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Abstract
Zitterbewegung (ZB) is a phenomenon in relativistic quantum systemswhere the electronwave packet
exhibits a trembling or oscillating behavior during itsmotion, caused by its interaction or coupling
with the negative energy state. To directly observe ZB in electronic systems is difficult, due to the
challenges associatedwith the small amplitude of themotionwhich is of the order of Compton
wavelength. Photonic systems offer an alternative paradigm.We exploit the concept of pseudo parity-
time (pseudo  ) symmetry to study ZB in non-Hermitian quantum systems implemented as an
experimentally feasible optical waveguide array. In particular, the non-HermitianHamiltonian is
realized through evanescent coupling among thewaveguides to form a one-dimensional lattice with
periodicmodulations in gain and loss along the guiding direction. As themodulation frequency is
changed, we obtain a number of phenomena including periodically suppressed ZB trembling, spatial
energy localization, andHermitian-like ZB oscillations.We calculate phase diagrams indicating the
emergence of different types of dynamical behaviors of the relativistic non-Hermitian quantum
system in an experimentally justified parameter space.We provide numerical results and a physical
analysis to explain the distinct dynamical behaviors revealed by the phase diagrams.Ourfindings
provide a deeper understanding of both the relativistic ZB phenomenon and non-Hermitian pseudo-
 systems, with potential applications in controlling/harnessing light propagation inwaveguide-
based optical systems.

1. Introduction

There has been a great deal of recent interest in investigating the role of parity-time reversal ( ) symmetry in
wave propagation at different scales with the discoveries of phenomena such as non-reciprocal beam
propagation [1–5], and uni-directionally transparent invisibility [6–8]. The phenomenon of topologically
protected states [9, 10]was originally discovered in condensedmatter physics associatedwith electronic
transport, but recently it has been demonstrated in optics [11–17], due naturally to the correspondence between
matter and optical waves. For example, topological photonics/acoustics were demonstrated by exploiting the
analogy between electronic and synthetic photonic crystals, where tunable and topologically protected
excitations were observed [18, 19]. There were also efforts in exploring newwave features in artificial photonic
crystals with/without the  -symmetry [20–27]. All these have led to the emergence of a forefront area of
research in optics: light propagation in non-Hermitian  -symmetricmediawith balanced loss and gain
profiles. The newfield offers the possibility to engineer light propagation, potentially revolutionizing optics with
unconventional applications.

In conventional quantummechanics, the observable operators are required to beHermitian to ensure real
eigenvalues. This requirement is the result of one of the fundamental postulates in quantummechanics: the
physically observable ormeasurable quantities are the eigenvalues of the corresponding operators. However, the
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seminal works of Bender et al [28–30] demonstrated that non-HermitianHamiltonians are also capable of
generating a purely real eigenvalue spectrum and therefore are physicallymeaningful, if the underlying system
possesses a  symmetry. This opened a new research field called non-Hermitian  symmetric quantum
mechanics. In fact, in physical systems, non-HermitianHamiltonians exist in contexts such as electronic
transport (in openHamiltonian systems) and gain/lossmaterials in optics [31]. Especially, in optics,materials
with a complex index of refraction can effectively be a non-Hermitian  symmetric system [32]. However, in
such a case, the  symmetry constrictions require that the real and the imaginary parts of the refractive index
be an even and odd function in space, respectively [33, 34], whichmay be challenging to be fabricated for
experimental study. An alternative configuration that does not require even/odd spatial functions is the pseudo-
 symmetric systemwith periodicmodulations [35].While such a systemdoes not conserve the energy at any
given instant of time because of gain/loss, the energy does not divergewithin any practically long time.

An outstanding problem is how relativistic quantum effectsmanifest themselves in non-Hermitian photonic
systemswith full or pseudo  symmetry. This ismotivated by the tremendous development of 2DDirac
materials in the past decade such as graphene [36–42], topological insulators [9, 10], molybdenumdisulfide
(MoS2) [43, 44], HITP [Ni3(HITP)2] [45], and topological Dirac semimetals [46, 47], where the underlying
quantumphysics is governed by the relativistic Dirac equation. It is thus of interest to investigate experimentally
more realizable optical systems hosting relativistic excitations and to study themanifestations of the
fundamental phenomena [48] such as theKlein tunneling,Zitterbewegung (ZB), and pseudo spin to exploit their
topological origin. In this regard, including gain/loss in synthetic optical systems can generate non-Hermitian
relativistic  -symmetric excitations through engineering the gain and loss in a balancedmanner. For
example, arranging  -symmetric couplers periodically provides a unique platform to realize the analogy of
the non-Hermitian relativistic quantum systems in optics [49–52].

In this paper, we focus on a fundamental phenomenon in relativistic quantummechanics—ZBoscillations.
While the optical analog of the relativistic ZB effect inHermitian quantum systemswas previously observed [53],
we investigate themanifestations of ZB in non-Hermitian photonic systems. In particular, we consider a binary
waveguide array with periodicallymodulated imaginary refraction index in the guiding direction. Such time-
periodic gain and loss photonic systems have been studied extensively both theoretically and experimentally
[35, 54–58]. The optical waveguide array system, due to its controllable degrees of freedom, has been a paradigm
to study a host of fundamental physical phenomena [59] such as the neutrino oscillations [60], Bloch oscillation
[61], Zener tunneling [62, 63], andKlein tunneling [64].We configure the system to have a pseudo-
symmetry, so that it exhibits quasi-stationary light propagationwith slowly varying time-averaged total intensity
[35]. By calculating a detailed phase diagram in an experimentallymeaningful parameter space, we uncover a
number of phenomena in the system. In particular, wefind that, in certain parameter regime, thewave
amplitude tends to diverge. A remarkable phenomenon is that there are parameter regimes inwhich the
dependence of ZB oscillations on themodulation frequency is non-monotonic, where the system exhibits a
striking, periodically suppressed ZB effect with revival or intermittent ZB oscillations for low frequencies and a
Hermitian-like ZB effect in the high frequency regime. In the intermediate frequency regime, a surprising spatial
energy localization behavior emerges. By solving the corresponding time-dependent Dirac equation, we obtain
analytic results that provide explanations for the numerically observed, ZBmanifested phenomena. The findings
have implications. For example, thewave divergence phenomenonmay be exploited for applications in optical
amplifier and lasing. Intermittent BZ oscillations can potentially lead to a newmechanism tomanipulate/
control light propagation.

Before describing our results in detail, we remark on the twounique aspects of ourwork.
First,what results can be considered as constituting a highly nontrivial or unexpected general fundamental insight

into the ZB phenomenon for researchers working in this field?Photonic crystals allow researchers to build up
classical simulators of quantum systems. For example, through engineering the gain/lossmedia, non-
Hermitian,  -symmetric and non-relativistic quantumphysics has been analogously realized using two sets of
evanescently coupledwaveguides [32] through non-reciprocal beamdynamics.Most previous studies on the
optical analogies of non-Hermitian  -symmetric quantum systems are nonrelativistic. Quite recently, optical
analogies of theHermitian relativistic Dirac equation have been articulated, such as synthetic photonic graphene
and photonic topological insulators. An outstanding issue concerns the  -symmetry and the related physical
effects in synthetic relativistic quantum systems. Existing theoretical proposals [49, 51] rely on an exact design of
the gain–loss profile or a sophisticated strain-based control scheme for the given gain–loss configuration,
leading to stationary, non-Hermitian  -symmetric systems.Distinct from the existingworks, our work
reports a dynamical scheme to optically realize time-dependent, pseudo- symmetric relativistic Dirac
equation, andwefind the striking phenomenon of periodically suppressed and revival ZB oscillations. This
‘intermittent’ZBphenomenon is in sharp contrast to conventional ZB oscillationswith a constant amplitude.
We also observe a resonant boundary between the pseudo- and  symmetry breaking regions. This type of
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boundaries has been reported in previous works between the conventional  -symmetric and -symmetry
broken regions [54–58]. Our results show that the boundary exhibits a similar pattern.

Second, are there potentially feasible experimental schemes?The answer is affirmative. Experimentally,
conventional non-Hermitian  -symmetry systems require that the real part of the effective potential to be an
exactly evenwhile the imaginary part be an exactly odd function in space. Our systemdesign relaxes these
requirements and significantly expands the configuration range of the non-Hermitian systems through
introducing spatialmodulation. Thewidth of ZB trembling is on the order ofmicrometer and the length of the
waveguides ismillimeters. Concretely, our system can be realized in awaveguide array configuration similar to
that in [53], where the gain effect can be realized, for example, through doping of dyemolecules such as
Rhodamine B (emission at 627 nm, excitation at 554 nm—green laser). Loss can be introduced usingmetals
evaporated into thewaveguides during the fabrication process.

In section 2, we provide a detailed description of our photonic waveguide array systemwith pseudo 
symmetry, and derive the underlyingDirac equation. In section 3, we present ourmain results: phase diagrams,
amplitude divergence, regular and revival ZB oscillations, and spatial energy localization. In section 4, we
summarize themain results and offer a discussion. Certain details of the analytical derivation based on the
relativistic quantumDirac equation are given in appendix.

2.Optical waveguide systemwith pseudo  symmetry and description in terms of the
Dirac equation

Weconsider a two-dimensional binary photonic superlattice consisting of two kinds of interleavedwaveguides,
A andB, as shown infigure 1. The distance between two adjacent waveguides is a and the coupling strength
between them in the effective tight-bindingHamiltonian isκ. Due to the similarity between the optical and
electronicwaves, an optical waveguide system can simulate the time evolution of the electronic wavefunction
subjected to an equivalent potential. If the real parts of the refractive index of the nearest neighboring
waveguides have the samemismatch, thewaveguide superlattice can simulate the behaviors of the finite-mass
Dirac equation. In particular, the dispersion relation of the lattice is a hyperbola about the edge of the first
Brillouin zone [53, 64], and theA andB sublattices can be regarded as corresponding to the two components of
the spinorwavefunction underlying theDirac equation.When the incident angle of awave packet is
approximately thefirst Bragg angle, for an initial group velocity close to that of the edge of thefirst Brillouin
zone, the optical systemobeys the relativistic Dirac equation. Experimentally, it is difficult to realize awaveguide
systemwith time-dependent refractive index.However, the zdirection represents effectively the time
dimension. The two-dimensional binary photonic superlattice system is then completely equivalent to a time

Figure 1. Schematic illustration of the system configuration. Two sets of waveguides,marked asA andB, are interleavedwith each
other. The real parts of the refractive index forA andB are different, and their imaginary parts are small but have opposite signs. The
distance between two adjacent waveguides is a and they are coupled through constant strengthκ. The imaginary part of the refractive
index changes along the z direction,mimicking a time dependent non-Hermitian potential.
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dependent, one-dimensional relativistic Dirac system,making possible experimental studies of various
relativistic quantum effects.

We employ the tight-binding approximation to analyze thewaveguide superlattice. The amplitude of the
opticalfield is described by

k s= - + + -+ -( ) ( ) ( ) ( )a

z
a a z ai

d

d
1 , 1n

n n
n

n1 1

where an is the amplitude of the opticalfield in the nthwaveguide,κ is the effective coupling constant, andσ is
the propagationmismatch.We assume that the real part of themismatch sr between the nearest neighboring
waveguides is constant. The space dependence of s ( )z is embedded in its imaginary part: s s w=( ) ( )z r zsini r ,
where sr and si denote its real and imaginary parts, respectively, with r being the ratio between them that
characterizes the strength of gain/loss. The quantityω is the frequency of spatial gain/lossmodulation in the z-
direction. Equivalently,ω can be regarded as the frequency of the imaginary part of the time-varying potential
for the corresponding quantum system that is fundamentally non-Hermitian due to the complex potential.We
note that, for aHermitian system, i.e., a superlattice systemwith a purely real refractive index, previous works
[53, 64] showed the emergence of twominibandswith the dispersion relation given by
w s k=  +( ) ( )q qa4 cos2 2 2 . For thewavevector along the x-direction, q is close to p ( )a2 and the
quantities w( )q exhibit a hyperbola-like behaviorwith a gap of s2 , which is similar to the electron and positron
dispersion curves from thefinite-massDirac equation. For a general non-Hermitian system, it is straightforward
to show that the dispersion relation has the same form as that for aHermitian system (see appendix), but there
are two differences: (a) the quantityσ becomes complex and (b) the system is time dependent due to the external
driving. In the limit of small imaginary part, the complex frequency in the dispersion relation possesses the
following real part

s s k - +( ( )) ( )z qa4 cos ,r i
2 2 2 2

guaranteeing that our non-Hermitian system can still retain the equivalence to the relativistic quantum system
for amassive particle at the boundaries of the Brillouin zone. This condition constricts the incident angle of the
wave packet to be about q l» ( )n a4B s , whereλ is thewavelength and ns is the refractive index of the substrate.
We emphasize that this analogy holds only when thewave packet is located near the Brillouin zone boundary.
Analogy in other regionswould be affected by the dispersive effect of thewaveguides. In fact,many experiments
have shown that the analogy can hold up to hundredmillimeters [64–66].

To demonstrate the equivalence of thewaveguide equation to theDirac equation, wemake the following
substitutions [53, 64, 66]:

y y = - - -[ ] [( ) ( ) ] ( )a a, 1 , i 1 . 2T n
n

n
n1 2 2 2 1

From the periodicity and symmetry of the system,we see that a unit cell from sublatticeA combiningwith one
from sublatticeB is effectively a unit cell that forms aDirac spinor. It is necessary to use the dimensionless
continuous transverse coordinate x « = ( )n x a2 to form a spatial derivative operator.With these
considerations, we obtain the following equivalent one-dimensional Dirac equation

y
ka

y
x

s a y
¶
¶

= -
¶
¶

+ ( ) ( )
z

zi i , 31 3

where

a a= =
-( ) ( ) ( )0 1

1 0
1 0
0 1

, 41 3

are the Paulimatrices. These considerations holdwhenσ is complex. Comparingwith the standardDirac
equation, we note the following equivalence:

k s« « ( )c mc, , 52

i.e., the coupling constant between thewaveguides corresponds to the speed of light while themismatch between
thewaveguides is equivalent to themass of the underlying particle. Indeed, as we can see from the dispersion
relation of the superlattice, the band gap for the Brillouin zone is also proportional toσ, corresponding to the
dispersion relation of amassive relativistic quantumparticle.

In our simulations, we assume that the initial opticalfield has the form = p q l( ) ( )E x G x, 0 e xn2 i s B , where
G(x) is aGaussian beam envelope. The superlattice ismade of 200waveguides separated from each other with
the distance m=a 16 m, and the effective coupling rate is k = -0.14 mm 1. TheGaussian beamhas the
wavelength of l = 633 nm with a spot size about m105 m. Themodulation frequency is scaled by the factor
w = a10 and the lengths are normalized by a.
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3. Results

3.1. Emergence of pseudo- symmetry
To ascertain the emergence of the pseudo- symmetry, we probe into the parameter space of the photonic
superlattice system systematically by calculating the phase diagrams. The results are shown infigure 2, where the
same initial wave packet with a group velocity determined by the relativistic Dirac point is used for different
parameter combinations. The evolution is simulated for a relatively long time to ensure that the systemhas
settled into a steady state. Figures 2(a) and (b) show the phase diagrams in the w-r and s w-r parameter
planes, respectively. The color is coded in terms of themaximumvalue of the intensity of the opticalfield for the
corresponding parameters. Considering the fact that, in the pure gain regime, the intensity grows exponentially,
we use a logarithmic function to rescale the intensity for better visualization.We set a cut-off intensity level
beyondwhich the opticalfield is deemed to have diverged, corresponding to the  breaking case. The cut-off
criterionwe used is ~E E 10tot tot

0 9, where Etot is themaximumof the total intensity and Etot
0 is the total

intensity when there is nomodulation. Even for this relatively high cut-off intensity, there is little change in the
shape of the boundary. Inmost parts of the boundary of the  breaking phase and the pseudo- phase, the
change in the color from red to blue are quite rapid. Infigures 2(a) and (b), the divergent regions are coded as
dark red. For a smallmodulation frequency, a number of waveguides absorb energy within the simulation time
so that their intensity can exceed the cut-off value. For suchwaveguides, a pseudo- behavior cannot be
numerically detected. Because of this, there is a persistently red region in the phase diagramswhen the
modulation frequency is close to zero. Fromfigure 2(a), we see that a pseudo- behavior exists either in the
parameter regionwith small gain/loss strength or in the regionwith a highmodulation frequency. The reason is
that, when the gain/loss of thewaveguides is small, energy absorption is insignificant so that thewaveguides will
have sufficient time to transfer the energywithin the superlattice and dissipate the absorbed energy into the

Figure 2.Phase diagrams of relativistic quantumphotonic superlattice system. The dark red region indicates the pseudo- breaking
phase, and the other region corresponds to the pseudo- phase. (a, b)Phase diagrams in the w-r and s w-r parameter plane,
respectively. The color is coded in terms of the logarithmof themaximum intensity in the specific parameter region. Thewhite lines in
(a) denote the positions of the valleys in the oscillatory variations of the boundary. The first two vertical lines, counted from right to
left, correspond to the two sets of parameters shown infigure 3. The red stars in (a) specify the positions of the parameters shown in
figure 4. For each phase diagram, the computational grid in the corresponding parameter plane has the size 512×512. The
parameters are s k = 2.1r (a) and s k = 0.5i (b).
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adjacent waveguides.When themodulation frequency is high, the period becomes small so that thewaveguides
are able to dissipate the absorbed energy through itself when the imaginary part of the refractive index changes
its sign during light propagation. In general, the stronger the gain/loss strength, the higher themodulation
frequency is needed to balance the gain and loss, providing an explanation for the shape of the boundary of the
two regions in the highmodulation frequency regime in the phase diagrams. Figure 2(b) exhibits a similar
behavior, i.e., the pseudo- behavior exists in the larger real refractive index (corresponding toweaker gain
and loss effects) and highermodulation frequency regions. A general feature is that highermodulation
frequency is favorable for the emergence of the pseudo- symmetry.

A phenomenonwhich is presented in both figures 2(a), (b) is that the boundary of the pseudo-
symmetric and the non pseudo- regions exhibits oscillatory variations as themodulation frequency is
changed. For w w ~ -4 60 , the system exhibits a divergent behavior even for the small gain/loss strength.
To understand the origin of the boundary variations, we examine the details of the time evolutions of the
system. In figure 2(a), wemark the positions of the valleys in the variation with white lines, which are
w w = 0.6, 0.9, 1.50 and 4.2, leading to the ratio of the period, i.e., w1 , to be about 7:5:3:1, indicating that
the system tends to diverge when themodulation period is odd times of the rightmost line.When the ratio is
even, the system tends to stay in the pseudo- phase.Wewish to emphasize that this type of resonant
boundaries has been extensively studied in conventional  -symmetric systems [54–58]. However, when
the ratio becomes large, it is hard to observe the oscillatory behavior, duemainly to the finite resolution of the
simulation. Another reason is that the system tends to shift into the high energy regimewhen themodulation
frequency is low, so the oscillations are buried in the regime that does not correspond to  breaking. The
boundary in figure 2(b) exhibits a similar variational behavior. Particularly, as sr becomes larger, the
imaginary part becomes relatively less significant. As a result, the band gap and thus the ZB trembling
frequency is given by s2 r (to be described in section 3.2).When themodulation frequency is equal to the ZB
trembling frequency, a resonant effect appears, forming a pseudo- phase boundary that starts from
w w = 20 in figure 2(b). The specific ratio relation suggests the occurrence of resonances in the system that
can enhance or suppress the gain and loss of the superlattice. Amore detailed understanding can be obtained
through the dynamical oscillations in the system, i.e., the ZB effect.

3.2. RelativisticZitterbewegung in photonic superlattice
ZB is a purely relativistic quantum effect resulting from the interference between the positive and negative
energy states of theDirac fermion. To experimentally observe ZB in electronic systems is challenging due to the
small amplitude and the extremely high oscillating frequency. Photonic superlattice systemswith the underlying
equation having the samemathematical form as theDirac equation provide an alternative paradigm for
detecting and characterizing the ZB phenomenon [53]. Our goal is to investigate whether ZB can emerge in
pseudo- symmetric photonic systems. Figure 4 shows a number of representative time series of the beam
center ofmass of thewave packet for different parameters. There are apparent oscillations in the time series.
Since oscillations are a generic feature of thewave equations, the issue is whether these oscillations are true
manifestations of ZB.We address this issue by analyzing the equivalentDirac equation to determine if the
oscillations have a relativistic quantumorigin. The basic idea is towrite theDirac equation in themomentum
space to obtain the time evolution of thewavefunction [67]. In order to arrive at an analytical form,wemake the
assumption that the totalHamiltonian at any two given instants of times are commutative so that a sophisticated
treatment of the time ordering operator is not necessary. Note that, while for time independent quantum
systems time ordering is not necessary, for a time dependentHamiltonian thismay not be the case. Nonetheless,
we expect that, in the parameter regimewhere the non-Hermitian effect is weak, i.e., small si, our analytic results
would agree with the direct simulation results.

Themain results of our analysis can be summarized by dividing the time evolution of the expectation value
of the position operator into three components: the drift x ( )td , the ZB trembling component x ( )tZB , and the
purely imaginary component x ( )tIm .We have (detailed derivation can be found in appendix)
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where
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Wenote that, for a relativistic quantum systemdescribed by theDirac equation, the time evolution of the
expectation value of the position operator contains the drift and the ZB trembling components only. For a
stationaryHermitian system, we have = µ*A A t , the drift component can be simplified as

x µ
+

µ( ) ( ) ( )
t

A A A A

A
t t

cos sin
,d

2 2

3
3

which describes themotion of thewave packet at a constant velocity. The ZB trembling component x ( )tZB can
be simplified as an oscillatory termdescribed by µ( ) ( ) ( )A A Asin cos sin 2 , and the purely imaginary component
x ( )tIm is simply zero.

The analytical results can be used to interpret the numerically observed dynamical behaviors of the system
associatedwith the boundary variations in the phase diagrams infigure 2. Specifically,figure 3 shows the
analytical results for r=0.5 and w w = 4.2, 1.50 (the blue solid and red dashed curves, respectively), which
correspond to the two rightmost white linesmarked infigure 2(a). Figure 3(a) shows the time evolution of the
normalizedmodulus of the two sublatticesA andB. As expected, themodulus of the red dashed curve is about
three times slower than that of the blue solid curve, which is the ratio between themodulation frequencies.
However, the time evolution of the ZB trembling term x ( )tZB has the same frequency for the two cases, as shown

Figure 3.Oscillatory behaviors in the wave packet. Time series (equivalently, propagation along the z direction) of the photonic
superlattice system for the parameters corresponding to the valleys of the boundary variations in the phase diagram (figure 2). (a)–(c)
Time series of themodulus of theDirac spinor of the two sublattices, of ZB trembling, and of the oscillation term ( ) ( )*A Asin cos in
xZB, respectively. The parameter setting is s k = 2.1r , r=0.5, w w = 4.20 (blue solid curves), and w w = 1.50 (red dashed curves).
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infigure 3(b), indicating that ZB trembling has little dependence on themodulation frequency. A comparison of
the time series infigures 3(a), (b) indicates that the frequency of ZB oscillations is close to that of themodulus
oscillation for w w = 4.20 .

Note that, for r=0 the band gap is s =2 4.2r . These results imply that the variations in the boundary
between the pseudo- symmetric and the pseudo- symmetry breaking regions are due to the resonant
interaction between themodulation to thewaveguides andZB trembling. The energy absorption process is
enhancedwhen the ratio between themodulation period and the ZB trembling period is an odd integer. For the
high frequency regionwhere themodulation period is smaller than the ZB trembling period, the system exhibits
a relatively simple behavior, where the boundary can be described by a linear relation between r and w w0.

Figure 4 shows the simulation (blue) and analytic (red) results for the ZB effect, where the behavior of the real
part of the quantity x x y+( ( ) ( )) ∣ ( )∣t t td ZB

2 is illustrated for six different parameter combinations indicated
by the red stars infigure 2(a).When the imaginary part of the refractive index is relatively small, i.e., when the
system is only weakly non-Hermitian, the analytical and simulation results agreewell with each other, as shown
infigures 4(a)–(c) for r=0.2. Note that the scale of the x axis infigure 4(a) is about three times of that in
figures 4(b), (c), and the periods of the oscillations for these cases are the same, indicating that the oscillation

Figure 4.RelativisticZitterbewegung in non-Hermitian photonic superlattice systems. The six panels correspond to all possible
combinations of =r 0.2, 0.5 and w w = 0.2, 1.0, 3.00 , asmarked by the red stars infigure 2(a). (a)–(c)Mean/expectation values of
the position of thewave packet for r=0.2 and w w = 0.2, 1.0, 3.00 , respectively. (d–f) Similar plots but for r=0.5. The blue and
red curves correspond to the beam center ofmass of thewave packet from the simulation results and themean expectation value of the
position operator from the analytic results, respectively.
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periods have little dependence on themodulation frequency. Our analytical results provide a base to attribute
the oscillations as resulting from the ZB trembling term x ( )tZB , demonstrating their relativistic quantumorigin.
We note that, for aHermitian system, the dynamical evolution of thewave packet can be represented as the
superposition of a constant drift behavior and simple sinusoidal oscillations, but the dynamics of ZB oscillations
in the relativistic non-Hermitian system are richer. Specifically, fromfigure 4(a), we see that, for lowmodulation
frequencies, ZB oscillations can be enhanced or suppressed in different time intervals. However, for high
modulation frequencies (e.g.,figure 4(c)), ZB oscillations are conventional in the sense that there are no
apparent enhancement or reduction effects. An intermediate situation arises between these two cases, e.g., for
w w = 1.00 . These results indicate that themodulation frequency of the refractive index can affect the
amplitude of ZB oscillations.

The role of themodulation frequency in the amplitude evolution of ZB oscillations can be assessed in amore
detailedmanner through a close examination of the oscillation term in x ( )tZB , i.e., *A Asin cos , for different
values of themodulation frequency, as shown infigures 3(b), (c), where the oscillating patterns have the same
modulation frequency, implying that the frequency of ZB oscillations is entirely determined by its sine and
cosine components. Further, the ZB oscillations for the two different values of themodulation frequency are in
pacewith each other in time, indicating that themodulation frequency has little effect on the frequency of ZB
oscillations. This is expected because the quantityA(t) is an integration of s ( )t so that the amplitude of s ( )t is a
key factor. Nonetheless, themodulation frequency does affect the oscillating intensity, as shown infigure 3(a).
Thus, the envelope behavior of ZB oscillations infigures 4(a)–(c) is determined by themodulation of the
periodic refractive index. A conclusion is that, for highmodulation frequency and lowmodulation intensity, the
effect of refractive-indexmodulation is weak, as exemplified infigure 4(c). For r=0.5, the analytically predicted
amplitude of the oscillation behavior (figures 4(d)–(f)) deviates from the simulation results (except for the initial
phase of the dynamical evolution). In spite of the disagreement, the predicted phase behavior of the oscillations
agrees with the simulation results. The failure of the analytic theory to predict correctly the amplitude behavior
of ZB oscillations stems from the hypothesis used in our analysis: theHamiltonians at different times are
commutative. This hypothesis is violatedwhen the non-Hermitian effect becomes pronounced, i.e., as the
imaginary component of the refractive index is relatively large. Indeed, as we increase the value of r from0.2 to
0.5, the agreement becomes increasingly worse, especially for large time.However, for the parameter region on
the right side of the phase diagrams infigure 2where themodulation frequency is large, a reasonably good
agreement between the analytical and simulation results is obtained, evenwhen the imaginary part of the
refractive index is not small. For the highmodulation frequency region (the rightmost part offigure 2), ZB
oscillations are similar to those of the conventional case where themodulation in the refractive index is absent.
Physically, in the highmodulation frequency region, thewaveguides do not have time to absorb and dissipate
energy, generating amean-field like effect.

In the intermediate frequency regime, the analytical and simulation results do not agree with each other.
Numerically, wefind the phenomenon of spatial energy localization, as shown infigure 5. In particular, in the
parameter space near the boundary of the phase diagram, e.g., for r=0.5 and w w = 4.00 , spatially thewave
energy is localizedwithin a small region about the center of thewaveguide array, as shown infigure 5(a). This
phenomenon of energy localization is sensitive to the value ofω. Figure 5(b) shows a contrary example for
w w = 3.50 , where thewave packet spreads after a short time.Wefind that thewave spread becomes faster as the
value ofω is reduced. Figures 5(c), (d) show the total wave intensity corresponding to the cases infigures 5(a, b),
respectively.We observe an apparent envelopemodulation behavior in the case of energy localization. The
strong reduction in the spread of thewave packet is similar to that reported in [68], where a localization behavior
in quantumdiffractionwas found to result from the linearization of the quasienergy spectrum close to the
 -symmetry breaking boundary. Generally, this is a dynamical localization phenomenon in one-dimensional
driving systems [69–72]. Thewidth of the localizedwave packet depends on thewidth of the initial wave packet.

Phase diagram in w1 axis.
As can be seen from the phase diagrams in figure 2, the boundary between the pseudo- breaking and the
pseudo- phases exhibits an oscillation pattern. A detailed investigation indicates that the inverse of the peak
frequencies are oddmultiples of the inverse of the rightmost peak frequency. To better understand this behavior,
especially in the limit w  0, we present a series of phase diagrams in the w( )r1 , plane for different values of
s kr , as shown infigures 6(a)–(e), where the parameter values infigure 6(c) are the same as those infigure 2(a).
For convenience, infigure 6(c) the w1 axis is rescaled as w w( )1 1 0 , where w w = 4.21 0 . Other panels are
scaled using the base frequency offigure 6(c). Infigure 6(c), thewhite dashed lines are for w w = 1, 3, 5, 7, 91 ,
which is indicative that, in the vicinity of these lines, the system is in the pseudo- breaking phase. As noted,
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Figure 5.Phenomenon of spatial energy localization in photonic superlattice. Spatial view of thefield intensity and time evolution of
themodulus of the wave function for r=0.5, (a), (c) w w = 4.00 , and (b, d) w w = 3.50 .

Figure 6.Phase diagrams for different values of s kr . (a)–(e)Phase diagrams for s k = 1.1, 1.5, 2.1, 2.5, 3.1r , respectively, where
w1 is the base frequency, i.e., the largest resonant frequency. Thewhite dashed lines on (c) correspond to the cases of
w w = 1, 3, 5, 7, 91 , respectively. There is a general relation: w s kµ rbase .
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wehave w w s k~ 2 r1 0 , so as s kr is varied, we expect to see a similar resonance phenomena butwith a
different base frequency, as shown infigures 6 (a), (b), (d), (e). Physically, the quantity s kr measures the band
gap of themassive relativistic dispersion relation, and it is known for theHermitian case that the ZB trembling
frequency is proportional to the band gap. As a result, themodulation frequency, which is at resonancewith the
ZB trembling frequency, is alsomodified. Similar results were obtained recently [54–58].

4. Conclusion

Novel electronicmaterials obeying relativistic quantummechanics are a current focus of condensedmatter
physics andmaterials science, which provide uswith a platform to uncover, understand, and exploit unusual
physical phenomena. It is of great interest to use optical systems to gain insights into the fundamentals of
relativistic quantum solid state devices, and vice versa, i.e., to exploit relativistic quantum electronic behaviors to
generate revolutionary ideas/methodologies inmanipulating light propagation. Themain reason for such an
interest is that, electronicmaterials facemany experimental and technological challenges due to the extremely
small wavelength issue. The conventionalmethod is to engineer, e.g., through strain, doping and voltage
control, some specificmaterials to realize the desired configuration, constraining researchers to some limited
kinds of lattice structures and interactions. Compounded on the small wavelength issue are various kinds of
disorders and impurities. Photonic crystals andwaveguides can be used tomimic the electronic properties, e.g.,
the dispersion relations, of solid statematerials, with the advantage that the optical wavelength is orders of
magnitude larger than the electronic wavelength. Substantially larger optical devices can then be fabricated to
investigate a host of electronic behaviors in relativistic quantum solid devices. These are synthetic photonic
materials and devices.

This paper is a case study of exploiting the equivalence between coupledwave equations and theDirac
equation tomodel/simulate relativistic quantum effects in a non-Hermitian setting. Standard quantum
mechanics requires observable operators to beHermitian to ensure real eigenvalues. However, non-Hermitian
Hamiltonians are also capable of generating a purely real eigenvalue spectrum insofar as the systemhas a 
symmetry. In optics, non-HermitianHamiltonian systems can be realized usingmaterials with a complex index
of refraction, rendering experimentally feasible such systems [2, 4, 23, 24].We studied a class of non-Hermitian
waveguide systemswith periodicmodulated imaginary refraction index in order to uncover the optical
counterpart of the relativistic ZB effect, which exhibit  symmetry breaking at any instant of time but the
symmetry is preserved on a larger time scale (herewith the term pseudo  symmetry).We generated phase
diagrams of the pseudo- behavior, which provide a general picture for controlling and harnessing light
propagation in thewaveguide system. The phenomenon of oscillatory boundary variations in the phase
diagrams is explained. In the lowmodulation frequency region, we observed periodically enhanced and
suppressed ZB oscillations, as predicted by an analysis of the equivalentDirac equation. The phenomenon that
there are time periodswhere the ZB trembling is absent, interspersed by time intervals where the relativistic
quantumoscillations emerge and disappear, a kind of ‘revival’ phenomenon, can potentially lead to a new
mechanism tomanipulate/control light propagation. In the high frequency regime, a conventional ZB
trembling behavior arises due to amean-field effect. In the intermediate region, the equivalent description based
on theDirac equation no longer holds. However, numerically we uncovered a spatial energy localization
phenomenon.
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Appendix

Derivation of themain analytical result equation (6)
We start from theDirac equation in themomentum space:

y
k a s a y

¶
¶

= +
( ) [ ( ) ] ( ) 
k t
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Thewavefunction at any given time can bewritten as

òy y= - ¢ ¢( ) ( )( ) t e 0 ,k
H t t

k
d

t
i

0

where  is the time ordering operator. Since our system is a time dependent non-Hermitian system, i.e.,
¹[ ( ) ( )]H t H t, 01 2 , the expansion of the exponential factor under the time ordering operator can be quite

sophisticated. In order to gain analytical insights, we assume =[ ( ) ( )]H t H t, 01 2 . This does notmean that the
non-Hermitian property of our system is lost. In fact, non-Hermitian characteristics still exist in ( )E t .

Wefirst discuss the validity of the approximations. The effectiveHamiltonian of the system is
k a s a= +( ) ( )H k t k t, 1 3, where timemodulation occurs in the imaginary part ofσ: s s s w= +( ) ( )t ti sinr i ,

while the real part sr is time independent. In the limit s = 0i , systembecomes time independent, rendering
irrelevant the time ordering operator, as k sµ s [ ( ) ( )]H t H t klim , 0i0 1 2i

. The time dependent weight on

the a1 term comes from the integral ò ¢ ¢( )H t td
t

0
, which is responsible for the dynamical phase in the limit.

For a small value of si, the time ordering operator can bewritten as
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where, for simplicity, we have ignoredÿ. Take the second order term ò ò [ ( ) ( )]t t H t H td d
t t

0 1 0 2 1 2 as an example.

The difference induced by the time ordering operator is on the order of k sµ[ ( ) ( )]H t H t k, i1 2 , while themain
part of the second order term is dominated by k s+k r

2 2 2. Sincewe focus on the excitations about the ~k 0
points, i.e., the Brillouin zone boundary in the original waveguide system, the ratio of the two terms,
k s k s+( )k ki r

2 2 2 , is negligibly small, providing a justification that the effect of the time ordering operator can
be neglected in the regime s s  0i r . For higher order terms, the effect of the time ordering operatorwill be
evenmore negligibly small.

Taken together, for s ¹ 0r , our results are exact for s = 0i , as the system reduces to a time independent
system. For s si r , the effects of the time ordering operator can be neglected. Comparingwith the numerical
results, we see the approximationworks well for vaues of s si r up to 0.2, demonstrating that the oscillations
observed are indeedZitterbewegungwith amodulated amplitude resulting from the non-Hermitianmodulation
of the system. For larger values of s si r (e.g., 0.5), there is disagreement between the analytic and numerical
results as the time ordering effects can no longer be neglected. Nonetheless, the positions of relatively large
oscillations can still be predicted.

Since s s s w= +( ) ( )t ti sinr i , we have
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Using the Euler formula for Paulimatrices,

a= + a ˆ ( ) ( ˆ · ) ( ) ( )( ˆ · ) I A A Ae cos i sin , A.1A Ai

wehave

òy y a y» = + - ¢ ¢( ) ( ) [ ( ) ( ˆ · ) ( )] ( ) ( )( )t I A A Ae 0 cos i sin 0 . A.2k
H t t

k k
d

t
i

0

Nextwe consider the initial condition. At the input plane z=0, the initial wave packet can be chosen to have the
shape of a slowly varyingGaussian form. The initial amplitude of y x( ), 01,2 is then proportional to ( )G na2 and

- »(( ) ) ( )G n a G na2 1 2 , so the two components of theDirac spinor have the same initial condition, i.e.,
y =( ) ( )[ ]G k0 1, 1k

T . The Paulimatrices operate on the initial Dirac spinor, andwe get the time evolution of the
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two components of theDirac spinor as
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The expectation value of the position operator can be calculated through

òx p y yá ñ = ¶
-¥

¥
( ) ( ) ( ) ( )*t t t2 i A.4k k k

A lengthy algebra leads to themain analytic result: the formulas in equation (6) as well as the time evolution
of themodulus of thewavefunction. The convergence of the integrals in equation (6) is guaranteed by the
exponential decay of theGaussianwave spectrumG(k ). In particular, for small t values, ∣ ( )∣Acos 2 is about unity.
For large values of t, we have y » +∣ ( )∣ ∣ ( )∣ ∣ ( )∣ t A Acos sin 12 2 2 . Thus, y∣ ( )∣t 2 can never approach 0, so
equation (6) converges.

Derivation of the dispersion relation
We follow [64, 73] to derive the dispersion relation. Specifically, from the coupledmode equation, we obtain, for
a2n and +a n2 1, the following equations:
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where s ( )z is in general complex. As there are two sets of waveguides, we assume
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i 2 1 i . Substituting these into the equations for a2n and +a n2 1, after some algebra, we have
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The determinant of the above equation needs to be 0, which leads to w s k=  +( ) ( )z qa4 cos2 2 2 . To
account for the fact that s ( )z is complex, we substitute s s s= +( ) ( )z tir i into the dispersion relation and
consider the limit of small imaginary part:
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The real part of the dispersion relation in the limit of small imaginary part is then given by

s s k - +( ) ] ( ) ( )z qa4 cos . A.7r i
2 2 2 2
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