. Suppose that the state of oscillator i at time
ta is V a

i < 1. With this initial condition, we can get an
explicit solution of Eq. (3). For convenience, we define
a function F(t, ta, V a

i ):

F(t, ta, V
a
i ) = Bω sin (ωt) + B cos (ωt)

ω2 + 1
+I − eta−t {−V a

i

+ Bω sin (ωta) + B cos (ωta)

ω2 + 1
+ I,

so that the solution under the initial condition (ta, V a
i )

can be expressed as

Vi (t) = F(t, ta, V
a
i ). (4)

The solution will be used in simulating the system
dynamics.

2.3 Firing time and simulation of the system

The dynamics of the pulse-coupled integrate-and-fire
system is composed of free evolution, which entails
integrating Eq. (2), and frequent disturbances from
dynamical events such as firing and arrival of pulses.
It is essential to determine the firing time t f due to the
free evolution through Eq. (4). To do so one first iden-
tifies a time interval with two end points, at which the
states values are smaller and larger than the threshold,
respectively. The underlying oscillator, say i , can fire
during this interval due to the free evolution. One then
applies a bisection technique to systematically reduce
the length of the time interval to locate the firing time
accurately.

A simple bisection algorithm is as follows. For oscil-
lator i with state Va

i < 1 at ta , one first advances the
state according to Eq. (4) with a small initial time step
h0 = 0.01 until the state value exceeds unity, say at
time tR . Let tL = tR − h0 denote the time when the
corresponding state is below unity. The true firing time
iswithin the interval [tL , tR].One then applies bisection
to gradually reduce the time interval [tL , tR]. Specifi-
cally, one obtains the value Vi (tM ) = F(tM , ta, V a

i )

for the middle time tM = (tL + tR)/2. If the state
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is below unity, one updates tL = tM . Otherwise, one
has tR = tM . The length of the interval becomes
h1 = h0/2. This bisection process can be applied repet-
itively until the length of the interval tR − tL is smaller
than a small precision value, e.g., 10−14. The final time
tR is recorded as the next firing time t f . For a network
of oscillators, the oscillator with the largest state value
can be chosen to determine t f .

Simulation of the system can be described as fol-
lows. The firing and arrival of pulses are the two types
of events that interrupt the free evolution. It is conve-
nient to use a vector V (t) to represent the states of all
oscillators at time t .

Step 1 Determine the next firing time t f for the system
due to free evolution. The oscillator with the
largest state will reach the threshold first due
to the free evolution. Then, choose the oscilla-
tor with the largest state at time t and determine
the next firing time t f using the bisection tech-
nique.

Step 2 Compare t f with the next time tr of pulse
receipt. If t f < tr , go to Step 3, otherwise go
to Step 4. In the case where no pulse is wait-
ing to be processed, which can occur when all
pulses have been received or no pulse has been
generated yet, go to Step 3.

Step 3 The next event is that one or more oscillators
fire at time t f , given that the state of oscillator i
is Vi (t) at time t , for i = 1, 2, . . . , N . Update
the state at t f using F(t f , t, Vi (t)) for each
oscillator i , record the pulses when the state
of an oscillator reaches the threshold, and reset
the state of the corresponding oscillator to zero.
Finally the time t is updated to t f .

Step 4 The next event is the arrival of pulses at time tr ,
given that the state of oscillator i isVi (t) at time
t , for i = 1, 2, . . . , N . First update the state at
time tr using F(tr , t, Vi (t)) for each oscillator
i . Calculate the increment Ei for the state of
each oscillator i . Here Ei = ∑

k∈A εik , where
A denotes the set of oscillators whose pulses
are received at the current time tr . Then, update
the states of oscillators with the increments,
such as Vi = Vi + Ei for oscillator i . When
some oscillators reach the threshold, record the
pulses and reset the states of these oscillators
to zero. Update the time to t = tr .

3 Partially unstable attractors

3.1 Attractors under the return map

Any periodic attractor of system (1) lives in a high
dimensional phase space with an uncountably infinite
number of points (versus a steady state that contains a
single point). To analyze a large number of periodic
attractors directly is challenging, but the method of
Poincaré surface of section provides an effectiveway of
probing into the dynamics [1]. Specifically, wemonitor
the state of the whole coupled system when a reference
oscillator, e.g., oscillator 1, resets itself, effectively gen-
erating a Poincaré map or, equivalently, a return map.
The map evolves the state of the system right after the
reset of the reference oscillator to that of the system
immediately after the next reset. Under the return map,
a periodic attractor is composed of a finite number of
points, where each point corresponds to the states of
oscillators of the form (0, V2, . . . , Vi , . . . , VN ),withVi
being the state of oscillator i (V1 = 0 because oscillator
1 is the reference oscillator). The return map approach
has been widely used to analyze the dynamics of gen-
eral pulse-coupled systems [24,25,43,44,46,47].

Under the return map, the attractors of the system
canbe assessed through the local dynamics of the points
that constitute each attractor. For each point, we exam-
ine the trajectories starting from a small neighborhood
about the point to determine the Lyapunov stability.
For example, a period-one attractor corresponds to a
single point on the Poincaré surface of section. If there
exists a neighborhood fromwhich almost all the trajec-
tories starting diverge, this point is unstable. An unsta-
ble fixed point with a positive measure of the basin is
a period-one unstable attractor [24]. On the contrary, if
there exists a neighborhood such that all the trajecto-
ries originated from it stays inside asymptotically, this
point is stable. Note that, a periodic attractor of period-
M corresponds to a sequence of M points under the
return map, repeating themselves after every M resets
of the reference oscillator. It is equivalent to a fixed
point of the M th iterated map.

3.2 Locating partially unstable attractors

We describe how to locate partially unstable attrac-
tors numerically following the Lyapunov criterion. One
needs to monitor the dynamical evolution of random
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instantaneous perturbation to a point within an attrac-
tor. The perturbation can be generated in two steps.
First, the perturbed value δ̃i for oscillator i is randomly
chosen from the interval δ̃i ∈ [−0.5, 0.5]. Second, we
rescale the perturbation as

δi = Dδ̃i

/ N∑

i=1

|δ̃i |, (5)

where D is the strength of the perturbation. Generally,
D should be larger than the uncertainty in determining
the firing time, which is on the order of 10−14. We then
vary the value of D from, say, 10−13 to 10−10. After
applying the instantaneous perturbation, the initial dis-
tance between the perturbed and the original trajecto-
ries is d0 = ∑N

i |δi | = D. To determine the stability,
it is necessary to monitor the dynamical evolution of
the distance.

Specifically, for a point P within an attractor of
period M , one requires computation of the trajecto-
ries starting from the neighborhood of P . A neigh-
boring point X can be chosen as Xi = Pi + δi for
i = 1, 2, . . . , N . Starting from X , one calculates a
trajectory of length L = 500, where each point on
the trajectory is the state of the system at every M
resets of the reference oscillator. The initial distance
is d0 = ∑N

i |δi |, where the distance for any two points
Y and Z is defined as d = ∑N

i |Yi − Zi | and d0 = D
according to the rescaling process [see Eq.(5)]. One
then measures the distance between each point on the
trajectory and P . This allows one to investigatewhether
the distance is always smaller than d0 or at some time
exceeds d0.

To determine the local stability of point P , one ran-
domly chooses a number (e.g., nL = 30) of neighbor-
ing points, and record the states after every M resets of
the reference oscillator 1. This generates nL trajecto-
ries. If all the tested trajectories stay within P’s neigh-
borhood, it is stable. However, if all the trajectories
leaves this neighborhood eventually, the point is unsta-
ble. Repeating this procedure, one can locate all the
locally stable and unstable points for the attractor. A
simple criterion to locate the partially unstable attrac-
tors is according to its definition: A partially unstable
attractor has at least one unstable point, while other
points are stable.

3.3 Emergence of partially unstable attractors

The emergence of partially unstable attractors is coun-
terintuitive. In particular, for a smooth dynamical sys-
tem, the points belonging to a periodic attractor of
period-M possess the same stability because they all
correspond to exactly the same fixed point of the M th
iterated map. What is then the difference between an
unstable attractor and a partially unstable attractor? By
definition, almost all trajectories from a neighborhood
of an unstable attractor diverge from it, excluding the
possibility of existence of any stable point.

A simple example. The simplest partially unstable
attractor has period two, where one point is unstable
and another is stable. Figure 1 shows an example of
such an attractor in a system of N = 4 globally cou-
pled integrate-and-fire oscillators. After the system set-
tles into this attractor, we let the system evolve with-
out perturbation for L , say 10, periods (correspond-
ing to 2L resets of the reference oscillator). We then
introduce instantaneous perturbation separately to the
states of oscillators just after 2L + 1 and those just
after 2L + 2. Perturbation to the states of oscillators
just after the 22nd (i.e., L = 10) reset of reference
oscillator 1 makes the system approach a new attractor,
as shown in Fig. 1a. This means that the corresponding
point of the attractor is an unstable point. In order to
show such process intuitively, we also measure the dis-
tance between the point on the perturbed trajectory to
the original attractor. For example, the i th point on the
perturbed trajectory is denoted by Pi . An attractor with
period m is represented by m points, where each point
is denoted as Qi . The distance between point Pi and
the attractor is d = min j

∑N
i |Pi (k) − Q j (k)|. Here

Pi (k) and Q j (k) denote the state of oscillator k for the
i th point on the perturbed trajectory and the j th point
on the attractor, respectively. The distance between the
corresponding point on the perturbed trajectory and the
original attractor is shown in Fig. 1b,where the distance
finally becomes large, signifying the unstable nature of
this point. The attractor, however, is stable with respect
to perturbation on the other periodic point, as shown
in Fig. 1c, with the corresponding distance sequence
displayed in Fig. 1d. The system deviation from the
periodic point due to the perturbation at the position
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(c)(a)

(b) (d)

Fig. 1 Responses of the instantaneous perturbation applied sep-
arately to an unstable and a stable point of a period-2 partially
unstable attractor. Perturbation of strength D = 10−10 is applied
at the position indicated by the arrow. In panels a and c, the
states V of all oscillators versus the discrete time n (correspond-
ing to the nth reset of the reference oscillator 1) are shown. The
state evolution of oscillators 1 and 3 is represented by the lower
curve near zero, while the upper curve is for the evolution of
oscillators 2 and 4. a Instantaneous perturbation on one point of

the attractor can make the system approach a new attractor (see
text for a detailed explanation). b The sequence of distance d for
the trajectory in a to the partially unstable attractor. c The stable
response of the instantaneous perturbation on another point of
the attractor. d The corresponding sequence of distance for the
trajectory in c to the partially unstable attractor. The parameters
of the system are N = 4, τ = 0.14, ε = 0.3, B = 1.6, I = 3,
and ω = 10

of the arrow becomes zero after one reset of the refer-
ence oscillator, indicating the stable nature of the point.
Physically, this is due to the passive firing on which the
perturbation has little effect.

A complex example. For a partially unstable attractor
with a period larger than two, the numbers of stable and
unstable points can vary, and these two types of points
can be mixed in a complicated way. Figure 2 shows a
partially unstable attractor of period 36 in a system of
N = 4 globally coupled oscillators, where the unstable
points are highlighted in gray (the remaining points are
stable). The system state is robust against perturbation
to the stable points, as shown in Fig. 2b. However, per-
turbation to the unstable points can make the system
transition to new attractors, as shown in Fig. 2c, d.

To locate the partially unstable attractors with long
periods can be extremely computationally demanding,
as it is necessary to examine each point’s local dynam-
ics. It has been known that periodic orbits of long peri-

ods are typical in the forced integrate-and-fire oscilla-
tors [52], and even quasiperiodic attractors can emerge.
Thus,we focus on partially unstable attractors of period
2 to address the issues of their existence and dynamical
origin.

4 Typicality and robustness of partially unstable
attractors

4.1 Partially unstable attractors under various
parameters

We first identify the regions in the parameter plane
(τ, B) in which period-2 partially unstable attractors
arise, for fixed ω = 10, I = 3, ε = 0.3, by calculating
the fraction f pua of initial conditions that lead to these
attractors. The f pua is obtained by using 200 random
initial conditions. The results are shown in Fig. 3a. We
see that, in the parameter plane, the probability for gen-
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(a)

(b) (c) (d)

Fig. 2 Partially unstable attractor of period 36. a Temporal evo-
lution of all oscillators associated with a partially unstable attrac-
tor of period 36,where the unstable points are highlighted ingray,
and the remaining points are stable. b The stable response of the
system to perturbation applied at the position of the arrow. c, d

Perturbation to the unstable point can make the system approach
different attractors. Here time is represented by the nth reset of
the reference oscillator 1, and the strength of the perturbation
D = 10−12. System parameters are N = 4, τ = 0.2, ε = 0.3,
B = 1.48, I = 3, and ω = 10

Fig. 3 Parameter dependence of partially unstable attractors.
For a system of N = 4 oscillators, the dependence of the proba-
bility of partially unstable attractors of period two on parameters
τ and B. a The fraction of initial conditions, f pua , that lead
to these attractors. The number of random initial conditions for
each pair of parameters, (τ, B), is 200. bDependence of f par on

parameters B andω, where f par is the relative size of the param-
eter region in (τ, ε) with period-2 partially unstable attractors.
The two dashed lines indicate the estimated region for ω. Other
parameters are ε = 0.3, I = 3, and ω = 10. The strength D
of the perturbation is randomly chosen from the range [10−13,
10−10]

erating period-2 partially unstable attractors is appre-
ciable.

We next turn to the parameterω, the frequency of the
applied current that defines an external timescale. An

individual oscillator has its own timescale associated
with its local dynamics, i.e., the time of free evolution
from the reset to the next firing. It is useful to determine
the relation between the two timescales, which can be
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done by analyzing the period of the free dynamics. Sup-
pose that oscillator i resets at ta with state V a

i = 0. The
dynamics of free evolution can be obtained fromEq. (4)
as

Vi (t) = Bω sin (ωt) + B cos (ωt)

ω2 + 1

+ I − eta−t
{
Bω sin (ωta) + B cos (ωta)

ω2 + 1
+ I

}
.

(6)

The time duration Td before the threshold is reached
again is Td = t − ta for Vi (t) = 1. The first term on
the right-hand side of Eq. (6) can be written as

Bω sin (ωt) + B cos (ωt)

ω2 + 1
= B√

ω2 + 1
sin (ωt + θ),

(7)

where θ = arctan (1/ω). The maximum value of this
term is about B/ω. The effect of this term on Td can
be neglected, if B/ω is much smaller than I , leading
to Vi (t) ≈ I − eta−t I . We thus have

Td ≈ log

(
I

I − 1

)
. (8)

For the applied current with the frequency ω, the
timescale is Tω = 2π/ω. We can then investigate
the interplay between Td and Tω for period-2 partially
unstable attractors, where each oscillator resets itself
two times during Tω time duration. Since Td only takes
into account the free evolution and the arrival of pulses
can increase the state value, we have 2Td > Tω.We can
then estimate the maximum value of Td . The partially
unstable attractors typically emergewhen the total cou-
pling strength ε is relatively small as comparedwith the
threshold value. In this case, the value of Td should be
smaller than Tω so the states of oscillators can become
close to the threshold. This way, oscillators can fire
when receiving pulses during the time duration of Tω.
The relation between Td and Tω is thus 2Td > Tω > Td
or

π/Td < ω < 2π/Td . (9)

To demonstrate this result, we choose a large number
of parameter points in the parameter plane (B, ω). For
each point, we measure the relative size f par of the
regions in another parameter plane, (τ, ε), in which

partially unstable attractors arise. In the simulations,
the ranges of τ and ε are set to be 0.05 � τ � 0.5 and
0.05 � ε � 0.5, respectively, which are covered by
a 46 × 46 grid, so we have f par ≈ Mpua/(46 × 46),
where Mpua is the number of parameter points under
which period-2 partially unstable attractors exist. For
any given set of parameter values, we use 200 ran-
dom initial conditions in the phase space to determine
whether there exists any period-2 partially unstable
attractor. In particular, onlywhen none of the 200 initial
conditions leads to such an attractor do we deem that
there is no partially unstable attractor for this parameter
set. The quantity f par is essentially the probability of
generating partially unstable attractors in the parame-
ter plane (τ, ε) for any given values of B and ω. Fig-
ure 3b shows the dependence of f par on the parameters
(B, ω), which gives direct evidence that period-2 par-
tially unstable attractors exist in the region as predicted
by Eq. (9), verifying the role of the interplay between
the timescale of the individual oscillators and that of
the external current in inducing such attractors.

4.2 Systems of different sizes and different coupling
structures

Does the emergence of partially unstable attractors
depend on the system size N? To address this question,
we examine the (N , ε) parameter plane while fixing
other parameters as I = 3, b = 1.6, ω = 10, and
τ = 0.14 (the latter four parameters are the same as in
Fig. 1). For eachparameter point in the parameter plane,
we calculate the fraction f pua from an ensemble of 200
random initial conditions that lead to period-2 partially
unstable attractors. Figure 4a shows the dependence of
f pua on the system size N and the normalized coupling
strength ε. We see that the partially unstable attractors
arise persistently in a wide range of the system size.

Would the coupling structure or network topology
affect the occurrence of partially unstable attractors?
For convenience, we use the density ρ of directed links,
defined as ρ = m/[N (N − 1)], to characterize the
coupling structure of the network, where N (N − 1)
is the number of links in a globally coupled network
and m < N (N − 1) directed links are generated with
each being placed between a pair of randomly selected
oscillators. We focus on the parameter plane (ρ, ε) and
calculate, for each point in the plane, the fraction f pua
of 200 random initial conditions that lead to partially
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Fig. 4 Existence of partially unstable attractors in globally cou-
pled networks of various sizes and in non-globally coupled net-
works. a Dependence of f pua on the parameters N and ε for
τ = 0.14, I = 3, ω = 10, and B = 1.6 in globally coupled
systems. The nonzero value of f pua demonstrates that partially
unstable attractors exist in systems of varying sizes. b Depen-

dence of f pua on ρ, the density of links, and ε for N = 60,
τ = 0.14, I = 3, ω = 10, and B = 1.6, which indicates that
partially unstable attractors can exist for non-globally coupled
networks of different values of the density of links. In both pan-
els, f pua denotes the fraction of initial conditions that lead to
partially unstable attractors of period 2

unstable attractors. Ensemble average with 30 network
realizations is used. Figure 4b shows f pua versus the
density of links ρ and the normalized coupling strength
ε. Again, we find that partially unstable attractors are
ubiquitous even when the network topology deviates
from that of global coupling.

5 Dynamical origin of partially unstable
attractors: event-based analysis

5.1 Symbolic events

There are two basic events associated with the dynam-
ics of pulse-coupled integrate-and-fire networks: firing
and receipt (arrival) of pulses. The events play a key
role in understanding the collective dynamics such as
the source of instability of unstable attractors [43] and
as well as the classification of multiple attractors [53].
We exploit the two events to gain an understanding of
the structure of partially unstable attractors in terms of
the formation of the stable and unstable local dynamics.

Some basic notations for the events are as follows.
When a pulse from oscillator i is received by an oscil-
lator in the network, this event is denoted as Ri . A pulse
will be fired (or generated) when oscillator j reaches
its threshold, and this event is labeled as S j . The events
occurring at different times are separated by a minus
sign. The firing events are of particular importance,
where the firing may be due to the arrival of pulses

immediately, or caused by the free dynamical evolu-
tion of the oscillator toward its threshold. In the former
case, the event is called passive firing, where the arrival
of pulses immediatelymakes the state value higher than
the threshold. In the latter case, the firing occurs during
the free evolution and is thus termed active firing. The
effect of instantaneous perturbation on the state of an
actively firing oscillator is to cause a small change in the
firing time. For example, the sequence of events labeled
as “R1S2 − R2 − S3” denotes three events occurring at
three different times. First, R1S2 represents the arrival
of a pulse from oscillator 1, inducing the firing of oscil-
lator 2. Hence, S2 is a passive firing event. Second, the
pulse from oscillator 2 is received (R2). Third, oscil-
lator 3 reaches its threshold and fires: S3—an active
firing event.

5.2 Event structure of a partially unstable attractor

How do partially unstable attractors arise and what
are their event structures? For simplicity, we study the
event structure associated with the period-2 partially
unstable attractor presented in Fig. 1. The correspond-
ing events are

R2R4−R1R3S2S4−R2R4S1S3, and R1R3−S2S4−S1S3.

(10)

Each sequence of events corresponds to the events
occurring during the time from the reset of the reference
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Fig. 5 Event analysis of a
period-2 partially unstable
attractor. For N = 4,
τ = 0.14, ε = 0.3, B = 1.6,
I = 3, and ω = 10, the
alternating current
I + B cos(ωt) (upper
panel) and the state variable
V (lower panel) of all
oscillators versus time t
associated with a partially
unstable attractor.
Oscillators 1 and 3 are
synchronized, so are
oscillators 2 and 4. The
states immediately after
every event are specified as
red dots or green triangles.
The corresponding values of
the current are indicated by
the vertical dashed lines

oscillator 1 to the next reset. One property of the event
structure (10) is that multiple oscillators become simul-
taneously active firing or simultaneously passive firing
at different times during one period, due to the role
played by the alternating driving current. To demon-
strate this, in the upper and lower panels of Fig. 5 we
show, respectively, the time series of the applied current
I + B cos(ωt) and the states of the oscillators associ-
ated with the partially unstable attractor in Fig. 1. The
states immediately after the events are shown in dots
and triangles. The corresponding values of the alternat-
ing current are indicated by the vertical dashed lines.

To demonstrate the role of alternative current in
shaping the structure (10), we first consider the time
interval Δt1 indicated in the upper panel of Fig. 5,
where the event is from passive firing (R1R3S2S4) to
active firing (S2S4). Oscillator 2 or 4 first receives a
pulse after a time delay τ (R2R4S1S3) and then two
pulses after another time delay τ (R1R3). During the
time interval, the applied current is relatively small and
thus contributes little to changing the state of oscillator
2 or 4. As a result, both oscillators 2 and 4 can gener-
ate active firing. Now consider the time duration Δt2,
where the event is from active firing (S2S4) to passive
firing (R1R3S2S4). Oscillator 2 or 4 receives a pulse
at time τ later (R2R4), and then two pulses at another
time tw later (R1R3S2S4), where tw < τ . During Δt2,

the applied current is appreciable, so it drives the state
of oscillator 2 or 4 to a large value, generating passive
firing at the arrival of pulses from oscillators 1 and 3
(R1R3S2S4).

Intuitively, the effect of external driving on the state
of each oscillator depends on time, due to the time
varying nature of the driving current. In different time
intervals, the rate of increase in the state value for each
oscillator can then be different. A strong current can
induce a large state change, which in turn can lead to
passive firing, as the driving can push the correspond-
ing oscillator toward the threshold. However, a weak
current tends to give rise to active firings. An essential
feature for partially unstable attractors is that multi-
ple oscillators can become simultaneously active firing
and simultaneously passive firing in different intervals
during one period of the driving. As we demonstrate
below, such an event structure is directly related to the
coexistence of stable and unstable points on the attrac-
tor.

5.3 Understanding stable and unstable response

We then use the event structure to understanding the
occurrence of the stable and the unstable point for the
attractor shown in Fig. 1 with event structure (10).
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Under the return map, the attractor is composed of two
points: P and Q. Right after the first event sequence,
the state of the system is P , while Q is the state of the
system immediately after the second event sequence.
Here we let the system evolve for L = 10 periods after
the system settle into the attractor. Then, points Q and
P correspond to the states of oscillators at the 21st and
22nd reset of the reference oscillator, respectively. The
unstable and stable points are P and Q, respectively,
which can be established, as follows.

To ascertain that point P is unstable, we apply per-
turbation to it, which is the state of the system right after
the first sequence of events. Perturbation will affect the
second sequence of events R1R3−S2S4−S1S3. In par-
ticular, due to the perturbation, the two simultaneously
active firings S2S4 and S1S3 will be split into four single
active firings. We find that the split of the event S1S3 is
key to the emergence of the unstable local dynamics.
Without perturbation, the pulses from oscillators 1 and
3 are received simultaneously and induce passive fir-
ing of oscillators 2 and 4—hence the event R1R3S2S4.
The states of oscillators 2 and 4 right before the R1R3

event are about 0.9821. Since the pulse strength is 0.1
and the threshold is 1, if δ3 > δ1, oscillators 2 and
4 will receive one pulse first (R3), which is sufficient
to make them reach the threshold. The two oscillators
then receive an extra pulse from oscillator 1 as com-
pared with the case where there is no perturbation. This
process can cause the system to transition to a remote
state in the phase space. As a result, point P is unstable.
A detailed description of the events in response to the
perturbation is provided in Table 1. Note that the split
of S2S4 is not relevant, because the perturbation has
little effect on oscillators 2 and 4 due to their passive
firings (R3S2S4) during the 24th reset of the reference
oscillator, as shown in Table 1.

To determine that point Q is stable, we apply
instantaneous random perturbation (δ1, δ2, δ3, δ4) to
the states of the four oscillators, right after the reset
of oscillator 1, and examine the effect of the perturba-
tion on the first event sequence R2R4 − R1R3S2S4 −
R2R4S1S3, where all four oscillators fire passively. For
example, R1R3S2S4 denotes the event that oscillators
2 and 4 fire passively due to the arrival of pulses from
oscillators 1 and 3. Immediately before the occurrence
of this event, the states of oscillators 2 and 4 are slightly
different due to the perturbation. Right after the event,
the states of these twooscillators are reset to zero, effec-
tively removing the effect of the perturbation. Similarly,

Table 1 Detailed description of events associated with the pro-
cess that instantaneous perturbation is applied after the 22nd reset
of the reference oscillator 1

Time n Events

18 R2R4 − R1R3S2S4 − R2R4S1S3

19 R1R3 − S2S4 − S1S3

20 R2R4 − R1R3S2S4 − R2R4S1S3

21 R1R3 − S2S4 − S1S3

22 R2R4 − R1R3S2S4 − R2R4S1S3

23 R1R3 − S4 − S2 − S3 − S1

24 R4 − R2 − R3S2S4 − R1 − R2R4S1S3

25 R1R3 − S2S4 − S1S3

26 R2R4 − S2S4 − R1R3 − R2R4S1S3

27 R1R3 − S2S4 − R2R4S1S3

28 S2S4 − R1R3 − R2R4S1S3

29 R1R3 − S2S4 − R2R4 − S1S3

30 S2S4 − R1R3 − R2R4S1S3

The perturbation drives the system away from the attractor. Here
time n denotes the nth reset of the reference oscillator 1

the effect of δ1 and δ3 also disappears immediately after
the R2R4S1S3 event. Due to the passive firings, point Q
is stable, i.e., the sequence of the arrival pulses for each
oscillator will not be affected by perturbation applied
to Q. Thus, the perturbation in this case cannot change
the event structures.

5.4 Event structure in larger systems

We then study the event structures of period-2 partially
unstable attractors in large globally coupled systems.
The states of oscillators associated with an attractor in
large systems are composed ofmultiple clusters, analo-
gous to the partially unstable attractor with two clusters
(Fig. 1) for a system of size N = 4. Oscillators in each
cluster have the same applied current and receive the
same number of pulses at each arrival of pulses. The
occurrence of the cluster structures is mainly due to
the excitatory couplings. Suppose that some oscilla-
tors with states close to the threshold. At the arrival
of some pulses at one time, these oscillators can reset,
i.e., their states become zero, inducing one cluster for
these oscillators. One can use such cluster structures to
simplify the representation of the event structure for the
whole system, where oscillators in the same cluster can
be regarded as one group. In this way, the event struc-
tures for different systems may have similar structures,
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Table 2 Examples of event structure for partially unstable
attractors in a globally coupled oscillator system of size N = 60.
Other parameters are τ = 0.14, I = 3, ω = 10, and ε = 0.25.
The oscillators with a synchronized state are regarded as belong-
ing to one group. The number of groups determines the number
of clusters in the phase space

i th Event

1 RB − RASB − RB SA − RA − SB − SA

2 RB SC − RASB − RC − RB SA − RA − SC −
SB − RC − SA

3 RB − RA − SD − SC − RDSB − SA − RC SD −
RB − RASC − RDSB − RC SA

4 RC SD − RB SC − RA − RD − RC SB − RB SA −
SD − SC − RA − RD − SB − SA

5 RC SD − RB − RASC − SB − RD − RC SA −
RB − RA − SD − SC − RDSB − SA

The events of partially unstable attractors can be represented in
terms of groups denoted as A, B, C , D, and so on. Five types
of event structures are identified for the 238 period-2 partially
unstable attractors obtained from 500 random initial conditions

which can in turn be useful to understand the partially
unstable attractors in large systems.

As a concrete example, we analyze the event struc-
tures for a system of N = 60 globally coupled oscil-
lators. Due to the symmetry of the system and its high
dimensionality, a large number of period-2 partially
unstable attractors can arise. In the representation based
on groups, two distinct attractors can have the same
event structure, if the corresponding groups of oscilla-
tors exhibit the same sequenceof events.However, indi-
vidual oscillators for a group can be quite different, as
the corresponding attractors are different. In this way,
the types of event structures can be much fewer than
the number of partially unstable attractors. For exam-
ple, from 500 random initial conditions, we obtain 238
such attractors, but there are only 5 distinct types of
event structure, as listed in Table 2.

For the first example in Table 2, the system has
two clusters and the oscillators are organized into two
groups: A and B. Note that for different period-2 par-
tially unstable attractors, group A or B has different
oscillators. For example, for one such an attractor,
group A contains 27 oscillators (1, 3, 6, 7, 9, 12, 16,
17, 18, 25, 30, 31, 34, 37, 39, 40, 42, 46, 47, 48, 49,
50, 52, 53, 56, 59, and 60) and group B contains all
the remaining 33 oscillators. In terms of groups, we
can compare the event structures of different partially
unstable attractors, even for systems of different size.

If, for the partially unstable attractor shown in Fig. 1
for N = 4, we assign oscillators 2 and 4 as group B and
oscillators 1 and 3 as belonging to group A, the event
structure in (10) is identical to that in the first example
of Table 1. This implies that the occurrence of par-
tially unstable attractors in large systems has the same
dynamical mechanism as for smaller systems. This is
indeed the case. We consider the event RASB here. The
state of oscillators in group B just before the arrival of
pulses from oscillators of group A (RA) is 0.9645.With
perturbations on the unstable point, the oscillators of
group A can become 27 single active firings at slightly
different times. Here each pulse of strength 0.25/59.
The first 9 arrivals of pulses can make the group B pas-
sive firing, i.e., 0.25/99 × 9 + 0.9645 = 1.0026 > 1.
Thus, group B will receive 18, i.e., 27 − 9, number of
extra pulses, which can make the system leave away
the unstable point. This mechanism is the same as that
for the partially unstable attractor shown in Fig. 1.

6 Conclusion and discussion

Dissipative dynamical systems can exhibit different
types of attractors. Attractors whose neighborhoods
belong completely to their basins of attraction are the
most commonly encountered type in smooth dynami-
cal systems. When the system possesses certain sim-
ple symmetry so that there are invariant subspaces in
which there are chaotic attractors, on any such attrac-
tor there can be a set of points that are unstable with
respect to perturbation transverse to the invariant sub-
space. The number of points contained in such a set
can be infinite, but its measure is zero, and the corre-
sponding attractors have a riddled basin—a type ofMil-
nor attractors. Another type of Milnor attractors occurs
typically in neuronal networks that exhibit a firing or
spiking behavior, where the attractor is locally unstable
but has a remote basin. Points in the basin are attracted
toward the attractor along the stable manifold, but any
random perturbation will “kick” the trajectory away
from the attractor. These are the unstable attractors.
Themain contribution of this paper is the discovery and
analysis of a novel type of attractors: partially unsta-
ble attractors. Such an attractor is composed of two
subsets: one locally stable and another locally unsta-
ble, both of positive measures. We have demonstrated
that partially unstable attractors can emerge in systems
of excitatory pulse-coupled integrate-and-fire oscilla-
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tors subject to periodic forcing. The mechanism for the
partially unstable attractors can be understood by ana-
lyzing the dynamical events [43,53,54] leading to the
generation of pulses in the network. In particular, the
event of passive firing plays a key role in generating
the locally stable set, where the effect of perturbation
is suppressed and effectively annihilated. The locally
unstable set arises due to the sensitivity of the number
of arriving pulses for oscillators to perturbation.

Our results suggest that partially unstable attractors
also persist on random networks. It is possible to study
the existence of these attractors on other types of net-
works, such as small-world networks, or networks with
communities [55]. Insofar as the essential dynamical
event structure can be identified, the possibility for par-
tially unstable attractors to arise can be assessed. This
can be useful for network design to achieve desired per-
formance, e.g., for realizing specific firing sequences
for information processing. For a given network whose
structure cannot be altered, carefully controlling the
periodic forcing may lead to desired firing patterns on
the network level. To generate controlled dynamical
behaviors in integrate-and-fire or more general neu-
ronal networks remains to be an outstanding research
task at the present.

In biological systems, information processing is
often the result of interaction between the internal
dynamical state and the external stimuli [56]. The
uncovering and understanding of novel types of attrac-
tors in such systems can be beneficial [51]. The exis-
tence of locally unstable dynamics can induce switch-
ings among different metastable states, which can
potentially be exploited for developing new schemes
of computation [49,57–59]. In such an application,
one wishes to generate switching dynamics that are
robust to infinitesimal perturbation but sensitive to
designed forcing. The switching dynamics among par-
tially unstable attractors can be useful for achieving
this goal. For example, infinitesimal perturbation can
be directed to locally stable points, but forcing can be
applied to locally unstable points. At the present, to
exploit partially unstable attractors to generate robust
yet sensitive switching dynamics is an open question.
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