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Abstract

Supply-demand processes take place on a large variety of real-world networked systems ranging from
power grids and the internet to social networking and urban systems. In a modern infrastructure,
supply-demand systems are constantly expanding, leading to constant increase in load requirement
for resources and consequently, to problems such as low efficiency, resource scarcity, and partial
system failures. Under certain conditions global catastrophe on the scale of the whole system can occur
through the dynamical process of cascading failures. We investigate optimization and resilience of
time-varying supply-demand systems by constructing network models of such systems, where
resources are transported from the supplier sites to users through various links. Here by optimization
we mean minimization of the maximum load on links, and system resilience can be characterized
using the cascading failure size of users who fail to connect with suppliers. We consider two
representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are:
(1) optimized systems are more robust since relatively smaller cascading failures occur when triggered
by external perturbation to the links; (2) a large fraction of links can be free of load if resources are
directed to transport through the shortest paths; (3) redundant links in the performance of the system
can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system;
(4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific
location of the trigger determines the specific route of cascading failure, but has little effect on the final
cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the
suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold
for heterogeneous networks in general, providing insights into designing optimal and resilient
complex supply-demand systems that expand constantly in time.

1. Introduction

Supply-demand processes associated with various types of resources ranging from mass and energy to
information are key to modern social, technological, and eco-systems. The network of services in a modern
infrastructure such as hospitals, schools, firehouses, post offices, stores, power and water stations, etc is one
example. Data networks in the world-wide-web, the underlying physical networks (i.e., the Internet), and online
social media are other examples. In an ecosystem, the energy transportation processes among different species in
afood chain can also be regarded as a supply-demand process. Mathematically, the dynamical properties of a
supply-demand process can be studied in the context of complex networks [1, 2]. Such a network is typically
time varying because of the constant addition of new suppliers into the system in response to rising demand. To
optimize the new suppliers in terms of their number and locations to ensure high efficiency is of great interest.
For example, for governmental social welfare agencies and commercial service industries, it is desirable to be
able to provide better services to more people with fewer facilities. This optimization problem is mathematically
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Figure 1. lllustration of an expanding supply-demand network. Filled gray and open circles denote the sites occupied by suppliers and
demanders, respectively. Each demander orders one unit of resource from the nearest suppliers, with load divided uniformly among
all the shortest paths. (a) Demanders 1, 2, and 3 receive resources from the supplier 4 through the respective shortest paths. The
maximum edge load L. = 3/2 islabeled by ‘x’. (b) For the expanded system of size seven, L,y is increased to 4. (c) Addition and
optimization of the location of one new supplier to reduce Ly, (d) Optimal configuration of suppliers.

challenging, attracting continuous interest of researchers from various disciplines such as business, economics,
systems engineering, computer science, geography, and even biology [3—11].

In this paper, we investigate optimization and resilience of complex demand-supply networks from the
dynamical point of view, motivated by the fact that, in general, rapid expansion of any networked system will
inevitably affect the various dynamical processes that it supports. For a supply-demand network, expansion can
lead to increasing load requirement for resources, causing problems such as low efficiency, resource scarcity, and
small and large scale failures. Of particular interest is the dynamical process of cascading failures, which has been
studied extensively in the past but mostly for static networks [12-26]. There were also previous works on
dynamical processes on time-varying networks [27], in specific contexts such as genomics [28], oscillator
synchronization [29-32], opinion dynamics and evolutionary games [33, 34]. These works, however, mainly
addressed the dynamics of the co-evolving systems of stable size. From the standpoint of time varying networks,
the distinct feature of a supply-demand network lies in the rapid expansion of its size. To our knowledge, the
effects of such expansion on network optimization and resilience have not been studied. Specifically, by
optimization we mean minimization of the maximum load L,,,,, on links, and by resilience we mean the system’s
ability to sustain cascading failures. When such failures occur, some demanders will be separated from the
suppliers. The number of the separated demanders corresponds to the size of the cascading failure, which can be
used as a quantitative measure to characterize the resilience of the system. An optimized supply-demand
network is more robust to perturbation such as disabling or removal of links .

Due to the rapid expanding nature of supply-demand networks, analytic treatment of cascading dynamics
is extremely difficult. We thus rely on systematic numerical computations. Our main results are the following.
We find that the specific route to cascading failures depends sensitively on the location of the perturbed
link and its capacity (cf, figure 3). An intuitive approach to mitigating cascading failures is to have ‘redundant’
links in the network, links that are free of load. However, we find that these links play a ‘double-sword’ role:
they can help reroute the traffic but can also increase the final failure size of the system (cf, figure 4). The links
that handle neither too large nor too small load have a higher probability to trigger large scale cascading
failures upon perturbation (cf, figure 5). By considering various types of expansion and optimization schemes,
we also find that expansion typically reduces efficiency because it makes the present optimal locations of
suppliers immediately less optimal (cf, figures 7-9). To maintain efficient function of the system, the
locations of the suppliers need to be adjusted frequently over a larger region of candidate sites in response to
expansion.

In section 2, we define supply-demand networks and introduce two types of supply schemes for systems
under expansion: load driven supply (LDS) and fixed fraction supply (FFS). In section 3, we study the interplay
between optimization and resilience in terms of cascading failures triggered by removal of a single link. In
section 4 we provide an understanding, through extensive numerics, of how the expansion affects optimization.
In section 5, we present conclusions and discussions.
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Figure 2. Cascading failures of a supply-demand network under different levels of optimization. (a) Edge-load distribution of the system
optimized to a given value of L, ranging from 113.44 to 8.87. The inset shows the corresponding plot on a double-logarithmic scale.
(b) Number of failed demanders at each time step triggered by an attack targeted at the maximum-load edge at t = 0. (c) Total number
of failed demanders Dy versus Ly,,x. The solid lines are for eye guide. The underlying network is scale-free with size N= 1000, S = 10,
average degree (k) = 6, and total number of edges E = 3000. The edge capacity parameteris @ = 0.6.

2. Models of supply-demand networks

A supply-demand network consists of two components: suppliers that provide certain types of resources or
services, and demanders that exploit the resources or use the services. Resources can be, e.g., data packets in
Internet, electric power, water supply in an urban system, public transportation devices, etc. To conveniently
quantify the resources, we conceive them as being composed of packets [2] that flow from suppliers’ sites
(sources) to demanders’ sites (destinations). The suppliers and demanders are connected together through a
networked structure — a kind of complex transportation network.

We assume that the amount of resource supported by each supplier is unlimited, and each demander orders
one unit of resource from the nearest supplier(s) through the shortest path(s) in the underlying network. The
unit resource to each demander is equally divided among suppliers with identical shortest paths, as illustrated in
figure 1. If there are x shortest paths, regardless of the number of suppliers, the share or weight of each path is
1/x. Theload L on a given edge is the sum over the shares of all the paths through it [2], as shown in figure 1. The
load is thus a variant of the link betweenness [35] with respect to sources and destinations. For the realistic
situation where the traffic capacity C on every edge is limited, the maximum edge load L.« is an important
parameter determining the performance of the supply-demand system. The optimal locations of suppliers
subject to minimization of L,,,, can be found through methods such as simulated annealing [36, 37] and genetic
algorithms [38, 39].

In an expanding system of population growth, more resources are required from time to time, introducing
more load to the underlying supply-demand network. As illustrated in figure 1(a), the network grows from a
given optimized initial state with one supplier (filled circle) and three demanders (open circles). The number of
sitesisthus N = S + D = 4, with Sand D denoting the numbers suppliers and demanders, respectively. The
maximum edge load is Ly,,x = 3/2 (marked by ). When three new nodes are introduced into the system, as
shown in figure 1(b), the maximum load becomes L,.x = 4, which does not necessarily occur on the original
maximum-load edge. As a new supplier is added to the system to relieve edge overloading, its location plays an
important role in minimizing L,,,,. Figure 1(c) and (d) illustrate the two outcomes for the two possible locations
of the new supplier, where the location in figure 1(d) is the optimal one.

We consider two types of expansion mechanisms: LDS and FFS. The system with an increasing number of
demanders may cause certain edges to become overloaded. Through LDS, once L, exceeds a pre-assigned
upper bound of edge capacity C, new suppliers are added and optimized in system one by one until L.
becomes smaller than C. Addition and optimization of suppliers take place on the same time scale as the
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Figure 3. Effects of edge capacity on cascading failures. (a), (b) Numbers of failed demanders and disabled edges, denoted as Dy and Eg,
respectively, versus the tolerance parameter a. The results from the ten different network configurations are marked by different
symbols. (c) Average distance from disabled edges to the closest suppliers, denoted by R._s, versus a. This results indicates that, for
systems with small values of @, the edges near the suppliers are more likely to be involved in the cascading process. (d) Number of
clusters of failed demanders, denoted as ng, versus a, where the solid symbols indicate the results from ten different network
configurations, and the symbols connected by lines correspond to the average values. (e), (f) Temporal behaviors of ADs and AEy,
and (g), (h) accumulated amounts of Dy (¢) and E (¢), respectively, with a ranges from 0.1 to 0.5 (denoted by different open symbols).
The supply-demand network has N'= 1000 nodes and E = 3000 edges.

expansion of the network. For FFS, a fixed fraction of nodes are arranged to be suppliers as the system expands,
i.e., the number of suppliers increases proportionally with the system size, and the locations of the new suppliers
are optimized over the whole system, or in the newly established region composed of the latest set of nodes added
to the system. In this case, there is separation in time scales in that the network can expand much faster than
suppliers are added into the system and optimized, where the expansion rate AN is an externally adjustable
parameter. We employ the simulated annealing algorithm [36, 37] to optimize the locations of the new
suppliers. The representative growing scale-free network model [40] is adopted to describe the underlying
expanding supply-demand network, where adding nodes in the course of network growth corresponds to
introducing more demanders and thus more load into the system. The network growth rule is set according to
the two types of expansion mechanisms, LDS and FFS. In LDS, nodes (with m initial links) are added into the
system one by one. In FFS, a group of nodes are added before each optimization process. The so generated scale-
free network has power-law degree distribution with the scaling exponent y ~ 3 and average degree (k) = 2m.
In addition, after optimizing the locations of the suppliers under different scenarios (see details in section 4),
suppliers are found to have a preference to large degree sites.

3. Optimization and resilience

In general, random errors or an intentional attack can trigger cascading failures. To understand how such
failures can occur in a supply-demand network provides a way to assess the resilience of the system.

For a static supply-demand network with a given configuration of suppliers, the load on each edge is known
a priori. A reasonable assumption [12] is that the capacity C; of edge i is proportional to its load L;:

Ci=0+a)Li (1)
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Figure 4. Effect of redundant edges on cascading process. For a supply-demand network and its variant in which all redundant edges are
removed, (a) number of failed demanders and (b) number of failed edges versus time in a cascading event. Results for the original
network are plotted using red open symbols while those for the variant network are represented by black filled symbols. (), (d) The
corresponding accumulated numbers of Ds (t) and Eg (¢), respectively. In (b) and (d), the results from the original network (with
E = 3000 edges) are plotted with y-axis labeling on the left, and the results from the variant network without redundant edges (with
E = 1944 edges) correspond to y-axis labeling on the right.
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Figure 5. Cascading size and probability triggered by single attack on edges. For a supply-demand network of size N = 1000, E = 3000 and
S=10, (a) cascadingsize Dy triggered by a single attack on edges of load L for different values of @ and (b) the corresponding
probability P, of cascading process. (c) Fraction ofloaded edges that trigger the cascading process. The simulation results (denoted by
symbols) in (b) and (c) are averaged over ten network realizations, and the solid curves are for eye guidance.

where the parameter @ > 0 is an adjustable tolerance parameter. When one edge fails to work (due either to
random failure or to an intentional attack), the set of paths passing through this edge will no longer be available,
leading to a global redistribution ofload over the whole system. Any edge with newload L; > C; will fail to
deliver the resources to the demanders, and this causes the load to redistribute again, and so on. The cascade of
overload failures can cut off a large number of paths from suppliers to demanders, leading to catastrophic
failures of the demanders. A feature that distinguishes this type of cascading failures from previously studied
ones [12-26] is that here, the failures are result of edge overload instead of node overload.

To characterize the extent of edge-overload induced cascading failures in a supply-demand network, we use
the quantity D¢, the number of demanders that are not connected to any supplier and thus fail to function, due
to the network’s inability to deliver the required resources to them. For convenience, we call them failed
demanders.
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Figure 6. Origin of gap in Dy. Size Dy of the cascading process triggered by a single attack on edge ofload L for different values of &
(denoted by different symbols) in the supply-demand networks with various combinations of the network parameters N, S and (k).
The upper (a)—(c) and middle (d)—(f) rows of panels have S = 0.01N and S = 0.02N, respectively. The bottom row of panels
compares the results from the network with increasing average degree (k).
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Figure 7. Required suppliers in expanding systems with load driven supply (LDS). (a) Number of suppliers S as a function of the system
size N. (b) Linear plots and (c) log—log plots of S versus C for N =800 and 1500 under LDS (open symbols fitted by dashed lines) and
SGO (filled symbols fitted by solid lines). The power-law decay of § towards the critical value C" with exponents = 1.3 and 1.0 for
LDS and SGO are plotted, respectively. The underlying scale free network has the average degree of (k) = 6. The results are averaged
over ten random network realizations.
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Figure 9. Average degree of suppliers in expanding systems. The average degree (k) of all the suppliers (black filled squares) and those at
each time step (open symbols labeled by g1—g¢) in systems under optimization schemes (a) EGO and (b) ELO, respectively. The
expansion rate of the systems are AN = 500 and AS = 5. The SGO results for the static system with the corresponding values of N
and S (red filled circles) are also included for comparison.

3.1. Optimization and resilience

In a supply-demand network, optimization of suppliers’ locations leads to minimally possible value of L., ..
What is then the interplay between optimization and resilience? Figure 2(a) shows the load distributions of a
system with different values of L.y, from a random initial configuration of suppliers with Ly, = 113.44 (open
circles) to optimal configuration with Ly,,x = 8.87. We see that, in the optimization process of reducing L ,.x,
the qualitative features of the load distribution remain mostly unchanged. In particular, the region of the
distribution remains broad. Furthermore, for random or optimal configuration of suppliers, over 35% of the
edges haveload L = 0. Intuitively, these ‘redundant’ edges provide ‘room’ for the system to recover when the
number of edges that carryload is reduced due to failures. However, a more careful examination (see figure 4)
shows that, while the redundant edges may help to reroute the traffic, an undesirable consequence is that they
also promote the propagation of cascading failures and lead to larger cascading size.

Single attack upon nonzero-load edge may trigger a cascade of failures. For simplicity, we first consider
attacks targeted at the maximum-load edge. As an example, we show in figures 2(b) and (c) the incremental
number (denoted by ADx) of failed demanders versus time and the corresponding asymptotic numbers,
respectively, for networks with different values of L,,,,,. The edge capacities C;in each network are set according
to the load definition in equation (1). We see that, the better the system is optimized (i.e., with smaller value of
Lnax), the cascading process is relatively more benign in the sense that the failure spreading is slower. In contrast,

7
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ifa system has alarge value of L, as for the case where the locations of suppliers are arranged randomly, the
cascading process is more devastating in the sense that many more demanders fail to reach suppliers. We thus see
that, although the original objective of optimizing the locations of the suppliers does not seem to be directly
related to system resilience, a better optimized network is apparently more resilient against intentional attacks.
The results shown in figure 2 keep unchanged qualitatively when the parameters of the system such as N, S, and E
are changed. In addition, for a given system, once a cascading process is triggered by an attack on a single edge,
the failure size Dy is independent of the specific location of the attack, as shown in figures 5(a) and 6. To gain
more insights into the interplay between optimization and resilience, in the following we study the optimal
system with varying edge capacities, i.e., one with minimal value of L., from the perspective of perturbation on
edges with different load.

3.2. Cascading failures in systems of varying edge capacities

We study the role of edge capacity C; in the cascading process, which can be varied systematically through the
tolerance parameter a (equation (1)). Figures 3(a) and (b) show the asymptotic number of the failed demanders
(Ds, the cascading size), and the number of disabled edges Ef at the end of the cascading process, respectively,
versus a for ten different network realizations with identical values of the parameters N, S, E and (k), but
generated from different random seeds. We see that, as the edge capacity C;is increased, D¢ decreases
monotonically, but E¢ exhibits a nonmonotonic behavior around a = 0.2 for some network realizations as
shown in the inset of figure 3(b). In addition, the details of the cascading process is quite sensitive to the specific
topology of the network, resulting in different critical values of @ above which the network is free of cascading
dynamics.

The nonmonotonic behavior of E; in figure 3(b) signifies a counterintuitive phenomenon: increasing the
edge capacity can reduce the number of failed demanders but can simultaneously cause more edges to fail. A
detailed check of the underlying cascading process reveals that varying edge capacity can affect the route (or
trajectory) of the cascading process in the network. Figures 3(c) and (d) show the average distance from failed
edges to their nearest suppliers, denoted by R._;, and the number of clusters of failed demanders, denoted by n,
respectively. For a = 0.1, the edges near the suppliers (smaller distance R._;) fail rapidly and the failed
demanders separated from the suppliers form a few large clusters and many small clusters. This is indication that
large amount of edges among demanders are not involved in the cascading process. For relatively larger a values
(e.g.,0.2), more edges fail (corresponding to larger E¢ valuesin (b)) but the distance R._ to suppliers becomes
larger, as shown in figure 3(c), implying failure of edges among demanders that leads to the emergence of smaller
clusters of failed demanders, as indicated in figure 3(d) through the larger values of n4. Overall, in contrast to the
monotonically decreasing behavior of Dy, the nonmonotonic behavior in E¢ with a peak at about a = 0.2
indicates a strong variance in the cascading trajectory through the network. In particular, small edge capacities
induce local edge failures close to suppliers and result in large cascading size, while larger edge capacity leads to
more edge failures but relatively smaller cascading size.

Examples of the temporal behaviors of D¢ and Ef are shown in figures 3(e)—(h) for @ = 0.1-0.5. We see that
cascading dynamics in systems with smaller values of @ are more severe with larger final failure size and shorter
duration, while for large values of a cases, the process spreads more slowly. We also see two factors that
contribute to the cascading failures: (1) failures of edges and subsequent load redistribution that can trigger
overload of the remaining edges in a cascading manner, and (2) reduction of total traffic flow in the system due
to disconnections of demanders from the suppliers. The final extent of the cascading process is result of the
balance of these two factors.

3.3. Therole of redundant edges in cascading dynamics
From figure 2, we see that a considerable fraction of edges are in fact free of load for various degree of
optimization. Are the redundant edges useful to mitigate overloading and cascading failures? To address this
question, we calculate the numbers of failed demanders and failed edges for the original network and for its
variant in which all the redundant edges are removed. The results are shown in figure 4. Surprisingly, we see that
removal of all the redundant edges can always inhibit the cascading process. This counterintuitive phenomenon
can be explained, as follows. The redundant edges serve to provide more rerouting paths from the suppliers to
the demanders in load redistribution when some nonzero-load edges are disabled. As shown in figure 4, the
original system with redundant edges (red open symbols) has smaller values of D¢ and ADx for several initial
time steps during the cascading process as compared to the variant system without redundant edges (black filled
symbols). However, the ‘saved’ demanders that are connected to the suppliers via new paths through redundant
edges will bring more loads to the whole system, leading to more dramatic cascading failures.

For the network without redundant edges, there are fewer rerouting paths available. As a result, even though
some demanders would fail initially, the path structure between the suppliers and demands are relatively more

8
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stable, making the extent of load redistribution less severe and effectively inhibiting the cascading dynamics. In
addition to this load redistribution issue, we find that for the network with redundant edges, isolation of the
supplier, namely failures of all the edges towards demanders for a given supplier, occurs with a higher
probability.

3.4. Effect of edge load on cascading process

The results obtained so far are for cascading failures triggered by a single attack on the edge with the maximum
load L. A question is whether an attack on an arbitrary edge ofload L < L, can induce a cascading process.
Figure 5(a) shows the cascading size Ds versus the load of the attacked edge for systems with different values of a.
We find that Dy is independent of the load of the attacked edge as the value of Dy is distributed randomlyin a
small interval. This means that, the location of the initial edge failure has little effect on the final cascading size,
once the process has taken place. As ais increased, Dy decreases.

Interestingly, in figure 5(a), a gap of Dy in the range [20, 400] can be observed. Extensive simulations are
carried out on networks with different values of parameters N, E, and S to understand the gap. Figure 6 plots a
typical set of results. We find that the systems with larger values of N, smaller values of S, or larger values of (k)
have larger gaps in D¢. More specifically, we observe the following: (1) the width of the gap is proportional to the
size N (see figures 6(a)—(f)), (2) larger number of suppliers can reduce the width of the gap (comparing
figures 6(a), (d), figures 6(b), (e), and figures 6(c), (f)), and (3) an increase in the average degree (k), i.e., larger
number of edges will enlarge the width of the gap (figures 6(g)—(i)). These results imply that the emergence of
the D¢-gap can be attributed to the tree structure of suppliers which result in strong correlations among the nodes
in the cascading process, where the supply tree of a given supplier is composed of all the paths along which the
supplier provides resources to demanders. Once a cascading process is triggered, the strong correlation among
nodes (through the supply trees) will induce a relatively large failure size Dy, rather than a continuous increase
in Dy from zero. A gap in Dy thus emerges between the cases with and without cascading failures. Furthermore,
for a system with fewer suppliers (small S), the supply tree has longer paths and larger size on average, which
induces stronger correlation among the nodes. Compared to the opposite case of larger value of S (panels (d)—(f)
in figure 6], in the small S systems (panels (a)—(c) in figure 6), an initial single attack can trigger a cascading
process of larger size, generating a larger gap in Ds. In addition, the existence of redundant links enlarges the
cascading size. An increase in the average degree (k) (panels (g)—(i) in figure 6), which leads to an increasing
number of redundant links, results in a larger value of D¢ and a larger gap width in Ds.

Figure 5(b) shows the probability P, for the occurrence of cascading failures versus load L of the initially
failed edge. Equivalently, P. is the fraction of edges with load L on which a single attack triggers cascading. There
is anon-monotonic relation between P.and L, indicating that an attack on some edge with median load is more
likely to trigger a cascading process. Additionally, as shown in figure 5(b), for the case of small & values, e.g., 0.1
or 0.2, the system is fragile in the sense that an attack on any edge with L > 4 will trigger cascading failures with
probability one. For larger a values, e.g., a = 0.3, the non-monotonic behavior of P, becomes apparent.

Figure 5(c) shows the total fraction F of edges that can trigger a cascading process versus a, which
corresponds to the probability cascading process due to random edge failure. We see that, as e is increased

through a critical value a* & 0.8, the system is immune to cascading failures under any single-edge attack. This
can also be seen in figures 5(a) and (b) where, for @ > 0.8, no cascading occurs and both the failure size D¢ and
the cascading probability P. approach zero.

4. Optimization of growing supply-demand networks

We consider the standard growing, scale-free network model [40] for two supply scenarios: (1) LDS and (2) FFS.
For LDS, arrangement and optimization of suppliers take place on the same time scale as that of expansion of the
network. For FES, the rate of network expansion is larger than that of optimization.

4.1. Scenario of LDS

When a system expands, loads on edges increase with more demanders, and new suppliers are required due to
the limited edge capacity C. The new supplier can be anywhere in the network except for those locations already
occupied by previous suppliers. The goal is to select optimal locations for the new suppliers which minimize
Linax- If Liax is larger than Cafter addition of one supplier, another supplier can be added into the system at some
optimal location. This process continues until L,,, < C. Since the amount of resource supported by each
supplier is unlimited, the system with fewer suppliers (smaller value of S) would satisfy all of the demanders
through more long range paths, provided that no edge is overloaded. When too many paths are needed, some
edges will inevitably be overburdened, requiring more suppliers at appropriate locations.
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Figure 7(a) shows a typical relationship between the number S of suppliers and system size N for LDS, where
the edge capacity limit C ranges from 2.1 to 9.1. Because of the linear increase of S with N, the average output of
each supplier O = (N — §)/S is approximately a constant for any given capacity C. However, the output
depends on C due to the dependence of S on C. For comparison, we also analyze the strategy of static global
optimization (SGO) where, for a given static network of size N and identical edge capacity C, thelocations of all S
suppliers are optimized synchronously over the whole system to obtain the lowest value of L. In SGO, if
optimization of the S suppliers is unable to meet the condition L,,, < C, one more supplier will be added and
thelocations of allthe S + 1 suppliers will be recalculated. This process is repeated iteratively until the system
satisfies the constraint L,,,x < C. Notably, different from LDS, in determining the supplier locations under the
SGO strategy, information about the evolutionary history of the network is not needed, i.e., the ‘elder’ suppliers
are not fixed.

Figures 7(b) and (c) respectively show the linear and log—log plots of the value of S versus C for two instants
of time when the system size is N = 800 and 1500 (circles and squares, respectively) both for LDS (open symbols)
and SGO (filled symbols). We observe the following power-law decay of S with C:

S~ NCP, (2)

where the power-law decay exponentis = 1.3 for LDS and 1.0 for SGO. The dashed curves and solid curves
respectively are the least square fittings to the results from LDS and SGO. Take LDS as an example, the systems in
the lower-left region below the dashed curve in figures 7(b) and (¢), i.e., those with inadequate suppliers or too
small values of C, will have a large number of overloaded edges, while those corresponding to upper regions
above the curves have redundant capacities. If Cis adjustable, one can see from figure 7(b) that the initial
increase in C (e.g., from 1 to about 6) dramatically reduces the number of additional suppliers, making
enhancing Ca highly efficient strategy for avoiding overloading. However, increasing Cin the larger capacity
region is not effective at reducing the number of new suppliers. In addition, the larger S of LDS compared to
SGO implies that, for a static system of a given size, the SGO strategy requires fewer suppliers as compared to an
expanding system evolved to the same size, in which the addition and optimization of suppliers are driven by
overload events. This can be attributed to the memory effect in the expanding system, e.g., immobility of the
existent suppliers.

To gain further insights, we consider the extreme case of one supplier, i.e., S= 1. For such a system, edge
capacity Capproaching N is sufficient for the system to avoid overload. The critical value C', below which
overload on edge occurs, is indicated in figure 7(c). We find that the C" values for the systems with LDS and SGO
coincide with each other, which can be attributed to the fact that the two different optimization schemes have no
effect on the one-supplier system. As Cis decreased further, the SGO scheme requires fewer suppliers and
consequently performs better. The power-law exponents from the LDS and SGO schemes respectively are
p = 1.3and 1.0, implying their different responses to decreasing C. The simple relation S - C ~ N, which holds
for the SGO scheme, is due to its sufficient and global utilization of edges. The LDS scheme, however, generates
small inhomogeneous distribution of loads and thus requires more suppliers to avoid overloading. In addition,
as Cis decreased to the extreme case of C < 1, the number of suppliers S diverges with the system size for both
schemes.

These results suggest that, to avoid overloading in an expanding supply-demand system, an effective scheme
needs to simultaneously take into account two factors: (1) enhancement of edge capacity limit C, and (2)
addition of suppliers.

4.2. Fixed fraction supply

In supply-demand networks under LDS, the number of demanders expands one at a time, i.e., the expansion
rateis AN = 1. In this case, the edge load is sensitive to each unit increment of N. In a realistic situation, the
expansion rate AN for a system subject to optimization can be large. For example, a group of suppliers can be
added into the system simultaneously. It is thus of interest to generalize the LDS scheme. To capture the essential
features of this variant, we study the simple scheme denoted by FFS where a fixed fraction of suppliers is added to
the system constantly. That is, we assume S = aN or, equivalently, AS = aAN. The advantage of this setting is
thatitis not necessary to consider the relatively complicated situation of overloading under limited edge
capacity. In this approach, L,y is effectively a measure of the system performance, and we focus on how L, is
affected by the value of the expansion rate AN . A useful indicator is the available optimization region for
suppliers. The solution will be somewhat trivial if the locations of all suppliers can be optimized over the whole
system without memory at any time—SGO scheme. However, this is over simplified because, in a real situation,
the cost to add a new supplier (e.g., a hospital, a fire house or a school) in an already established region (e.g., an
old urban district) can often be much higher than that to have the supplier in a newly developed region.
Motivated by this consideration, we propose two realistic optimization schemes in which the new AS suppliers
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at each time step are located in regions of (a) all sites except those already occupied by the elder suppliers
(evolving global optimization) (EGO) and (b) the AN newly added sites (evolving local optimization) (ELO).

We carry out a comparative analysis of the results from EGO, ELO, and SGO schemes under system
expansion. Figure 8 shows L., for expansion rate AN = 100, 200, or 500, where the system evolves from a
small initial size Nj to alarger size N = 3000. The number of suppliersis fixedat S = 0.1N (a=0.1). We see that
the ELO scheme (filled symbols) generally leads to higher values of L .5, implying lower efficiency as compared
with the EGO cases (open symbols). In fact, expansion of the system generally changes the global supply-
demand configuration. It cannot function optimally for the present system by simply combining the elder
suppliers distribution which was optimized to fit within the original system and the new suppliers distribution
which was optimized separately in the new region. However, under the EGO scheme, the locations of the new
suppliers are optimized in the whole system, leading to much smaller values of L,,,,, so as to have a better fit with
the new configuration. That is, the larger optimization region for new suppliers associated with EGO can yield
higher efficiency for the supply-demand process. We also see that, for both ELO and EGO, the systems with
larger expansion rate perform better than those with smaller rate, which can also be attributed to the larger
optimization region for new suppliers. The size of the optimization region for AS new suppliers is
N (t) — S(#) + AN forthe EGO case,and AN for the ELO case, both increasing with the expansion rate AN .

In comparison to the two evolving optimization schemes, EGO and ELO where the locations of the elder
suppliers are constrained due to the prior system evolution, the SGO scheme requires the smallest number of
suppliers, as shown in figure 8 (the solid curve). The locations of suppliers in both EGO and ELO can satisfy the
demands of the system but only temporarily and partially. A disadvantage of SGO in spite of its higher efficiency,
lies in cost because the elder sites occupied previously by demanders or suppliers need to be reestablished.

The scale free topology we assume for the supply-demand system has a heterogeneous degree distribution.
Based on extensive simulations, we find that the optimal locations for the suppliers under SGO in static systems
tend to favor the hub nodes. Even for ELO and EGO, new suppliers have a preference to large degree sites.
Figures 9(a) and (b) show the average degrees of suppliers from EGO and ELO, respectively, for AN = 500 and
AS = 5. As the system expands continuously, with each new generation having 495 demanders and 5 suppliers,
the average degree (k) of suppliers in each generation (labeled as g1—g6 with open symbols, respectively)
exhibits a power-law scaling with N as (k;) ~ N'/2, which can be attributed to the degree preferential
attachment process [40]. In particular, in the continuum limit the degree of the ith site added to the system at ¢;
increases as

i i KUy 3)
kj

o Z 2t
j

for which the solution is k; (£) = m (t/t;)? with # = 1/2 and t corresponding to the number of sites N. This leads
to the observed scaling relation (k,) ~ N'/2. However, the average degree over all the existing suppliers for EGO,
ELO (black filled squares), and SGO (red filled circles) exhibits a somewhat different behavior. Especially,
suppliers from EGO have the same rising trend but a smaller average degree with respect to SGO. The average
degree associated with ELO still exhibits a power-law decay behavior, since the new suppliers are constrained
within the newly generated small-degree sites.

5. Conclusion

Rapid expansion of infrastructure is ubiquitous in the modern time, in which various supply-demand processes
take place. Does expansion make the system more fragile or the opposite or, more generally, what is the interplay
between expansion and resilience? In this paper, we systematically investigate the expansion, optimization, and
resilience of supply-demand networks. Firstly, we study the effects of optimization on the locations of suppliers,
and those of enhancement of edge capacity on the resilience of the system via characterization of cascading
failures of demanders triggered by perturbation to links. We find that, in general, the optimized systems (with
smaller values of the maximum edge load) are more robust because the size of cascading failures is typically
smaller. For edges with median load, there is a higher probability that a single attack can trigger cascading
failures. Once a cascading process is initiated, its size does not depend on the specific location of the original link
that triggers the process. The pattern of cascading failures also depends strongly upon the capacity of links,
where a smaller capacity can lead to more rapid and massive cascading failures of demanders and the disabled
edges are closer to the locations of suppliers on average. We also find that the ‘redundant’ edges with zero load
play a paradoxical role, i.e., while they can help reroute the traffic so as to ensure that demanders are connected
to suppliers, they can undesirably increase the failure size of the whole system. Taking into account various types
of expanding and supply schemes, we study the effect of size expansion on the system efficiency. Under the LDS
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scheme where suppliers are added one by one into the system in responses to overloading, the required number
of suppliers S scales with the capacity limit Cas a power law. For the FFS scheme, both local and global
optimization strategies require more suppliers in comparison with the result of global optimization in static
systems of the same size. In general, system expansion makes the present optimal location of suppliers quickly
non-optimal, reducing the system efficiency. If the locations of the suppliers are optimized over a larger region of
available sites, fewer suppliers are required. Extensive simulations show that these results hold for heterogeneous
networks in general.

The supply-demand systems with heterogeneous structures numerically investigated in this paper can be a
prototype model for real world infrastructure systems under constant expansion, such as supply chains, logistic
networks [41], flight networks, and the Internet. Our results provide initial insights into the resilience of such
systems, for which further efforts are justified due to the importance of the problem. In particular, in the real
world there are supply-demand networks that do not possess the scale-free topology, such as urban traffic systems
and power grids. The issues associated with weighted nodes and directed-weighted edges taking into account the
nonhomogeneous capacities and specific function of suppliers and edges are also important, as well as multiple
layer or interdependent structures with more complicated coupling among different supply-demand processes.
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