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Abstract

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel
interaction scheme where the oscillators are coupled through only one variable or a symmetric set of
variables. Using the standard framework of master-stability function (MSF), we investigate the emer-
gence of complex synchronization behaviors under all possible configurations of two-channel cou-
pling, which include, for example, all possible cross coupling schemes among the dynamical variables.
Utilizing the classic Rossler and Lorenz oscillators, we find a rich variety of synchronization phenom-
ena not present in any previously extensively studied, single-channel coupling configurations. For
example, in many cases two coupling channels can enhance or even generate synchronization where
there is only weak or no synchronization under only one coupling channel, which has been verified in
acoupled neuron system. There are also cases where the oscillators are originally synchronized under
one coupling channel, but an additional synchronizable coupling channel can, however, destroy syn-
chronization. Direct numerical simulations of actual synchronization dynamics verify the MSF-based
predictions. Our extensive computation and heuristic analysis provide an atlas for synchronization of
chaotic oscillators coupled through two channels, which can be used as a systematic reference to facil-
itate further research in this area.

1. Introduction

Synchronization has been widely observed in many natural, social and technological systems, and has attracted
much attention during the last two decades [1-12]. In previous works, complete synchronization of identical
chaotic oscillators has been a special focus due to the availability of analytic framework of the master-stability
function (MSF) in determining the critical coupling strength at which synchronization arises and, more
generally, the regions in the parameter space where stable synchronization may emerge [7, 13, 14]. In general,
the MSF reduces the synchronization analysis to the interplay between two aspects: the dynamics of a single
oscillator and the coupling topology characterized by the eigenvalues of the coupling matrix. With knowledge of
the dynamics of the individual nodes and the nature of the pairwise coupling to infer the MSF, for any coupled
system one can thus predict whether synchronization can occur based on the eigenvalues of the coupling matrix
and the coupling strength, without the need of actual simulations. For example, a common class of MSFs have
the property that, in the plot of the MSF versus some generalized coupling parameter, there exists a finite interval
in which the MSF assumes negative values. For the normalized coupling strength either below or above this
interval, the system cannot be physically synchronized. In this case, synchronization is determined by the largest
and the smallest nontrivial eigenvalues of the coupling matrix, and their ratio is called eigenratio, which has been
used extensively in the study of the synchronizability of complex networks of various types of topology [15-20].
A general observation is that a smaller eigenratio is beneficial to synchronization and thus is more desirable in
designing synchronous networks [16]. The effect of different coupling schemes among the dynamical variables
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in alarge number of chaotic oscillators was investigated [14], confirming the generality of the MSF property so
discussed.

Most previous works in the field of complete synchronization of nonlinear and/or complex systems assumed
one-channel coupling or some coupling scheme with certain symmetry. For example, for a network system of
three-dimensional oscillators, coupling between any pair of interacting oscillators was usually assumed to exist
between one pair of dynamical variables, one from each oscillator. In real-world systems, however, the
dynamical interactions among the coupled oscillators can be more complicated [21]. In particular, the dynamics
of each individual oscillator in the network might be affected simultaneously by several different dynamical
variables from other oscillators. In this regard, two delayed signals [22] and multiple delayed signals [23] have
been introduced to stabilize the fixed points of various chaotic dynamical systems. Multi-path propagation with
multiple delays was proposed to improve the efficiency in network-controlled systems [24]. Conjugate coupling
was introduced to regulate the oscillation death phenomenon [25, 26] and, it was also found that multi-channel
coupling can provide a much larger domain for oscillation death than the case of single-channel coupling [27].
In spite of these investigations, a systematic study of the effect of multi-channel coupling on synchronization has
been lacking.

In this paper, we study synchronization of chaotic oscillators under two coupling channels. To be concrete
but without loss of generality, we employ the classic Rossler and Lorenz chaotic oscillators and calculate their
MSFs for all possible combinations of two coupling channels. We find three general types of synchronous
dynamics with respect to the effect of more than one coupling channel: (1) enhancement of synchronization, (2)
induction of synchronization, and (3) deterioration or even destruction of synchronization. In particular, for
case (1), the MSF of the system is negative under one coupling channel, and the addition of another coupling
channel with the same type can make the MSF even more negative. For case (2), the system cannot be
synchronized under one coupling channel, but synchronization can emerge under two coupling channels. For
case (3), the system can be synchronized under one coupling channel, but adding another coupling channel can
counter-intuitively destroy synchronization. Our extensive analysis and computation provide a comprehensive
picture of the complex synchronization behaviors that can arise under multiple coupling channels, and can serve
as a systematic reference to facilitate study of synchronization in complex nonlinear dynamical systems.

In section 2, we briefly review the MSF formalism. In section 3, we provide a systematic analysis of the MSFs
of the Rossler and Lorenz oscillators under two coupling channels and demonstrate an abnormal enhancement
of synchronizable region for a coupled HR neuron system. Concluding remarks are provided in section 4.

2. The MSF formalism

The MSF formalism provides a general framework for determining the synchronizability of a system of coupled
nonlinear oscillators [7]. Say the intrinsic dynamic of each isolated oscillator can be described by

dx
e F(x), (1)

where x; is a d-dimensional vector of dynamical variables. The coupled-oscillator system with two coupling
channels can be written as

N

dx:
- =F(x) = Y G[aH(x) +eHa(x) | (2)
j=1
fori = 1, 2, ..., N, where Nis the number of oscillators in the system, H; (x) and H, (x) are two distinct

coupling functions, each characterizing one coupling channel, &; and ¢, are the corresponding coupling strength.
Here, for convenience, we write the coupling functions H; and H, separately to have independent control of the
coupling strength. The coupling matrix G is determined by the undirected (weighted) connections among the
oscillators and assumed to have real eigenvalues, and the sum over rows (Zj\lzl Gjj) is equal to zero, which
guarantees that the synchronous state, x; = x, = ... = Xy = s, isasolution of the coupled system (2). Here we
adopt the convention that the diagonal elements of G are positive while the non-diagonal elements are negative.
The variational equations governing the time evolution of the set of infinitesimal deviations from the
synchronous solution, éx; (t) = x;(¢) — s(¢),are

d5Xi

N
— =DF(s) - ox; - > G| e1DHi(s) + e2:DH,(s) | - 6%, (3)

j=1

where DF (s), DH; (s) and DH, (s) are the d X d Jacobian matrices of the corresponding vector functions
evaluated ats(¢). The coupling matrix G can be diagonalized: Q"'GQ = diag[u,, y,, .., pn ], Where
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{n;» i =1, ..., N}aretheset of eigenvalues satisfying0 = y; < y, < ... < pp,and the columns of Q are the set

of corresponding eigenvectors. The transform & = Q™! - §x leads to the following block-diagonally decoupled
form of equation (3):

£ = DE(s) - &4, DHi(s) — e24,DH1(s) | - &

Letting Ky; = &1;, Ky = €y, (i = 2, ..., N) be the specific set of values of the normalized coupling parameters
K; and K, we see that each block of the above decoupled equation is structurally identical but differs only in Kj;
and K5;. This leads to the following generic form for all the decoupled blocks:

¢ =[DF(s) - KiDH\(s) - K;DH,(s) | - & (4)

The largest Lyapunov exponent of equation (4) is the MSF¥ (K, K5 ) [7], which is also the largest transverse
Lyapunov exponent of equation (2).

For an oscillator network with two coupling channels, a necessary condition for synchronization is that all
the normalized coupling points (Ky;, K»;) (i=2, ..., N) fall into the region where ¥ (Kj;, K5;) is negative. In this
case, a small deviation from the synchronization state will diminish exponentially so that the synchronous
manifold is stable. Once the coupling configuration is determined, the MSF can be calculated and the negative
region of ¥ (K, K;) in the (K], K5 ) plane can be determined.

For a coupled network system of nonlinear oscillators, the Jacobian matrix DF typically depends on the
trajectorys(¢). For alinear coupling function H (x), the corresponding Jacobian matrix DH is a constant matrix.
With the configuration of two coupling channels, we usei — j and m — n to denote the case where the ith (and
the mth) component of one oscillator coupled to the jth (and the nth) component of another oscillator, where 7,
j»mand n (from 1 to d) are the indices of components. In this case we have [H; (x) ]y = 6ix; and
[Hy(x)]; = 8,1y, where 6 x and 6,,; are the Kronecker’s delta such that§ 3 = 1ifj=kandéj = 0 otherwise.
The Jacobian matrices of H; and H; only have one nonzero elements each: (DH; ) ; = 1and(DH3),,, = 1 for the
i — j and m — n coupling configuration, while all other elements are zero.

The Lyapunov exponents determined by the variational equation (4) can be calculated as follows. For each
given pair of (Kj, K;), we define

DEF(s) = DF(s) — K;DH,(s) — K, DH,(s)
and then consider the matrix equation

dO (1)
dt

= DF(s) - O(t) (5)

with initial condition O (0) = I, wherel is the identity matrix of order d [28]. This matrix equation is solved
together with equation (1) that yields the trajectory s (¢). Both equations are integrated using the fourth-order

Runge—Kutta method. Letv; () i = 1, ..., d) be the ordered eigenvalues of O (). The Lyapunov exponents are
given by
o1
A= llm? In v; (). (6)
t— 00

Thelargest A; is the MSF ¥ (K, K, ). In our computation, 3 x 10° time units of s (¢) are first integrated to allow
the system to settle into the attractor, then 3 x 10> time units are used to calculate the Lyapunov exponents. Time
stepis chosentobedt = 1 x 107>,

3. MSFs for two-channel couplings

The MSFs for typical low-dimensional nonlinear oscillators with a single coupling channel was investigated
systematically in a previous work [14]. For a pair of d-dimensional oscillators, there are d X d possible coupling
configurations. For two coupling channels, the d x d configurations can lead to C} ,, ; distinct coupling schemes
(note that the order of K; and K, are interchangeable). Taking d = 3 as an example, we have Cg = 36 two-
channel coupling configurations. We calculate the MSFs for all these configurations for the Rossler and Lorenz
oscillators, as shown in figure 1. Typically for different coupling schemes, the values of MSFs can be orders of
magnitude different. As a result, in order to identify regions of negative values of MSF, instead of ¥, we plot its
normalized value sign (¥) |¥['/, as in figure 1. Note thatsign (¥) | #|"/® has the same sign as ¥, so the negative
region will be the same.
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Figure 1. For the chaotic Rossler and Lorenz oscillators, contour plots of normalized MSFs (see text) in the normalized coupling
parameter (Kj, K;) plane for all possible configurations of two-channel coupling. The upper-left panels show the result of the Rossler
oscillator, while the bottom-right panels are for the Lorenz oscillator. The curves on the sides are the MSFs from the configuration of
one coupling channel, which also serve as the coordinates of the rows and columns for the figure. For example, the case of
3 - 3and 3 — 1ofthe Rossler oscillator is located at the first row and the seventh column. The white line in each panel denotes
¥ (K, K;) = 0, which indicates the boundary of the blue negative region of . Parameter values of the oscillators can be found in the
text.

3.1. Rossler system

We use the classic Rossler oscillator [29]: [%, y, 2] = [ -y — 2z, x + a ¥, 0.2 + (x — y)z]witha=0.2 and
y=9. For any two-channel coupling scheme, the Jacobian matrix DF will have —Kj and —K; added to two of its
elements. For example, for the3 — 3 & 3 — 1 coupling channel, DF is modified to

0 -1 -1-K,

0

DF=]1 «
z 0 x—y—-K;

The MSFs calculated from all 36 two-channel coupling configurations of the Rossler system are shown in

figure 1. Most cases are not surprising in the sense that, if for each coupling channel the MSF is negative (or
positive) so that the system can be synchronized (or not synchronized), having an additional coupling channel of
the same type will lead to a stronger synchronous (or unsynchronized) state, as exemplified by the

2> 2and 1 — lorthe3 — 3 and 1 — 2 cases. If one coupling channel leads to a negative value of MSF while
the other channel leads to a positive value of MSF, the effect of combining both channels will depend on the
strength of the couplings. For example, if the coupling leading to positive MSF is too strong, the MSF will become

4
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Figure 2. For the chaotic Rdssler system, (a) MSF for the two-channel coupling configuration3 — 3 and 3 — 1asa function of the
two normalized coupling parameters: K33 and K. The down triangles indicate the normalized coupling points (e3,44,, €334, ), and the
upper triangles are for (€31, €334y ), Where p, = 0.6432 and y)y = 1.3721 are the second and the largest eigenvalue of the coupling
matrix of the 100-oscillator system (see text), €3, = 31.0945 such thates;u, = 20 and ey, = 42.6648. (b), (c) MSFs from the
corresponding two one-channel coupling configurations: 3 — 3and3 — 1, respectively.

positive regardless of the strength of the other coupling channel, as displayed in the case of2 - 3 and 1 — 1
coupling.

However, there are counterintuitive cases. For instance, consider a particular (K, K, ) combination that
satisfies ¥ (K} ) |g,=0 > 0and ¥ (K;)|k,=0 > 0. By each coupling channel alone, the system cannot be
synchronized, but when the two coupling channels are simultaneously present, we can have ¥ (K}, K;) < 0, i.e.,
synchronization can emerge. To be specific, let us consider the3 — 3 and 3 — 1 coupling configuration as an
example. We plot the two-channel MSF instead of the normalized MSF for this case and also the MSFs for the
two corresponding single-channel coupling configurations in figure 2. We see that, for the3 — 1 single-channel
coupling case, the trend of ¥ decreases (with small oscillations) with the normalized coupling strength K and
crosses zero around K = 50, as shown in figure 2(c). For the3 — 3 case, ¥ remains positive and generally
increases with K, as shown in figure 2(b). Thus, for the two-channel coupling scheme, one would not expect ¥'to
be negative for K3; < 50, regardless of the value of K33. Nonetheless, as shown in figure 2(a), there isan
interesting interplay between the3 — 3 andthe3 — 1 coupling configurations, which results in a relatively large
region (the right side of the white solid line) of ¥ < 0 even for K3; < 50. More specifically, assuming that K3, is
fixed at 20 for K33 = 0, we have'# > 0. As K33 is increased, while in the absence of the3 — 1 coupling ¥
becomes more positive, we observe that, with K3; = 20, ¥ decreases and crosses zero around K33 = 4, and
continues to decrease until K33 = 10, where ¥ reaches minimum. Increasing K further leads to an increase in ¥
and it becomes positive about K33 = 16. This behavior can be seen more clearly by plotting the cross section of ¥
at K3, = 20, as shown in figure 3(a) as the lower curve. For comparison, the MSF versus K33 for K3; = 0 is also
shown in figure 3 (a).

Having examined all the two-channel coupling combinations, we find that the above counterintuitive
example is not special, but holds for many more casessuchas2 — 1 and 1 — 1forKy; > 0.2Kj; — 0.95 > 0,
and3 — 3 and 3 — 1for K33 = 10 and K3; = 30. There are opposite cases where both ¥ (K ) |x,=¢ and
¥ (K3) |k,=0 are negative but the combination of the two leads to a positive MSF value. For instance, the
3 — land 1 — 1couplingscheme with K3; = 90 and K1 = 4. These phenomena, some being quite
counterintuitive, are a consequence of the simultaneous presence of two coupling channels. In the following we carry
outa detailed analysis to understand these phenomena heuristically.
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Figure 3. For the system of two coupled Réssler oscillators under the two-channel coupling configuration3 — 3 and 3 — 1, (a) the
MSE versus K33 for two different normalized coupling strength of the3 — 1 configuration; (b) synchronization indicator Was a
function of the normalized coupling parameter y, £33. In both panels the upper and lower curves are for K3; = 0 and K3, = 20,
respectively.

Since the MSF can only inform us about the local stability of the synchronous state, the global stability must
be verified by numerics. Therefore, we carry out direct numerical simulation of the synchronization dynamics to
verify the counterintuitive behavior as exemplified in figure 3(a).

Note that, since the role of the coupling matrix in affecting the stability of the existed synchronization state is
reflected only by the eigenvalues, typically it is sufficient to consider a system of two coupled oscillators, for
which the coupling matrix is simply

G:( 1 —1>’ 7)

and the eigenvalues are 0 and 2. We thus have K; = 2¢; and K, = 2¢,, and the two oscillators will synchronize if
¥ (2¢1, 2¢,) < 0.However, due to the complexity of the synchronization boundary in the two-dimensional
plane (K, K5), the synchronization condition for a real coupled dynamical system with N > 2 identical
oscillators can be highly nontrivial. In particular, the system will synchronize only if all the normalized coupling
points (K;;, Ky;) with Ky; = &y, Ky = €3u; (i=2, ..., N) fall into the region where ¥ (Kj;, K;;) is negative. For
givene; ande,, the N — 1 points(Kj;, Ky;) arelocated on a straight line in the (K}, K5 ) plane, as indicated by the
triangle points in figure 2. For fixed ¢; (also Kj;), if we assume that for a particular ¢, all the normalized coupling
points are in the negative region, then by varying ¢, all the normalized coupling points move accordingly and
remain on the line defined by K, = (g, /1) Kj. As this line swipes through the (K;, K;) plane, the critical coupling
point e, is given by the first point that exits the negative region, not necessarily the point corresponding to y, or
Uy Infact, it can be any point depending on the synchronous boundary and the coupling strength.

In our simulations, unless otherwise specified, we consider a random-network system of 100 identical
oscillators, where the coupling configuration is determined by the probability p that any pair of two nodes are
connected. To be concrete, we set p =0.2. The diagonals of the coupling matrix G are normalized to unity. For
the network, the second and the N’th eigenvalue are y1, = 0.6432 and p, = 1.3721, respectively.

WeuseW = ((|x; — (x;j)|)r ). with both time and ensemble averages, to examine whether the system has
reached a synchronous state starting from an arbitrary initial state. If the oscillator system is synchronized, we
havex; = x, = --- = x)y and thus W= 0. Otherwise, W has nonzero values. In our simulation, we first run
4 x 10° time units to eliminate transient behavior and then use the subsequent 10° time units to calculate W. An
ensemble of 100 random initial conditions is used, which yields the average value Wand the standard deviation.
We use the same setting for all subsequent simulations of synchronization dynamics in this paper.

For the two-channel coupling scheme3 — 1 and 3 — 3,wefixe;; = 31.0945 so thates u, = 20. The
corresponding cross section ¥ versus Ks; for K3; = 20 is shown in figure 3(a). From figure 2(a), we see that, by
varying €33, all the coupling points (K31;, K33;) move upwards or downwards coordinately. For either small or

6
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Figure 4. (a) MSF of the chaotic Rosler oscillator under the2 — 1 and 1 — 1 two-channel coupling. The boundary of the
positive and negative regions of the MSF, i.e., the contour of value zero, is marked by white curves. (b) Maximum eigenvalue of
DEF((8) (equation (8)) on the (K;;, K1) plane, with the white curve showing the zero value. (c) Cross sections of MSFs versus
normalized1 — 1coupling under 3 different values of the normalized 2 — 1 coupling strength. (d) Synchronization indicator
W for the coupled two-oscillator system as a function of the normalized coupling parameter K;; = 2¢;3, for K, = 0, 0.4, 0.8,
from left to right, respectively.

large critical point, it is the first triangle point (corresponding to 4, ) that moves out of the negative region first,
thus the critical coupling point is determined solely by y,. The simulation results are shown in figure 3(b), we see
that the synchronizable region of the system matches well with the region in which the MSF assumes negative
values. This provides direct evidence for the ‘counterintuitive’ synchronous behavior under the two-channel
coupling configuration. Note that, for £3,44, = 25, from figure 2(a) we see that when £33 is decreased, the first
point moves out the negative region can be another point. In this case, the critical coupling follows a different
criterion.

Next, we examine the MSF from the two-channel coupling scheme2 — 1 and 1 — 1. The contour plot of
the MSFis plotted in figure 4(a). For the2 — 1single-channel coupling configuration, ¥'is always positive and
increases with the normalized coupling strength, as shown in figure 4 (a) when Kj; = 0. Thus for this single-
channel configuration synchronization is ruled out. With respect to thel — 1 coupling, it has a finite negative
region of ¥ < 0, asshown in figure 4(a) when K,; = 0. Therefore, one may think that a finite K,; value may not
help the system to achieve synchronization. However, we find that, asthe2 — 1 coupling channelis introduced,
for a finite value of K, the negative region for thel — 1 configuration is enlarged. As a result, for some value of
K, (i.e., 6.0) for which the system cannot be synchronized in the single-channel configuration, synchronization
can now be realized with the introduction of the2 — 1 coupling channel. From figure 4 (a) and also more cases
shown in figure 1, the boundary separating the synchronous and unsynchronized regions appears quite regular.
Here we provide a heuristic argument that in some limiting cases, the boundary can be approximately
determined, as exemplified in figure 4(b).

Forthe2 — 1and 1 — 1coupling scheme, we have

(U K11 -1 - K21 -1

DF(s)=| 1 a o | (8)
z 0 xX—v
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IfDF(s) can be approximated as a constant matrix, the Lyapunov exponents will be the real part of the
eigenvalues of DF. Then a zero largest Lyapunov exponent means that the determinant of DF is zero:
|DE(s)| = 0, whichyields

—KH(Z(X - }’) + az + (1 +K21)(X— }/) = 0,
or
K21 = (XKH —-1- (XZ/(X - }’)

The time average value of the last term is 0.02, leading to K»; = aKj; — 0.98. Hence, the case of constant DE(s)
matrix can be used as a good approximation of the boundary. In fact, the fitting curve for the lower boundary of
figure 4(a) is Kp; = 0.2Kj; — 0.95, which agrees with the above formula reasonably well since = 0.2. An
alternative assumption is to use the average value of the dynamical variables,

§=(X, 7, z) = (0.1650, — 0.8252, 0.8252) in DF, and calculate the largest eigenvalue for a given point

(K31, Ki1) to approximate the largest Lyapunov exponent. The results are shown in figure 4(b). Comparing with
figure 4(a), we observe some similar patterns, despite some difference as large as 20%. Again, this originates
from the independence of the dynamical variables of the leading terms relating K,; and K in the expansion of
IDE(s) — AI| = 0.

To demonstrate the above effect via direct simulation, we consider three cases: K, = 0, 0.4, 0.8, and plot ¥
versus Kj1, as shown in figure 4(c). The enlargement of the negative region can be seen as K5 is increased from
zero. The corresponding simulations using two coupled oscillators with coupling matrix (7) are shown in
figure 4(d), which agree with the MSF results well, directly verifying the counterintuitive role of the2 — 1
channel in inducing synchronization.

3.2.Lorenz system

We use the chaotic Lorenz oscillator [30]: [x, v, z] = [10(y — x), x (28 — z) — y, xy — 2z]. The MSFs for all
the 36 two-channel coupling configurations are shown in figure 1. For the chaotic Lorenz oscillator, although
the dynamical details are quite different from those of the Rossler oscillator, the features observed in MSFs are
similar. For most coupling configurations the interplay between the two coupling channels can affect
significantly the synchronization dynamics. Counterintuitive cases can also arise. For example, for the

1 - 2 and 2 — 1two-channel coupling configuration, there are regions where each coupling channel alone
leads to a negative ¥, but the combined effect of the channels can result in a positive value.

Tobe concrete, for the2 — 1single-channel coupling configuration of the Lorenz oscillator, there exists a
region of synchronization in the normalized coupling parameter from 4.173 to 22.535, as shown in figure 1. For
thel — 2 single-channel coupling configuration, the synchronization region is given by K;, > 2.288. The MSF
of the corresponding two-channel coupling configuration is shown in figure 5(a), where the white solid curve is
the contour line of ¥ (Ki,, K1) = 0, which indicates the boundary of the synchronous region. Taking K, = 15
and K;, = 50 as an example, we see that the MSF for each single-channel configuration is negative, but it
becomes positive when both channels are simultaneously present, leading to a loss of synchronization. To gain
further insights, we plot ¥ (K;) + ¥ (K;) in figure 5(b) with the rectangular box specifying the region in
which either the single-channel or double-channel coupling configurations can lead to synchronization. We see
that the negative region deviates significantly from that due to a naive combination of the negative regions from
the isolated single-channel configurations. To be more specific, we fix K,; = 11 and vary K ,, which corresponds
to the cross section as indicated by the dashed line in figure 5(a) and also shown in figure 5(c). We also include
the case of K5, = 0. As mentioned, for K;; = 0, wehave¥ (Ky;) < 0 for K, > 2.288, thus the system can be
synchronized if y,&;, > 2.288; while for K;; = 11, wehave? (Kj;) < 0 even for K;; = 0. Now by increasing
Ki,, wesee that? (Kj, ) increases and becomes positive around K, = 40, as shown in figure 5(c). Therefore, for
fixed £, such that 1 €5; = 11, the synchronization condition is yt €1, < 40. This indicates the effect of
combining the two single-channel coupling configurations in suppressing synchronization. We also carry out
direct simulations using the system of 100 coupled Lorenz oscillators, as shown in figure 5(d). There is a good
agreement between the direct simulation results that the prediction from the MSF behaviors.

There are also examples where, a region that cannot be synchronized for either single-channel coupling
configuration, when both are present, becomes synchronizable. For example, for the3 — 3 coupling channel,
the MSF has three cross points with the K axis: 1.368, 9.236 and 49.681, where it is negative in the regions
(1.368, 9.236) and (49.681, o0), and positive in the region (9.236, 49.681). For any of the single-channel
configurations suchasl — 3,2 — 3,3 — lor3 — 2, the corresponding MSFs are all positive. However, when
any of these four configurations is applied together with the3 — 3 scheme, in addition to the originally negative
region, a new negative region for K33 € (9.236, 49.681) emerges, as shown in the last row of figure 1 (the regions
enclosed by the white solid curves).
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Figure 5. MSFs of the chaotic Lorenz system versus the normalized coupling parameter K and direct simulation results using the 100-
oscillator random network. (a) ¥ (Kjp, K31 ), the MSF from the two-channel coupling configuration] — 2 and 2 — 1, thedown
triangle indicates the normalized coupling point(&;,4,, €514, ), and the upper triangle is for (€15, €21y ) Witheypy, = 11.(b)
¥ (Ki2) + ¥ (Ky;) at the point (K3, K1), i.e., the sum of the two MSFs from the one-channel coupling configurations1 — 2 and
2 — 1. Therectangle indicates the region where ¥ (K;;) < 0 or¥ (K3;) < 0, (c) MSF of 1 — 2 under two different values of the
2 — 1 couplingstrength, and (d) synchronization indicator W as a function of the normalized coupling parameter K}, = y, ¢, for
Ky = 0and K, = py &), for Ky = 11 for thelower and upper curves, respectively.

For the two-channel coupling configuration] — 3 and 3 — 3, unlike the previous open negative regions, it
has an irregular closed negative region, as exemplified in figure 6(a). To do direct numerical simulations for this
case, we employ the 100-oscillator system with [, , p ] = [0.6432, 1.3721]and fix the coupling strength
€13 = 12.4378,s0that Ki3 € [u,&13, piy€13] = [8, 17.0659]. As the other coupling strength 33 from 0 is
increased to reach the value of 13.7724, i.e., £33/€13 = 1.1073, the last normalized coupling point (the down
triangle), which corresponds to y,, enters the negative region. Consequently, all the normalized coupling points
in between the down triangle and the upper triangle enter the negative region. The system is synchronizable. As
e33 isincreased further, e.g., to €33 = 21.2550 so thates; /e13 = 1.7089, the upper triangle (corresponding to y )
moves out the negative region, and synchronization is lost. Figure 6(b) shows the simulation results, which agree
with the above analysis well. Note that, since the system is evolved into a fixed point, we only run ten time units
to reduce the transient effects and 10 time units to calculate Wwith an ensemble average over 200 random initial
conditions. Here the simulation is carried on a network with 100-oscillators. It would be interesting to see how
does synchronization evolve with network size or network structure (scale-free, small-world etc). Since the MSF
method separates the nodal dynamics and the coupling network structure, the effects of network structure are
revealed in its eigenvalues, especially i, and 41 if the synchronizable region has a simple concave shape in the
normalized coupling parameter space. Since both y, and y; depend on network structure or network size [31],
and because of the complex interplay between network structure and the MSFs of dynamical systems, there
could be certain cases that some network structures are better synchronized via single-channel coupling for a
given dynamical system, and some other structures by multi-channel coupling. However, the straightforward
extension to say that certain networks are better synchronized via single-channel or multi-channel coupling
regardless of the dynamical systems is in general not true. A detailed examination of all the eigenvalues (or all the
points on the normalized coupling parameter plane) will be necessary to predict synchronization.

Since the MSF ¥, the largest transverse Lyapunov exponent averaged over the global trajectory, is
determined by the largest local transverse Lyapunov exponent at each trajectory point, to gain insights, we plot
the largest local transverse Lyapunov exponents along a typical trajectory from the chaotic Lorenz attractor and
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Figure 6. (a) MSF of the chaotic Lorenz oscillator under thel — 3and3 — 3 two-channel coupling. The down triangles indicate the
normalized coupling points (e134,, €334, ), and the upper triangles are for (€34, €334y ) with&3 = 12.4378. The two vertical lines
indicate the positions of €134, and &34, respectively. (b) Synchronization indicator W for the 100-oscillator system as a function of
the ratio of £33 and &3, while g3 is fix at 12.4378.

(b)
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Figure 7. The largest local transverse Lyapunov exponents () along the trajectory of the Lorenz attractor under different coupling
configurations, where the value is encoded in the color scale of the trajectory. (a) One-channel coupling scheme 2 — 3 for the
normalized coupling strength K,3 = 18, where the largest local transverse Lyapunov exponent is ¥ (K,; = 18) = 2.213. (b) Two-
channel coupling scheme2 — 3 and 3 — 3 for normalized coupling strength (K53, K33) = (18, 20), where the largest local transverse
Lyapunov exponentis ¥ (K3 = 18, K33 = 20) = —1.831.

compare the one-channel coupling scheme2 — 3 for K,; = 18 with the two-channel configuration

2 = 3and 3 - 3with(Kss, K33) = (18, 20). The results are shown in figure 7. We see that, when only the
single-channel coupling2 — 3 is present, most of the local transverse Lyapunov exponents are positive, as
shown in figure 7(a), leading to a positive global transverse Lyapunov exponent. When the3 — 3 coupling
channel is added, as shown in figure 7(b), for the same trajectory the local transverse Lyapunov exponent
becomes mostly negative for the trajectory, providing insights into the behavior of ¥.

3.3. Abnormal enhancement of synchronization of coupled HR neurons

Multi-dimensional dynamical systems are often invoked as models of real phenomena, where typically adding
dimensions increases the ‘realisticity’ of the model. For instance, many biological functions, such as gene
regulation or neural interactions, can be modeled via multi-dimensional dynamical systems, which can then be
coupled via various schemes. To be specific, it has been well recognized that the coupling between neurons are
often involved with different effects, e.g., the electric gap junction and the diffusion of the extracellular ions [32—
35].It has been found that the electrical and chemical synaptic connections of different types of inhibitory
neurons are specific, and may allow each inhibitory network to function independently [36]. Odor
representations in the olfactory bulb were found to be stabilized by interneurons that were densely coupled to
the output neurons by electrical and GABAergic synapses [37]. In particular, Hindmarsh and Rose proposed a
mathematical model of the neuron spiking, which provided a qualitative description of the membrane potential
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Figure 8. For HR neuron system, MSF for the two channel coupling2 — 1 and 3 — 3. The synchronizable region is greatly enhanced
when both coupling channels are on.

and transport of ions in a single neuron bursting [38]. Synchronization of HR neurons has thereafter attracted
much attention [39—41], and experimental observation of synchronization between neurons has been obtained
via electrical coupling [42]. Most of the phenomenal studies of synchronization of dynamical neuron models
assume one channel coupling. However, as we demonstrate below, when more channels are employed in the
coupling between neurons, their synchronization behavior can be intriguing and beyond the expectation from
the result of single channel couplings.

The dynamics of HR neuron is given by [38]
% 7,2l =y +3x*—x*>—z+ 1,1 - 5x% — y, —rz + rs(x + 1.6) ], where I = 3.2 is the external current
input, r=0.006, s = 4. x represents the membrane potential, y is the spiking variable representing for the
transport of sodium and potassium ions that is made through fast ion channels, and zis for the transport of other
ions through slow channels. The Jacobian matrix is

6x —3x* 1 -1
DF=] _—jo0x -1 0| )
rs 0 -r

The neurons, when coupled by the slow ion channel z, cannot get synchronized for any strength of the coupling
parameter. When the coupling is from the fast ion channel y to the membrane potential x, there is only a small
synchronization window in the normalized coupling parameter K i.e.,[0.286, 1.233] [14]. However, when both
coupling channels are on, as shown in figure 8, the synchronizable region is greatly enhanced.

4. Conclusion and discussion

To summarize, we have systematically analyzed the MSFs of the coupled chaotic Rgssler and Lorenz oscillators
for all possible two-channel coupling configurations, which can serve as the library and provide guidelines for
future research concerning synchronization behavior under multiple-channel coupling configurations. While
for most configurations, the effects of the two channel couplings can lead to expected behaviors of
synchronization in accordance to each of the isolated cases, there are situations where the interplay between the
two coupling channels can lead to counterintuitive phenomena. For example, two coupling channels, each when
isolated leading to no synchronization, can generate global synchronization when both are present
simultaneously, and vice versa. We have demonstrated various aspects of the counterintuitive synchronous
behavior for alarge number of two-channel coupling configurations, and provided an understanding of such
behavior based on examining the time averaged values of the dynamical variables for situations where the
leading terms of K; and K, are independent of the variables. In general, synchronization behaviors predicted by
the MSF for any isolated, single-channel coupling configuration, may not be expected when any combination of
two such channels are present. Due to the inherent nonlinearity of the system, deeper insight (e.g., analytic
insight) into these phenomena is still lacking.

Our result can serve as an atlas to greatly facilitate further research on chaotic synchronization dynamics
under multiple-channel coupling configurations. Indeed, while there is a large body of literature on chaotic
synchronization, vast majority of the previous works focused on the setting of single-channel coupling. There
has been little understanding of nonlinear synchronization dynamics for multiple-channel coupling, and our
present work has filled this gap. More specifically, our extremely detailed and systematic probing of the
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parameter space structure provides, for any given system under multichannel coupling, a quick assessment of
the likelihood of synchronization with minimal amount of information, namely, the eigenvalues of the coupling
matrix. In addition to numerical computations, we have provided a physical understanding of the parameter-
space structure by approximating the Jacobian matrix to calculate the largest Lyapunov exponents and by
analyzing the behaviors of the local transverse Lyapunov exponents. Furthermore, our result for HR neurons
indicates that, multi-channel coupling, which is believed to be more realistic especially in coupled neuron
systems, can enhance significantly the synchronizable region in the normalized coupling parameter space.

Our work illustrates that, in the study of synchronization dynamics in systems of coupled nonlinear
oscillators, the extension from single-channel to two-channel or multiple-channel coupling configurations can
be highly nontrivial. In fact, new and significantly richer phenomena of synchronization can emerge as a result of
providing additional coupling channels to the system, a demonstration that nonlinear dynamical systems never
stop to present us with surprises, justifying further research even in the relatively well studied area of
synchronization. In addition, synchronization is the simplest form of collective behavior. Which other kinds of
new collective behaviors emerge in the coupled oscillator systems, particularly in the parameter regions away
from the simple synchronization? It would be interesting to see how does the spectrum of collective behaviors
depend on the coupling scheme (even more than how it depends on the interaction strengths/parameters). This
can be a promising avenue for the coupled dynamical systems and deserves future investigation.
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