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Abstract
Humanmovements in the real world and in cyberspace affect not only dynamical processes such as
epidemic spreading and information diffusion but also social and economical activities such as urban
planning and personalized recommendation in online shopping. Despite recent efforts in characteriz-
ing andmodeling human behaviors in both the real and cyber worlds, the fundamental dynamics
underlying humanmobility have not beenwell understood.We develop aminimal,memory-based
randomwalkmodel in limited space for reproducing, with a single parameter, the key statistical
behaviors characterizing humanmovements in both cases. Themodel is validated using relatively big
data frommobile phone and online commerce, suggestingmemory-based randomwalk dynamics as
the unified underpinning for humanmobility, regardless of whether it occurs in the real world or in
cyberspace.

1. Introduction

Humanmobility in the real world and cyberspace plays an ever increasing role in themodern society and
economy.Many important processes are affected by the patterns of humanmobility, such as epidemic and
information spreading [1–5], traffic congestion [6–8], and e-commerce.Modern research on humanmobility
dynamics beganwith the trajectory-based approach [9], e.g., by tracing the trajectories of dollar bills in the real
world, which revealed a number of scaling relations such as a truncated power law in the distribution of the
traveling distance. Analysis ofmobile phone data demonstrated that individual travel patterns can be
characterized by a spatial probability distribution, indicating the existence of universal patterns in human
trajectories [10]. The question of whether humanmobility patterns are predictable was addressed through an
analysis of the limits of predictability in human dynamics [11].More recently, humanmobility in cyberspace
and its relation to that in the real worldwere studied using big data analysis and phenomenological
modeling [12].

Fundamental to the study of humanmobility dynamics is the development ofmodels to reproduce the
phenomena and scaling relations obtained from empirical data [13]. A pioneering work in thisfield is the
articulation of a statistical, self-consistentmicroscopicmodel [14]. Subsequent studies focused on predicting the
mobilityflowbetween two locations through, e.g., the classic gravitymodel [15]. A stochastic process capturing
localmobility decisions, the so-called radiationmodel, was introduced [16], which yields better agreementwith
empirical data than the gravitymodel. Alternativemechanismswere introduced tomodel human trajectories
[17–23]. Themodeling effort has also been extended to cyberspace [12].Whilemanymodels were developed to
reproduce the scaling laws obtained from various humanmobility empirical data, a physical and first-principle
based understanding of the underlying dynamics is stillmissing. In particular, thewidely studiedmodel of
humanmicroscopic trajectories [14] imposes the hypothesis that the probability of individuals visiting new
locations in the real world has a power-law form: r= g-P Snew , where S is the number of distinct locations

OPEN ACCESS

RECEIVED

7December 2015

REVISED

17March 2016

ACCEPTED FOR PUBLICATION

28April 2016

PUBLISHED

16May 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/5/053025
mailto:anzeng@bnu.edu.cn
mailto:yanxy@bjtu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053025&domain=pdf&date_stamp=2016-05-16
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053025&domain=pdf&date_stamp=2016-05-16
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


already visited, with ρ and γ being twoparameters. However, the underlyingmechanism accounting for the
power-law probability of exploring new locations is yet elusive, prompting us towonder if there is a unified,
minimalmodel capable of predicting all known scaling laws for humanmobility in both the real world and
cyberspace.

In this paper, we show that all observed statistical features of human trajectories in the real world and
cyberspace can be quantitatively predicted through a unifiedmechanism;memory based, preferential random
walk process. Thememory effect has been known to be important to human dynamics in general [24–28], which
in limited space is a basic ingredient in ourminimalmodel. The probability for an individual to visit a new
location can then be obtained from first principle considerationswithout the need to hypothesize any particular
mathematical form. The basic idea is intuitive (asmost of us have experience with); if an individual visited a
location in the past, the locationwould imprint amemory effect on the individual, enhancing the probability for
him/her to visit the same location in the future. The striking finding is that, this simple rule, with only a single
parameter, is capable of generating all the known statistical properties of humanmobility (e.g., those predicted
by themodels of self-consistency [14]withmore parameters and scaling assumption about the probability).
Solving ourminimalmodel analytically, we obtain scaling relations that agreewell with the empirical ones from
mobile phone check-ins and online shopping data sets that record human trajectories in the real world and
cyberspace, respectively. Ourminimalmodel thus establishes the unified underpinning of humanmobility,
representing a significant step forward in understandingmodern human behaviors through statistical physics.
This has the potential to advance a number of disciplines such as social sciences and online economics.

2.Methods

2.1.Memory-preferential randomwalkmodel
Weconsider afinite space ofM locations, inwhichN individuals perform randomwalkwith the probability of
visiting a position proportional to its weight. For convenience, we use Latin andGreek letters to denote
individuals and locations, respectively. Theweight of a locationαwith respect to individual ai w, i , is updated
during the process. An actual visit of i toαwill increase theweight awi throughλ— thememory factor
parameter. For l = 0 and l > 0, the randomwalk is unbiased andmemory-preferential, respectively.

In ourmemory-preferential randomwalk (MPRW)model, for individual i theweight sequence of allM
locations at time step t can bewritten as { ( ) ( ) ( ) ( )}l l l l+ + + ¼ +k t k t k t k t1 , 1 , 1 , , 1i i i

M
i

1 2 3 , where ( )ak ti

is the number of times that positionα has been visited before time t.When i is about tomove to a new location at
+t 1, the probability to go toα is proportional to theweight ofα, i.e., ( )l~ +a aw k t1i i .We have

( ) ( )
[ ( )]

l
l

+ =
+

S +a
a

b b
p t

k t

k t
1

1

1
.i

i

i

A typical step of thememory-preferential randomwalk process is schematically illustrated infigure 1.
The three statistical quantities [10, 11, 14, 16, 24–28] characterizing the humanmobility dynamics are: (i) the

total number ( )S t of distinct locations that an individual visitedwithin time t, (ii) the probability ( )P z t, of
returning to the zth discovered location at time t, and (iii) the fraction ( )P k t, of locations that have been visited
k times at time t. Aswemainly investigate ( )P z t, and ( )P k t, under certain t value, sowe denote respectively
these two distributions as ( )P z and ( )P k for simplicity in the rest of the paper. The quantity ( )P z can be used to
infer whether previously visited locations aremore likely to be visited than newly discovered locations, whichwe

Figure 1. Illustration ofmemory-preferential randomwalk process. Initially, every location has unit weight. At each time step, the
walker chooses a location as the next destination. The visited times to locationβ is denoted as bk . The probability for thewalker to
choose locationβ is propositional to the initial weight of this location plus the product of thememory factor parameterλ and bk .
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will show possesses amore complex form than thewell-knownZipfʼs law [29]. The quantity ( )P k is similar to
the degree distribution in complex networks [30–32]. The three quantities can be used to validate ourmodel
through a detailed comparison between theoretical prediction and numerical results. In humanmobility
research, there are actually some othermeasures relying on geographic distance information, such as themean
square displacement (MSD). However, ourmodel focuses on the abstract spacewithout the distance
information. This characteristic guarantees thatwe can validate ourmodel in both online and offline systems
(see the results section). Therefore, wemainly consider themeasures independent of geographic distance
information in this paper.

2.2. Analytical solutions
Weaim to obtain the analytic expectation values of the three characterizing quantities. Sincewalkers are
independent of each other, it suffices to analyze a single walker.

(i)The number of distinct locations, ( )S t . ( )S t is defined as the total number of distinct positions visited by the
personwithin time t. Inspired by themaster equationmethod, wewrite down the probability of visiting a new
position:

( )
l

=
-
+

P
M S

M t
. 1new

By solving it, we have

( ) ( ) ( )l
l

= - -
+
+

l⎛
⎝⎜

⎞
⎠⎟S t M M

M

M t
1 . 2

1

In addition, we obtain the solution to Pnew as

( )
( )( )

( )
l

=
-

+ -

l

l

+
P

M S

M M 1
. 3new

1

Even though the formula has a different form from ~ g-P Snew , one can see that the formula is indeed in a
power-law form and Pnew decreases with S, which are in general consistent with the one assumed in thework
with themobile phone data [14].

(ii)The visit probability of positions discovered at different time, ( )P z . By using samemethod as abovewe have

( ) ( )( )
( )

( )l l
l l

=
+ +

+
-
-

l
⎜ ⎟⎛
⎝

⎞
⎠P z

M t

N t

M z

M

1

1
. 4

(iii)The visit probability of each position, ( )P k . To calculate ( )P k , we note that the total number of the visited
locations is S. Each location has its own ordinal z, which gives a relation between k and z. Suppose ( )k z is a
monotonously decreasing function, we can obtain its inverse ( )z k , also amonotonously decreasing function.
Themeasure of k= x is ∣ ∣ ∣ ( ) ∣D = ¢ = Dz z k x k .We have

( ) ∣ ∣ ∣ ( ) ∣ ( )= =
D

=
¢ D

P k x
z

S

z x k

S
. 5

As k is an integer andD =k 1 in the system, we have

( ) ∣ ( )∣
( )

( )=
¢
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, 6
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1

More details can be seen in the appendix section.

3. Results

3.1. Numerical validation on artificial systems
Weconduct systematic numerical simulations of ourMPRWmodel to obtain the scaling laws governing the
three characterizing quantities,using the concrete settingwhere 100walkers are distributed in a space of 1000
locations and perform1000walks, i.e., = =N M100, 1000 and t= 1000. As ( ) ( ) ( )S t P z P k, , are defined for
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eachwalker. It is necessary to aggregate the results from all walkers to uncover the general features. Our
approach is the following. (i) For each user i, we obtain the relation between ( )S ti and t,where ( )S ti is the total
number of previously visited distinct locationswithin time t.We have ( ) ( ) ( )= åS t N S t1 i

i . (ii)To calculate
( )P z ,we let ( )aP z i be the probability of iʼs visiting the locationα. Say i has visited -z 1distinct locations before

walking intoα. The quantity ( )aP z i is then the fraction of times that walker i visitedα, andwe have

( ) ( ) ( )= åa aP z N P z1 i
i . (iii) For ( )P k ,we note that,each locationα can be visited by different times for each

walker. Let ak i be the number of times that walker i visitedα. The aggregated frequency of visit toα is

= åa ak ki
i , and ( )P k can be obtained through the histogramof the sequence { }k k k k, , ,..., M1 2 3 .

Figure 2(a) shows the function ( )S t for different values ofλ, which is a sub-linear increasing function.We
see that a strongermemory effect corresponds to a smaller rate of increase, which is natural due to individuals’
resistance to explore new locations. Figure 2(b) shows the behavior of ( )P z at =t 103, wherewe see that the
memory effect in general decreases the value z at which ( )P z begins to decrease rapidly,meaning that nostalgic
individuals tend to discover few locations, a behavior that is consistent with that infigure 2(a). For both
figures 2(a) and (b), the simulation results agree well with the analytical prediction by equations (2) and (4),
respectively. Figure 2(c) shows the distribution function ( )P k at =t 103, which exhibits a general power-law
scaling behavior. For large values ofλ, the scaling exponent is about−1.However, small values of ( )l P k,
apparently deviate from the theoretically predicted power-law form. The deviation is a result of relatively short
simulation duration.Whenwe increase the duration to =t 105 in the case of l = 10, the deviation diminishes,
as shown in the inset offigure 2(c). In the solution of ( )P k (see equations (6) and (7)), bothλ and t can be

regarded as parameters. Given certain values ofλ and ( )t P k, can bewritten as ( )( ) ~ +
l

-lP k k 1 11

. If the

parameterλ is large enough, ( )P k can be rewritten as ( ) ~ -P k k 1. Infigure 2, we added the curve of
( ) ~ -P k k 1 for comparison.One can see that the curves of ( )P k with differentλ are indeed very close

to ( ) ~ -P k k 1.

3.2. Validationwith the location-based check-ins application
Wevalidate ourmodel with location-based check-in data [33]. Our data set recorded, inNewYork city, the
positions of 42035 individuals as they use the check-in application, where thewhole city is divided into 197
blocks. In order to obtain a long enough time series, we focus on the individuals who have at least 100 recorded
locations and analyze their first 100 records. There are 60 individuals whose recorded data fulfill this
requirement. The quantities ( ) ( )S t P z, and ( )P k are computed by aggregating the data fromdifferent
individuals. The parameters that can be input to theMPRWmodel are thus = =N M60, 197 and t= 100. A
key to validating themodel is the choice of some suitable value of thememory factor,λ. The optimal value,
denoted as *l , can be estimated by comparing ( )S t from simulation and from real data. Specifically, limiting the
choices ofλ to integer values, we can calculate a set of square distance values, ( )ld , between the two ( )S t curves.
The value of *l is one thatminimizes ( )ld . For themobile phone data, we have *l = 23, as shown infigure 3(a).
We see that, for this choice ofλ, themodel predicted function ( )S t agrees well with that from themobile phone
check-ins data.With *l determined solely from ( )S t , we also obtain a good agreement between themodel and
empirical results for the quantities ( )P z and ( )P k , as shown infigures 3(b) and (c), respectively. which is
remarkable. Fromfigure 3(b), we note that the ( )P z curve from themodel has a shorter tail than that from the

Figure 2.Comparison between simulation and analytical predictions ofMPRWmodel. (a–c) For four values of thememory factor
parameterλ, the quantities ( ) ( )S t P z, , and ( )P k , respectively. In (a) and (b), the agreement between simulation and theory is
remarkable, even for relatively short time duration t= 1000. In (c), the theoretical prediction of ( )P k exhibits a power-law scaling, but
there are numerical deviations. The discrepancies can be reduced by increasing the duration, as shown in the inset for =t 105 and
l = 10.
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real data. This is due to the difference in the time scale between the simulation and real data, e.g., t= 100 in the
real datamay correspond to amuch longer time duration in themodel. Extending the time duration to t= 10000
in themodel gives a better agreement, as shown in the inset offigure 3(b).Wefind that ( )S t and ( )P k are
immune to this effect, insofar as the time duration is not too small.

3.3.Online commercial data
The big data set is fromTaobao.com [34]. As amain business branch of theAlibabaGroup (a giant Chinese
Internet company), Taobao is regarded asChinaʼs equivalent of eBay. The data set consists of the click records of
Taobao users.When a user intends tomake a purchase onTaobao, he/she clicks a sequence of links to obtain the
relevant information (e.g., brand and price) of the product and then chooses one to buy. This process can be
regarded as users surfing onlineweb pages, i.e.,movements in the cyberspace. Our data set consists of the
records of 34330 individuals. After initialfiltering to remove the individuals with abnormally long or very short
click strings, we obtain a slightly smaller data set with 33462 users, for which the total number of web pages is 25.
Eachweb page is corresponding to a category of products such as books and domestic appliances. Themobility
of users in this online shoppingweb site indicates that users are browsing among different categories of products.

To cast the online shopping process in the framework ofMPRW,we regard eachweb page as a location. The
memory-preferential randomwalk can be interpreted as the tendency of a user to revisit the category of products
that he/she is interested in (i.e. frequently visited). To be consistent with the data, we setM= 25 in theMPRW
model.N and t, however, are two tunable parameters.N is the number of users considered in ourmodel,
corresponding to the number of independent realizations.We have found that the statistical properties of the
model actually already reach the stable state whenN= 100. In order to reduce the computational complexity, we
useN= 100 instead of 33462. The parameter t= 500means that each user jumps 500 steps in the space (i.e. each
user clicks on 500 total web pages). Using the samemethod as for themobile phone data, we determine the
optimal value of thememory factor parameter to be *l = 10. The results of ( ) ( )S t P z, , and ( )P k are shown in
figures 3(d)–(f), respectively. Again, the results fromMPRWmodel agreewell with those from the data (for ( )P z
a good agreement is achievedwhen an extended time duration, t= 5000, is used in themodel, as shown in the
inset in (b)), suggesting themodelʼs wide applicability.

Figure 3.Empirical data analysis: check-ins and online shopping systems. (a–c) From amobile phone check-in data set inNewYork
city, the quantities ( ) ( )S t P z, , and ( )P k , respectively, where the optimalmemory factor parameter is chosen to be l = 23. In (b) and
(e), the ( )P z curves from the simulated data have a shorter tail than that from the real data, which can be corrected by extending the
time duration from t= 100 to t= 10000 in (b) and t= 500 to t= 5000 in (e) (see inset). (d–f)The corresponding results from a big
online shopping data set for l = 10.
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4.Discussion

To summarize, we develop a randomwalkmodel with a single parameter to reproduce the statistical scaling
behaviors of the three quantities characterizing humanmobility. The key element thatmakes ourmodel distinct
fromprevious ones is amemory-preferential mechanism in limited space.We demonstrate that, when this
mechanism is incorporated into a standard randomwalk process, the analytically predicted behaviors agree, at a
detailed and quantitative level, with those from two representative real data sets, one for real world and another
for cyberspacemovements. This is remarkable, considering thatmodel isminimal with only a single adjustable
parameter, thememory factor parameter. Themainmessage is then that, while variousmechanisms can be
considered for humanmobility, such as planted or social events [35] and gender difference [36–38], our findings
provide strong evidence that randomwalkwithmemory is the unified underpinning of the humanmovement
dynamics.

In fact, themodel in this paper is similar to a preferential attachmentmodel with afixed number of nodes
(short for PAn)which has been studied in the literature [39]. However, wewould like to emphasize that there are
some key differences between ourmodel and existing literature on PAn. As ourmodel and PAn describe two very
different processes (humanmobility versus network evolution), these twomodels havemany differences in their
statistical properties. One straightforward example is the upper limit of node degrees. If the number of nodes in
PAn is n and e linkswill be added to the network, the possiblemaximumdegree of node is -n 1. This is due to
the fact that two nodes can only be linked once. In ourmodel, if a walker walks e steps in a spacewith n places, the
possiblemaximumdegree (i.e. visits) a place can get is e instead of -n 1. Therefore, the analytic solution of the
degree distribution is power-law in ourmodel but exponential in PAn. In addition, ourmodel uncoversmany
statistical properties which never been studiedwith PAn. As PAn focuses on network evolution,most of related
research studies the resultant degree distribution, i.e. ( )P k . However, as ourmodel is applied to study human
mobility patterns, we investigate not only ( )P k , but also ( )S t and ( )P z which are the statistical properties of
humanmobility and never been studied in network evolution. Taken together, though ourmodel has some level
of similarity to a PAwith afixed number of nodes, it hasmany novel properties as it is applied tomodel a
completely different system.

While we assume in the present work that thewalkers are homogeneous, the analysis can be extended to
model incorporatingmemory heterogeneity [40]. Though introducing heterogeneity of user behavior could
make a simple analytical solution intractable, itmay lead tomuch richer statistical properties emerged from the
model. Therefore, we believe that taking into account user heterogeneity in ourmodel would be an important
extension. In addition, we use two real data sets from totally different backgrounds to validate ourmodel, one
online and one offline. It would be interesting to test ourmodel inmany different data sets and look atmore
elaborate properties in future research. Given a data set from any generic behavior of humanmovements, the
optimalmemory factor parameter for theMPRWmodel can be estimated by comparing the behavior of an
elementary statistical quantity fromdata andmodel. This feature has the additional benefit of assessing and
quantifying the degree of intrinsicmemory effect in the real system,which has potential applications to
problems of significant current interest such as traffic optimization and online recommendation.
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Appendix. The derivation details of the analytical solutions

The number of distinct locations, ( )S t
Wehave the probability of visiting a newposition equation (1). Sowe have the equation

( )
l

=
-
+

S

t

M S

M t

d

d
. 8
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By solving it, we have

( ) ( )
l

= -
+

l⎛
⎝⎜

⎞
⎠⎟S t M c

M t

1
, 9

1

where c is a constant. At the beginning of the randomwalk, we have the initial condition: t= 1 and ( ) =S t 1.
Accordingly, we can obtain the value of c as

( ) ( ) ( )l= + -lc M M 1 . 10
1

Thuswe can have the solution of ( )S t as equation (2).

The visit probability of positions discovered at different time, ( )P z
Let kz denote the position z has been visited k times and tz denote thefirst timewhen position z is visited.By using
the samemethod, to kz,we have

( )l
l

=
+
+

k

t

k

M t

d

d

1
. 11z z

Solving it with the initial condition =t tz and =k 1z , we have

( )( )
( )

( )l l
l l l

=
+ +

+
-k

t M

M t

1 1
. 12z

z

Actually, we have a hidden condition ( ) =S t zz . By using it, we can get

( )( )
( )

( )l l
l l l

=
+ +

+
-
-

-
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⎜ ⎟⎛
⎝

⎞
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The visited frequency of each position ( )P z is proportional to kz, so

( ) ( )µP z k . 14z

As the sumof the k equals to evolving time t, sowe have

( ) ( )( )
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( )l l
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= »
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⎞
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. 15z

The visit probability of each position, ( )P k
Wealready have ( )S t as equation (2). Andwe can solve ( )k z inversely to obtain

( ) ( ) ( )( )
( )( )

( )l l
l l

= - -
+ +
+ +

l⎡
⎣⎢

⎤
⎦⎥z k M M

k M

M t
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1

1
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1

Sowe have equation (6) and ( )P k as equation (5).
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