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Abstract

Human movements in the real world and in cyberspace affect not only dynamical processes such as
epidemic spreading and information diffusion but also social and economical activities such as urban
planning and personalized recommendation in online shopping. Despite recent efforts in characteriz-
ing and modeling human behaviors in both the real and cyber worlds, the fundamental dynamics
underlying human mobility have not been well understood. We develop a minimal, memory-based
random walk model in limited space for reproducing, with a single parameter, the key statistical
behaviors characterizing human movements in both cases. The model is validated using relatively big
data from mobile phone and online commerce, suggesting memory-based random walk dynamics as
the unified underpinning for human mobility, regardless of whether it occurs in the real world or in
cyberspace.

1. Introduction

Human mobility in the real world and cyberspace plays an ever increasing role in the modern society and
economy. Many important processes are affected by the patterns of human mobility, such as epidemic and
information spreading [1-5], traffic congestion [6-8], and e-commerce. Modern research on human mobility
dynamics began with the trajectory-based approach [9], e.g., by tracing the trajectories of dollar bills in the real
world, which revealed a number of scaling relations such as a truncated power law in the distribution of the
traveling distance. Analysis of mobile phone data demonstrated that individual travel patterns can be
characterized by a spatial probability distribution, indicating the existence of universal patterns in human
trajectories [10]. The question of whether human mobility patterns are predictable was addressed through an
analysis of the limits of predictability in human dynamics [11]. More recently, human mobility in cyberspace
and its relation to that in the real world were studied using big data analysis and phenomenological

modeling [12].

Fundamental to the study of human mobility dynamics is the development of models to reproduce the
phenomena and scaling relations obtained from empirical data [13]. A pioneering work in this field is the
articulation of a statistical, self-consistent microscopic model [14]. Subsequent studies focused on predicting the
mobility flow between two locations through, e.g., the classic gravity model [15]. A stochastic process capturing
local mobility decisions, the so-called radiation model, was introduced [16], which yields better agreement with
empirical data than the gravity model. Alternative mechanisms were introduced to model human trajectories
[17-23]. The modeling effort has also been extended to cyberspace [12]. While many models were developed to
reproduce the scaling laws obtained from various human mobility empirical data, a physical and first-principle
based understanding of the underlying dynamics is still missing. In particular, the widely studied model of
human microscopic trajectories [ 14] imposes the hypothesis that the probability of individuals visiting new
locations in the real world has a power-law form: B, = pS~7, where Sis the number of distinct locations

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. [llustration of memory-preferential random walk process. Initially, every location has unit weight. At each time step, the
walker chooses a location as the next destination. The visited times to location (is denoted as k3. The probability for the walker to
choose location (is propositional to the initial weight of this location plus the product of the memory factor parameter A and kj.

already visited, with p and -y being two parameters. However, the underlying mechanism accounting for the
power-law probability of exploring new locations is yet elusive, prompting us to wonder if there is a unified,
minimal model capable of predicting all known scaling laws for human mobility in both the real world and
cyberspace.

In this paper, we show that all observed statistical features of human trajectories in the real world and
cyberspace can be quantitatively predicted through a unified mechanism; memory based, preferential random
walk process. The memory effect has been known to be important to human dynamics in general [24-28], which
in limited space is a basic ingredient in our minimal model. The probability for an individual to visit a new
location can then be obtained from first principle considerations without the need to hypothesize any particular
mathematical form. The basic idea is intuitive (as most of us have experience with); if an individual visited a
location in the past, the location would imprint a memory effect on the individual, enhancing the probability for
him/her to visit the same location in the future. The striking finding is that, this simple rule, with only a single
parameter, is capable of generating all the known statistical properties of human mobility (e.g., those predicted
by the models of self-consistency [14] with more parameters and scaling assumption about the probability).
Solving our minimal model analytically, we obtain scaling relations that agree well with the empirical ones from
mobile phone check-ins and online shopping data sets that record human trajectories in the real world and
cyberspace, respectively. Our minimal model thus establishes the unified underpinning of human mobility,
representing a significant step forward in understanding modern human behaviors through statistical physics.
This has the potential to advance a number of disciplines such as social sciences and online economics.

2. Methods

2.1. Memory-preferential random walk model

We consider a finite space of M locations, in which Nindividuals perform random walk with the probability of
visiting a position proportional to its weight. For convenience, we use Latin and Greek letters to denote
individuals and locations, respectively. The weight of a location o with respect to individual i, w/, is updated
during the process. An actual visit of i to o will increase the weight w,. through A— the memory factor
parameter. For A = 0and A > 0, the random walk is unbiased and memory-preferential, respectively.

In our memory-preferential random walk (MPRW) model, for individual i the weight sequence of all M
locations at time step f can be written as {1 + )\kli ), 1 + )\kzi ), 1+ /\k3i (t)...,1 + Ak}g (t) }, where ki (1)
is the number of times that position a has been visited before time t. When i is about to move to a new location at
t + 1, the probability to go to avis proportional to the weight of a, i.e., w/, ~ 1 + Ak! (). We have

1
p;(t+ 1 = 1+ Aka(it) '
Ys[1 + Mg (1)]

A typical step of the memory-preferential random walk process is schematically illustrated in figure 1.

The three statistical quantities [10, 11, 14, 16, 24-28] characterizing the human mobility dynamics are: (i) the
total number S (¢) of distinct locations that an individual visited within time ¢, (i7) the probability P (z, t) of
returning to the zth discovered location at time ¢, and (iii) the fraction P (k, ) oflocations that have been visited
k times at time . As we mainly investigate P (z, t) and P (k, t) under certain ¢ value, so we denote respectively
these two distributions as P (z) and P (k) for simplicity in the rest of the paper. The quantity P (z) can be used to
infer whether previously visited locations are more likely to be visited than newly discovered locations, which we
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will show possesses a more complex form than the well-known Zipf's law [29]. The quantity P (k) is similar to
the degree distribution in complex networks [30-32]. The three quantities can be used to validate our model
through a detailed comparison between theoretical prediction and numerical results. In human mobility
research, there are actually some other measures relying on geographic distance information, such as the mean
square displacement (MSD). However, our model focuses on the abstract space without the distance
information. This characteristic guarantees that we can validate our model in both online and offline systems
(see the results section). Therefore, we mainly consider the measures independent of geographic distance
information in this paper.

2.2. Analytical solutions
We aim to obtain the analytic expectation values of the three characterizing quantities. Since walkers are
independent of each other, it suffices to analyze a single walker.

(1) The number of distinct locations, S (t). S(t) is defined as the total number of distinct positions visited by the
person within time ¢. Inspired by the master equation method, we write down the probability of visiting a new
position:

Biew = M-S . (D
M+ At
By solving it, we have
1
M+ X\
Sy =M—- (M —1 . 2
() ( )( Y )\t) ()
In addition, we obtain the solution to B, as
M-S A+1
new ( ) (3)

T MM )

Even though the formula has a different form from Py ~ S77, one can see that the formula is indeed in a
power-law form and B,.,, decreases with S, which are in general consistent with the one assumed in the work
with the mobile phone data [14].

(it) The visit probability of positions discovered at different time, P (z). By using same method as above we have

(M+AmA+D(M—zr
M+ N)Xt M-1)"

(iii) The visit probability of each position, P (k). To calculate P (k), we note that the total number of the visited
locations is S. Each location has its own ordinal z, which gives a relation between k and z. Suppose k (z) isa
monotonously decreasing function, we can obtain its inverse z (k), also a monotonously decreasing function.
The measure of k = xis |Az| = |z/(k = x) Ak|. We have

P(z) = (C))

|Az]| |2’ (x) Ak
Pk=1x) = = . 5
(k= x) S S )
Askisanintegerand Ak = 1in the system, we have
EXQ]
P(k) = ) 6
(k) SO (6)
where
1
A+ M A 1_
") =—2'"(k)=M—1 kX + Dal,
2" (k)] z (k) = ( )[(M+)\t)()\+1)]( ) :
VNN ™)
S@)=M—- M —1
® ( )(M+ )\t)

More details can be seen in the appendix section.

3. Results

3.1. Numerical validation on artificial systems

We conduct systematic numerical simulations of our MPRW model to obtain the scaling laws governing the
three characterizing quantities,using the concrete setting where 100 walkers are distributed in a space of 1000
locations and perform 1000 walks, i.e., N = 100, M = 1000 and t = 1000. As S (¢), P (z), P (k) are defined for
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Figure 2. Comparison between simulation and analytical predictions of MPRW model. (a—c) For four values of the memory factor
parameter ), the quantities S(t), P (z), and P (k), respectively. In (a) and (b), the agreement between simulation and theory is
remarkable, even for relatively short time duration t = 1000. In (c), the theoretical prediction of P (k) exhibits a power-law scaling, but
there are numerical deviations. The discrepancies can be reduced by increasing the duration, as shown in the inset for = 10° and
A = 10.

each walker. Itis necessary to aggregate the results from all walkers to uncover the general features. Our
approach is the following. (i) For each user i, we obtain the relation between S’ (t) and t,where S’ (t) is the total
number of previously visited distinct locations within time t. We have S(t) = (1/N)Y", S'(#). (ii) To calculate
P (z),welet P (z]) be the probability of i’s visiting the location cv. Say i has visited z — 1 distinct locations before
walking into v. The quantity P (z.) is then the fraction of times that walker i visited a, and we have

P(z,) = 1/N)x;P (z(i). (#ii) For P (k),we note that,each location « can be visited by different times for each
walker. Let k/ be the number of times that walker i visited ov. The aggregated frequency of visit to v is

ko =3, k,i, and P (k) can be obtained through the histogram of the sequence {k;, k, k3 ..., kys}-

Figure 2(a) shows the function S (¢) for different values of A\, which is a sub-linear increasing function. We
see that a stronger memory effect corresponds to a smaller rate of increase, which is natural due to individuals’
resistance to explore new locations. Figure 2(b) shows the behavior of P (z) at t = 103, where we see that the
memory effect in general decreases the value zat which P (z) begins to decrease rapidly, meaning that nostalgic
individuals tend to discover few locations, a behavior that is consistent with that in figure 2(a). For both
figures 2(a) and (b), the simulation results agree well with the analytical prediction by equations (2) and (4),
respectively. Figure 2(c) shows the distribution function P (k) at t = 10, which exhibits a general power-law
scaling behavior. For large values of ), the scaling exponent is about — 1. However, small values of A, P (k)
apparently deviate from the theoretically predicted power-law form. The deviation is a result of relatively short
simulation duration. When we increase the duration to t = 10 in the case of A = 10, the deviation diminishes,
as shown in the inset of figure 2(c). In the solution of P (k) (see equations (6) and (7)), both Aand ¢ can be

regarded as parameters. Given certain values of Aand ¢, P (k) can be writtenas P (k) ~ (k + %)* - 1. If the

parameter \is large enough, P (k) can be rewritten as P (k) ~ k™. In figure 2, we added the curve of
P (k) ~ k~!for comparison. One can see that the curves of P (k) with different \ are indeed very close
to P(k) ~ k~L

3.2. Validation with the location-based check-ins application

We validate our model with location-based check-in data [33]. Our data set recorded, in New York city, the
positions of 42035 individuals as they use the check-in application, where the whole city is divided into 197
blocks. In order to obtain along enough time series, we focus on the individuals who have at least 100 recorded
locations and analyze their first 100 records. There are 60 individuals whose recorded data fulfill this
requirement. The quantities S (¢), P(z) and P (k) are computed by aggregating the data from different
individuals. The parameters that can be input to the MPRW model are thus N = 60, M = 197 and t=100. A
key to validating the model is the choice of some suitable value of the memory factor, A. The optimal value,
denoted as X¥, can be estimated by comparing S (¢) from simulation and from real data. Specifically, limiting the
choices of A to integer values, we can calculate a set of square distance values, d (\), between the two S (¢) curves.
The value of X* is one that minimizes d (\). For the mobile phone data, we have X¥ = 23, as shown in figure 3(a).
We see that, for this choice of A, the model predicted function S () agrees well with that from the mobile phone
check-ins data. With X* determined solely from S (), we also obtain a good agreement between the model and
empirical results for the quantities P (z) and P (k), as shown in figures 3(b) and (c), respectively. which is
remarkable. From figure 3(b), we note that the P (z) curve from the model has a shorter tail than that from the
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Figure 3. Empirical data analysis: check-ins and online shopping systems. (a—c) From a mobile phone check-in data set in New York
city, the quantities S(¢), P (z),and P (k), respectively, where the optimal memory factor parameter is chosen tobe A = 23.1In (b) and
(e), the P (z) curves from the simulated data have a shorter tail than that from the real data, which can be corrected by extending the
time duration from t = 100 to = 10000 in (b) and ¢ = 500 to t = 5000 in (e) (see inset). (d—f) The corresponding results from a big
online shopping data set for A = 10.

real data. This is due to the difference in the time scale between the simulation and real data, e.g., =100 in the
real data may correspond to a much longer time duration in the model. Extending the time duration to t = 10000
in the model gives a better agreement, as shown in the inset of figure 3(b). We find that S(¢#) and P (k) are
immune to this effect, insofar as the time duration is not too small.

3.3. Online commercial data
The big data set is from Taobao.com [34]. As a main business branch of the Alibaba Group (a giant Chinese
Internet company), Taobao is regarded as China’s equivalent of eBay. The data set consists of the click records of
Taobao users. When a user intends to make a purchase on Taobao, he/she clicks a sequence of links to obtain the
relevant information (e.g., brand and price) of the product and then chooses one to buy. This process can be
regarded as users surfing online web pages, i.e., movements in the cyberspace. Our data set consists of the
records of 34330 individuals. After initial filtering to remove the individuals with abnormally long or very short
click strings, we obtain a slightly smaller data set with 33462 users, for which the total number of web pages is 25.
Each web page is corresponding to a category of products such as books and domestic appliances. The mobility
of users in this online shopping web site indicates that users are browsing among different categories of products.
To cast the online shopping process in the framework of MPRW, we regard each web page as alocation. The
memory-preferential random walk can be interpreted as the tendency of a user to revisit the category of products
that he/she is interested in (i.e. frequently visited). To be consistent with the data, we set M = 25 in the MPRW
model. Nand ¢, however, are two tunable parameters. N is the number of users considered in our model,
corresponding to the number of independent realizations. We have found that the statistical properties of the
model actually already reach the stable state when N = 100. In order to reduce the computational complexity, we
use N =100 instead of 33462. The parameter ¢ = 500 means that each user jumps 500 steps in the space (i.e. each
user clicks on 500 total web pages). Using the same method as for the mobile phone data, we determine the
optimal value of the memory factor parameter to be X* = 10. The results of S(t), P(z),and P (k) are shown in
figures 3(d)—(f), respectively. Again, the results from MPRW model agree well with those from the data (for P (z)
agood agreement is achieved when an extended time duration, t = 5000, is used in the model, as shown in the
insetin (b)), suggesting the model’s wide applicability.
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4. Discussion

To summarize, we develop a random walk model with a single parameter to reproduce the statistical scaling
behaviors of the three quantities characterizing human mobility. The key element that makes our model distinct
from previous ones is a memory-preferential mechanism in limited space. We demonstrate that, when this
mechanism is incorporated into a standard random walk process, the analytically predicted behaviors agree, ata
detailed and quantitative level, with those from two representative real data sets, one for real world and another
for cyberspace movements. This is remarkable, considering that model is minimal with only a single adjustable
parameter, the memory factor parameter. The main message is then that, while various mechanisms can be
considered for human mobility, such as planted or social events [35] and gender difference [36—38], our findings
provide strong evidence that random walk with memory is the unified underpinning of the human movement
dynamics.

In fact, the model in this paper is similar to a preferential attachment model with a fixed number of nodes
(short for PA,)) which has been studied in the literature [39]. However, we would like to emphasize that there are
some key differences between our model and existing literature on PA,,. As our model and PA,, describe two very
different processes (human mobility versus network evolution), these two models have many differences in their
statistical properties. One straightforward example is the upper limit of node degrees. If the number of nodes in
PA,, is nand elinks will be added to the network, the possible maximum degree of nodeis # — 1. Thisis due to
the fact that two nodes can only be linked once. In our model, if a walker walks e steps in a space with 1 places, the
possible maximum degree (i.e. visits) a place can get is e instead of n — 1. Therefore, the analytic solution of the
degree distribution is power-law in our model but exponential in PA,,. In addition, our model uncovers many
statistical properties which never been studied with PA,,. As PA,, focuses on network evolution, most of related
research studies the resultant degree distribution, i.e. P (k). However, as our model is applied to study human
mobility patterns, we investigate not only P (k), butalso S (t) and P (z) which are the statistical properties of
human mobility and never been studied in network evolution. Taken together, though our model has some level
of similarity to a PA with a fixed number of nodes, it has many novel properties as it is applied to model a
completely different system.

While we assume in the present work that the walkers are homogeneous, the analysis can be extended to
model incorporating memory heterogeneity [40]. Though introducing heterogeneity of user behavior could
make a simple analytical solution intractable, it may lead to much richer statistical properties emerged from the
model. Therefore, we believe that taking into account user heterogeneity in our model would be an important
extension. In addition, we use two real data sets from totally different backgrounds to validate our model, one
online and one offline. It would be interesting to test our model in many different data sets and look at more
elaborate properties in future research. Given a data set from any generic behavior of human movements, the
optimal memory factor parameter for the MPRW model can be estimated by comparing the behavior of an
elementary statistical quantity from data and model. This feature has the additional benefit of assessing and
quantifying the degree of intrinsic memory effect in the real system, which has potential applications to
problems of significant current interest such as traffic optimization and online recommendation.
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Appendix. The derivation details of the analytical solutions

The number of distinct locations, S (t)
We have the probability of visiting a new position equation (1). So we have the equation
dS M-S

L M7 8
dt M+ Xt ®
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By solving it, we have
S() =M ( : )IA ©®
=M —c|——|,
M+ Xt

where cis a constant. At the beginning of the random walk, we have the initial condition: t=1and S (¢¥) = 1.
Accordingly, we can obtain the value of cas

1
c=M+ D)X - 1). (10)

Thus we can have the solution of S (¢) as equation (2).

The visit probability of positions discovered at different time, P (z)

Let k, denote the position zhas been visited k times and ¢, denote the first time when position zis visited. By using
the same method, to k,,we have

dk, - ﬂ (11)
dt M+ At
Solving it with the initial condition t = t, and k, = 1, we have
_ A+ DA+ M) 71' (12)
AM + Aty) A
Actually, we have a hidden condition S (f,) = z. By usingit, we can get
_(M+)\t)()\+1)(M—z)A_l 13)
‘ A+MXrx \M-1 A
The visited frequency of each position P (z) is proportional to k,, so
P(z) x k,. (14)
As the sum of the k equals to evolving time ¢, so we have
o\
p(z):&%(M—i_ /\t)()\+1)(M z). (15)
t A+ Nt M-1
The visit probability of each position, P (k)
We already have S (¢) as equation (2). And we can solve k (z) inversely to obtain
1
By
2y =M — (M — 1)[(Ak+ DQ‘LM)] . (16)
A+ DM + )

So we have equation (6) and P (k) as equation (5).
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