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Abstract
Todevelop effective control strategies to enhance the robustness ofmultilayer networks against large-
scale failures is of significant value.We articulate the idea of ‘remote control’whereby adaptive
perturbations to one network layer are able to enhance the resilience of not only itself but also other
interconnected network layers.We analyze the principle of remote control using percolation
dynamics by showing analytically and numerically that, with the adaptive generation of a small
number of new links in the control layer, not only is this layer but also other layers become
dramaticallymore resistant to cascading failures.We alsofind that remote control ismore effective for
scale-free than for randomnetworks. Remote intervention ofmultilayer network systems through
adaptation has real-world applications, whichwe illustrate using the rail and coach transportation
system in theGreat Britain.

1. Introduction

The ability for a complex system to resist/survive random component failures and/or intentional attacks is a
problemof continuous interest inmodern network science [1–22]. Recent years havewitnesses a great deal of
attention [23–26] to the robustness ofmultilayer networks [26–29]. In such a system, a set of nodes belong to
many network layers simultaneously and interact with the nodes in different layers, as occurring in diverse
contexts such as social [30], technological [31], and biological systems [32]. Because of the common set of nodes
belonging to different layers and the links connecting nodeswithin and across layers [33], nodal failures or
influenza viruses [34, 35] in one layer can propagate not only to nodes within the same layer but also to nodes in
different interconnected layers. This is essentially a cascading process, themost devastating vulnerability for
single layer networks [8], but here the process ismore sophisticated because of themultilayer structure [23–26,
36]. To articulate effective control strategies to protect amultilayer system from large scale cascading failures and
to enhance the resilience of the system is a problemof significant value and broad interest.

In this paper, we articulate a strategy of remote control to enhance the ability ofmultilayer systems against
cascading failures. The general consideration is that, for amultilayer system in the real world, not all layers are
externally accessible but failures can still propagate to these layers. The term ‘remote control’ is thus to be
understoodwith respect to the possibility of protecting the inaccessible network layers through controlling some
accessible layers. To formulate the problem in a concrete setting, we exploit percolation dynamics [37–40], a
theoretical and computational paradigm to investigate the robustness of networks subject to random failures
[24, 41] ormalicious attacks [42, 43]. Of particular interest are the occurrence and nature of percolation
transitions, which are typically continuous (second order) for single layer networks but can be abrupt (first
order) inmultilayer systems [24]. The robustness of a network layer in amultilayer system can be characterized
by the size of thefinal giant component after the termination of failure propagation. Given amultilayer system,
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we assume that only one layer is accessible to external control in the sense that its structure can be perturbedwith
the adaptive implementation of a small number of new links from time to time, whose number can be taken
conveniently as the control parameter. Ourmain result is that adaptive control of the accessible layer can
enhance the robustness of the entiremultilayer system. A phenomenon is that control ismore effective for
multilayer systemswith a scale-free structure than for thosewith a random topology.

Ourwork goes beyond the existing literature in the following three aspects. Firstly, in spite of the
tremendous recent interest in linear controllability of complex networks [44–70] and in controlling nonlinear
dynamical networks [71–78], the idea of remote control has not appeared in any previous work. Secondly, our
idea of control exploits the effects of dynamical adaptation on the robustness ofmultilayer networks, which have
not been studied in the literature. Thirdly, our remote control strategy is physicallymeaningful and realizable. In
particular, traditional study of the robustness ofmultilayer systems focused on cascading processes in a static
setting [23, 24, 36]. In real world systems, the links can be dynamic in response to environmental changes. For
example, in a cyberphysical network consisting of a physical and an information transmission layer, the former
is inaccessible to control as it is difficult tomodify its structure, but realistically the structure of the latter can be
readily adjusted [79]. In this specific context, remote control entailsmanipulating the information layer to
achieve desired performance of the physical layer. Another example is air transportation networks composed of
airports (nodes) andflight routes (links) operated bymultiple companies. Operating flights are constantly
adjusted according to external factors such as changes in the passengerflow, business competition, capacity of
air traffic control, and accidents [31].

2.Model

Weconsider amultilayer networked systemofM layers:A, B, C,K, each of the same sizeN. A node in the system
is denoted by a pair of labels: (x, X), with x (x=1, 2,KN) andX (X=A, B, CK) being the nodal and layer
indices, respectively. Nodes within the same layerX follow the degree distribution pk

X, and nodeswith the same
Arabic numeral are all replicas of one another. A cascading process is triggered by the initial removal of a fraction
1− p of nodes in all network layers, after which the layers fragment into a set of isolated components. An
assumption used in previous work [24] is that nodes in the giant component are functional while others are
regarded as having failed.When a node in a layer fails, all its replicas in other layers fail simultaneously. Let
network layerA be accessible to external adaptive control, while all other layers are inaccessible. Because of
control, all nodes in layerA are potentially immune to failure through the generation of adaptive links. Our
control strategy is that, if a node in layerA is isolated from the giant component,m adaptive linkswill be added to
this node for it to be connected tom randomnodes inA, provided that the replicas of this node in other network
layers are all functional. After reconnection, some isolated nodes in layerAmay be reconnected to the giant
component, ‘rescuing’not only themselves but also their replicas in other layers from failure. If a node inA
cannot be reconnected to the giant component, itself and all its replicas are regarded as having failed. Because of
the interdependence among the layers, if one node in an uncontrollable layer is isolated from the giant
component in this layer, all its replicas will fail simultaneously. Failures in all network layers will inducemore
fragments, iteratively leading to cascading failures at large scales.When failures have stopped, the entire system
reaches a new stable steady state. Schematic illustration of remote control of a double-layer system is shown in
figure 1. The size S sABC, º¼ of themutually connected giant component characterizes the robustness of the
system [24]. It is worth emphasizing the essence of remote control: only the structure of the control or adaptive
layer can be alteredwith new links, while all other layers cannot be perturbed externally except for the
‘automatic’ removal of nodes and the associated links as induced by failures.

3. Results

Wedemonstrate the principle of remote control using a two-layer systemof randomor scale free networks.
Figure 2 shows the size SAB of themutually connected giant component versus the fraction p of initially reserved
nodes. A percolation transition occurs at pcwhere S

AB becomes zero abruptly and discontinuously. For p pc ,
there are cascading failures. As p deviates from pc, the number of iterations of the cascading process, denoted as
NI, decreases. The transition point pc can be precisely determined [80–82] by the peak value ofNI, which occurs
at p=pc. In general, a larger value of the control parameterm results in a smaller value of pc, for which the
system ismore robust against cascading failures. Figure 3 shows that pc decreases withm for both randomand
scale-free networks. Note that, form=0 (absence of control), the value of pc is higher for scale-free networks,
indicating thatmultilayer networked systemswith amore heterogeneous degree distribution aremore
vulnerable to cascading failures, as reported in previous work [24]. However, a striking phenomenon arises: as
the value ofm is increased so that control is intensified, the value of pc decreases faster for scale-free than for
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randomnetworks. Thismeans that remote control ismore effective for scale-free networks tomaintain its
robustness than for randomnetworks. Note that, theoretical results (to be presented below) are also included in
figure 2, which agreewith the numerical results quite well.

We develop a general theory to support the principle of remote control ofmultilayer networked systems.
Differing from the conventional percolation theory formultilayer systemswhere all layers are on the equal
footing, in our theory the final structure of the control layerA comprises heterogeneous links that contain the
original and the adaptive ones generated during control. In particular, a node inAmay be temporally isolated in
the cascading process.When this occurs, it can acquire one of the two types of adaptive links: one generated by
itself (active) and the other fromother nodes towhich it is connected (passive). It is necessary to treat the two
types of links separately as they have different probabilities to lead to the giant component. For the control layer,
there are then three types of links altogether: the original links, the actively and passively adaptive links as a result
of control.

For simplicity, we assume that all network layers follow the same degree distribution pk and the number of
layers is M nº . LetR be the probability that a randomly chosen, original link in the control layerA belongs to
the giant component, andR′ be the probability of the same nature in an inaccessible layerX (X B C D, , ,Î ¼).
LetTa (Tp) be the probability that an active (passive) link is connected to the giant component inA. To
determine the probabilitiesR,R′,Ta andTp, we generalize the standard approach of generating functions

Figure 1. Schematic illustration of remote control of a double-layer system.The systemhas two layers of networks, where layerA is
accessible to external control action (the control layer) and layerB is the remote layer that is not externally accessible. The goal of
remote control is to improve the robustness of layerB against large scale failures through control perturbations to layerA. (a)Red
circles denote the initially removed nodes from layerA and its replicas in layerB. The blue and green circles represent the isolated
nodes from the giant component and the functional nodes in the giant component, respectively. (b)Each node isolated from the giant
component in layerA generates an adaptive link (m=1) and is reconnected to a randomnode if its replica is still in the giant
component of layerB. Otherwise, the node and its replica are regarded as having failed immediately. (c)The isolated nodes are not able
to link to the giant component of layerA through adaptive links and hence fail. (d)The replicas of the failed nodes in layerA fail and
the system reaches a new stable steady state.
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[3, 83]. Let G x p xk k
k

0 = å( ) be the function that gives rise to the degree distribution associatedwith the original

links for randomnodes in each network layer, and G x p kx kk k
k

1
1= å á ñ-( ) be the corresponding generating

function from the branching process, which generates the distribution for the number of outgoing original links,
where ká ñ is the original average degree. For the control layerA, two sets of generating functions are needed: one
for the active and another for the passive links. Specifically, G x xa m

0 =( ) and G x xa m
1

1= -( ) are the generating

functions for active links, and G x p xp
k k

k
0 *= å( ) and G x p kx kp

k k
k p

1
1*= å á ñ-( ) are the generating functions

Figure 2.Percolation transition in two-layer systems. (a), (b) For randomnetworks, the size ofmutually connected component SAB

and the number of iterationsNI versus the fraction p of initially reserved nodes, respectively, for different values of the control
parameterm. As the value ofm is increased, the transition point shifts towards the left, indicating an increased level of robustness. The
symbols and solid lines denote the numerical and theoretical results, respectively. (c), (d) Similar results but for scale-free networks.
For both randomand scale-free interdependent networks, the average degree is set as 4 (theminimumdegree of scale-free network is 2
and power exponent of degree distribution is−2.6), and network size isN=5×105. Each data point is the result of 40 independent
statistical averages.

Figure 3.Percolation transition point pc of scale-free and randomnetworks versus the control parameter for (a) k 4á ñ = , (b) k 5á ñ = ,
and (c) k 6á ñ = (theminimumdegree of scale-free network is two and the power exponents of degree distribution is−2.6,−2.3 and
−2.1 for= 4, 5 and 6, respectively). The solid lines and symbols denote the theoretical predictions and simulation results determined
by the peak ofNI, respectively. These results reveal a remarkable phenomenon: remote control ismore effective for scale free than for
randomnetworks.
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for passive links, where pk
* and k pá ñ are the degree distribution of nodes and average degree for passive links,

respectively.
Using the various generating functions and taking advantage of the locally treelike property of the networks,

we can obtain the respective self-consistent equations for the probabilitiesR,R′,Tp andTp. In particular,
following a randomly chosen link in layerA, we arrive at a node (x,A), which can be linked to the giant
component by the outgoing links, active or passive. The probabilities that (x,A) is not linked to the giant
component by the three types of links are G R11 -( ), G T1a a

0 -( ), and G T1p p
0 -( ), respectively. The total

probability that a randomly chosen link leads to the giant component is thus
G R G T G T1 1 1 1p p a a

1 0 0- - - -( ) ( ) ( ). Since the probability that the replicas of (x,A) are all functional is
p G R1 1 n

0
1- - ¢ -[ ( )] , we obtain the self-consistent equation forR as

R p G R G R G T G T1 1 1 1 1 1 . 1n p p a a
0

1
1 0 0= - - ¢ - - - --[ ( )] [ ( ) ( ) ( )] ( )

Similarly, the equation forR′ is

R p G R G R G R G T G T1 1 1 1 1 1 1 1 . 2n p p a a
1 0

2
0 0 0¢ = - - ¢ - - ¢ - - - --[ ( )][ ( )] [ ( ) ( ) ( )] ( )

Since an active link connects to a node randomly, the probability that the link can connect the giant component
is the size of the giant component:Ta=s. UsingTa and the branching process on the control layerA, we obtain
the self-consistent equation forTp. Following a passive link of a randomnode (x,A), we arrive at another node
(y,A) that has generated this link and the remaining m 1- active links. The probability that (y,A) is not
connected to the giant component by its remaining active links is G T1a a

1 -( ). Since the probability that the
node (y,A) is not connected to the giant component by passive links is G T1p p

0 -( ), the equation forTp is

T G T G T1 1 1 . 3p a a p p
1 0= - - -( ) ( ) ( )

The degree distribution of passive links pk
*hinges on the fraction of nodes that are not connected to the giant

component through the original links in the component, which is p G R G R1 1 1n
0

1
0- - ¢ --[ ( )] ( ), so pk

*
follows the Poisson distributionwith the average degree k mp G R G R1 1 1p n

0
1

0á ñ = - - ¢ --[ ( )] ( ). In thefinal
steady state, the equation for the size of the giant component is thus

s p G R G R G T G T1 1 1 1 1 1 . 4n p p a a
0

1
0 0 0= - - ¢ - - - --[ ( )] [ ( ) ( ) ( )] ( )

For the special casem=0 (no control), we haveR′=R, and the equations reduce to those in the standard
percolationmodel for interdependent networks [27, 28]: R p G R G R1 1 1 1 n

1 0
1= - - - - -[ ( )][ ( )] and

s p G R1 1 n
0= - -[ ( )] . It is not feasible to get closed-form expressions forR,R′,Ta,Tp and s. It is necessary to

resort to numerical solutions for a given degree distribution. In particular, the percolation transition point pc can
be graphically represented on the (R,R′) plane, as shown infigure 4. For p<pc, the solution is given by the
crossing point of the curves at the origin. However, for p≈pc, the solution is given by the tangent point, leading
to a discontinuous change in bothR andR′. Exploiting this behavior of the solutions forR andR′, we can
determine the value of pc. The analytic results are included infigure 2, which agreewith the results fromdirect
numerical simulations quite well.

4.Heterogeneous adaptivity of nodes and control efficiency

Adding links in a real system can be costly. An effective way to achieve control efficiency under this realistic
constraint is to allocate the adaptivity of nodes to improve the robustness of the system for a given quota of

Figure 4.Determination of the theoretically predicted phase transition point. Shown are graphical solutions (the large black dots) of
equations (1) and (2) for a two-layer scale-free networkwithm=1. Theminimumdegree of the network is two and the algebraic
exponent of degree distribution is−2.3. (a)–(c)Results for p=0.5<pc, p=0.513≈pc, and p=0.55>pc, respectively.
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adaptive links. In a two-layer system, a pair of interdependent nodes in different network layers have different
degrees, e.g. a high-degree node in one layermay depend on a low-degree node in the other layer. Since the nodes
with small degrees are fragile and sensitive to node or link removal in the percolation process, the failures of
some low-degree nodes in one network layer can bring down high-degree nodes in the other network layer [84],
magnifying the damage associatedwith the cascading process. Protecting the small-degree nodes in the
accessible network layer with high-degree counterparts in the other layer thus represents an efficient way to
mitigate cascading dynamics.

More specifically, the control strategy can be described, as follows. For a pair of nodes (i,A) and (i,B), we
assign a numbermi of adaptive links to the node (i, A) in the adaptive layer according to

m
k k

k k
Q, 5i

i
B

i
A

x

N
x
B

x
Aå

=
a

a

( )
( )

( )

where the ratio k ki
B

i
A characterizes the degree difference between nodes (i,B) and (i,A),Q denotes the given

quota of the adaptive links, and the parameterα controls the nodal heterogeneity in adaptive control. In
particular, forα=0, the quota is evenly distributed among all nodes in the adaptive layer. Forα>0, the quota
is distributed selectively according to the nodal degree. Figure 5 shows the simulation results for the percolation
transition point pc versusα in a two-layer system for different quotaQ of adaptive links. It can be seen that the
percolation transition point pc decreases faster for scale-free than for randomnetworks. Because of the
heterogeneity of the degree distributions for scale-free networks, the degree difference between two
interdependent nodes is significant,making the adaptivity allocation scheme particularly effective in improving
the robustness of thewhole system.On the contrary, the degree distribution of a randomnetwork is
homogeneous,making the degree based adaptivity distribution scheme less effective.

5. Remote control of a real-world networked system

Weapply the remote control principle to a real world system: the national transportation network in theGreat
Britain [85]. A statistical data analysis indicates that the inter-urban connections consistmainly of rail and coach
(about 98.1%of all the traffic inOctober 2011), while ferry and air transportation account for the remaining
1.9%.We thus focus on the former to construct a two-layer networkwhere, because of the necessity to have a
giant component shared by both rail and coach carriers, they act as two interdependent network layers. In this
system, nodal removal can occur as a result of natural disasters, accidents or curfew in response to terrorist
attacks in a city, etc, possibly leading to a total breakdown of the transportation system in utility for passengers
and profitability for carrier. For example, if a coach station is closed, the passenger flow into this city will be
reduced, especially for transit passengers, further decreasing theflow through the rail station. As a result, the
operating cost per passenger for either a coach or a rail stationwill increase, causing the company to decrease
their vehicle trips through the city for cost control. For passengers, having a connected component in the
transportation network shared by both coach and train is important for convenience and affordable fares.

In general, there is a synergistic effect between the coach and the railway transportation networks, as
passengers often switch fromone network to another to reach theirfinial destinations. Consider a typical travel
itinerary that contains several coach and some train trips. If a railway station fails, the passengerwill have no
access to the coach stations located in the same city. As a result, he/she has to cancel or reroute the itinerary. This

Figure 5.Effectiveness of degree based adaptivity distribution scheme in protectingmultiplex network systems under a given quota of
adaptive links. Shown are simulation results for the percolation transition point pc for scale-free and randomnetworks versus the
parameterα: (a)Q=N, (b)Q=2N, and (c)Q=3N. The average degree of the networks isfive. For the scale-free networks, the
minimumdegree is two and algebraic degree distribution exponent is−2.3.
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scenario is typical of ones that give rise to the interdependence between the coach and railway stations. However,
the failure of a coach stationmay not lead to the failure of the rail station, although the failure can have an effect
on the convenience for passengers and on the trafficflowof the rail station onwhich its profit depends.Whenwe
construct amultilayer networkmodel for such a coach-railway system, cascading failuresmanifest themselves as
the propagation of service unavailability for passengers or profit loss for the carriers.

To realize control, we analyze the time tables of coach and rail stations for a full week inOctober between
2005 and 2011, and calculate the yearly fluctuations of two quantities characterizing the effect of control: the
numbers of canceled routes and of new routes as comparedwith those in the previous year. The results are
shown infigure 6, where the number of rail routes is essentially stable with few route changes, but the number of
coach routes varies frequently, which validates the basic assumption employed in formulating our control
strategy: certain network layer has the ability to adjust its connections in response to external perturbations. For
the coach/rail double-layer system, it is the coach network that can adjust the routes tomaintain business
stability in response to random failures or attacks, providing a concrete justification for our designating the
number of adaptive links as a physicallymeaningful control parameter. The control layerA is thus the coach
network, while the remote layerB is the rail network. A larger value of the control parametermmeans that the
control layer ismore adaptive and the corresponding carrier has a stronger ability to handle emergency
situations, thereby reducing the chance of large scale cascading failures. As an example, themultilayer
networked system in aweek ofOctober 2011 hasN=4090 nodes (cities with at least one coach station or rail
station), where there are 2490 nodes in the coach layer, 1874 nodes in the rail layer, and 274 overlapping nodes in
both layers, and the sizes of the giant components in the two layers are different. To implement our principle of
remote control, we regard nodeswith replicas in the coach layer as the adaptive ones. Figure 7 shows that
controlling networkA through increasing the value ofm enhances the robustness of the entire system. In
particular, adaptive control of networkAnot only enhances its own robustness, but also improves the
robustness of networkB, providing concrete support for the principle of remote control in that the robustness of
some inaccessible layers in a realmultilayer system can be improved through adaptive control applied to an
externally accessible layer. For the coach-rail transportation system per se, our results not only have implications
formanaging the transportation system in response to emergencies, but also provide a potential strategy for
carriers to optimize business performance.

6.Discussion

To summarize, we have proposed a remote control schemewith theoretical justification andnumerical support
to enhance the ability of complexmultilayer networks to resist large scale cascading failures. The basic principle
is to apply adaptive control to one network layer that is externally accessible, not only tomake itselfmore
resilient to failures but,more importantly, to induce the positive effect of improving the robustness of other
interdependently connected layers that are inaccessible to control. Afinding is that remote control ismore
effective for systemswith a scale free than a random topology. A real world coach-rail transportation systemhas
been used to demonstrate the control principle. In spite of the existing literature on controlling complex
networks, the idea of remote control is novel and general, andwe expect it tofind broad applications in
addressing the challenging problemof controlling nonlinear and collective dynamics on in complex dynamical
systems.

Figure 6. Fluctuations in the numbers of various routes in a real coach-rail transportation system in theGreat Britain. (a)–(c) For both
coach and rail layers, the numbers of routes, canceled routes, and new routes, respectively, versus time (in units of year)with respect to
the corresponding numbers in the previous year.
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