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Partial cross mapping eliminates indirect causal
influences
Siyang Leng 1,2,3, Huanfei Ma 4, Jürgen Kurths5,6, Ying-Cheng Lai 7, Wei Lin 1,2,8✉,
Kazuyuki Aihara 3,9✉ & Luonan Chen 10,11,12,13✉

Causality detection likely misidentifies indirect causations as direct ones, due to the effect of

causation transitivity. Although several methods in traditional frameworks have been pro-

posed to avoid such misinterpretations, there still is a lack of feasible methods for identifying

direct causations from indirect ones in the challenging situation where the variables of the

underlying dynamical system are non-separable and weakly or moderately interacting. Here,

we solve this problem by developing a data-based, model-independent method of partial

cross mapping based on an articulated integration of three tools from nonlinear dynamics and

statistics: phase-space reconstruction, mutual cross mapping, and partial correlation. We

demonstrate our method by using data from different representative models and real-world

systems. As direct causations are keys to the fundamental underpinnings of a variety of

complex dynamics, we anticipate our method to be indispensable in unlocking and deci-

phering the inner mechanisms of real systems in diverse disciplines from data.
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Causal interactions are fundamental underpinnings in
natural and engineering systems, as well as in social,
economical, and political systems. Here system details are

typically not known, but only time series are available. Correctly
identifying causal relations among the dynamical variables gen-
erating the time series provides a window through which the
inner dynamics of the target system may be probed into, and a
number of previous methods were developed, such as those
based on the celebrated Granger causality1–5, the entropy6–11,
the dynamical Bayesian inference12–15, and the mutual cross
mapping (MCM)16–21, with applications to real-world
systems5,7,22–31. If the system contains two independent vari-
ables only, the causal relation between them is straightforwardly
direct. However, for a complex system with a large number of
interacting nodes connected with each other in a networked
fashion, two kinds of causation can arise: direct and indirect.
Especially, if there is a direct link between two nodes, the detected
causal relation between them can contain a direct component and
an indirect one through other nodes in the network as a result of
the generic phenomenon of causation transitivity (see Fig. 1).
Even for two nodes that are not directly connected, a causal
relation may be detected, but it must be indirect. To eliminate
indirect causal influences so as to ascertain direct causal links is of
paramount importance, as the latter constitutes the base for
modeling, predicting, and controlling the system. There were
previous studies of significant advance in detecting direct causal
links to reconstruct the underlying true causal network based on
the concept of partial transfer entropy or its linear Gaussian
version, the conditional Granger causality, which resulted in
many successful data mining in related fields32–38. Combining
these methods with graphical models, recent studies further
provided a visible and comprehensive description of causal rela-
tions among interested variables36,38,39. However, mathemati-
cally, all these methods are not applicable directly in situations
where the relevant dynamical variables are non-separable so that
the information from any variables cannot be separated easily in a
prediction framework (see “Methods” for the rigorous concept of

non-separability). In real-world nonlinear systems, the non-
separability is ubiquitously present among systems variables17. To
our knowledge, the problem of ascertaining direct causation by
removing indirect causal influences for general complex dyna-
mical systems has not been fully studied and remained
outstanding.

In this paper, we develop a data-based, model-free method of
partial cross mapping (PCM) to eliminate indirect causal influ-
ences in situations where non-separability is allowed to be pre-
sent. The central idea is to integrate three basic data analysis
methods from nonlinear dynamics and statistics: classic phase-
space reconstruction, MCM, and partial correlation, to detect
direct causal links for complex and nonlinear networked systems.
The method is validated using various benchmark systems. Its
applications to real-world systems lead to new insights into their
dynamical underpinnings. The method provides a solution to the
long-standing, crucial problem with existing causality detection
methods: misidentifying indirect causal influences as direct ones.
Because of its unprecedented ability to eliminate indirect causa-
tion, this method can be a powerful tool to understand and model
complex dynamical systems.

Results
Direct and indirect causal links. To illustrate the difference
between direct and indirect causal links, we first consider a toy
system of three variables with different interaction structures. If
only two variables interact in one direction and the third one is
isolated (Fig. 1a), then the previous methods can be effective for
identifying the direct causal link16–21. However, when the three
variables constitute a unidirectional causal chain (Fig. 1b),
applying any of the previous methods to the time series from a
pair of variables would detect a false direct link between the two
non-neighboring variables X and Y in Fig. 1b (see “Methods” for
a false link aroused by the transitivity). When the three variables
constitute a causal loop (Fig. 1c), every two neighboring variables
may have an indirect causal link in addition to the direct one in
the opposite direction. In this case, previous methods would
falsely identify any actual indirect link as a direct one. In addition
to the above three representative interaction structures for the
three variables, all the other possible modes have been introduced
thoroughly and investigated systematically in Supplementary
Note 1. Moreover, with more observable variables, the likelihood
that indirect causal links are incorrectly regarded as direct ones
will substantially increase (Fig. 1d).

Partial cross mapping. To overcome this problem, we propose
the PCM method. The key idea is to examine the consensus
between one time series and its cross map prediction from the
other with conditioning on the part that is transferred from the
third variable. For the convenience of describing our method
clearly, we consider the simple case of three variables (X, Y, and
Z) causally interacting with each other in a unidirectional chain
(Fig. 2a). Let X ¼ xtf gLt¼1, Y ¼ yt

! "L
t¼1, and Z ¼ ztf gLt¼1 be the

corresponding time series of length L. Using Takens–Mañé’s
delay-coordinate embedding40,41, we obtain three shadow mani-
folds: MX ¼ fxtg

L
t¼r , MY ¼ fytg

L
t¼r , and MZ ¼ fztg

L
t¼r with the

vectors

xt ¼ ðxt ; xt#τx
; ¼ ; xt#ðEx#1ÞτxÞ;

yt ¼ ðyt ; yt#τy
; ¼ ; yt#ðEy#1ÞτyÞ;

zt ¼ ðzt ; zt#τz
; ¼ ; zt#ðEz#1Þτz Þ;

where Ex, Ey, and Ez are the respective embedding dimensions, τx,
τy, and τz are the time lags, and r ¼ maxξ¼x;y;zf1þ ðEξ # 1Þτξg.

a d

b

c

Fig. 1 Direct versus indirect causal links. a There is directional interaction
between variables X and Y, but Z is an independent variable. b The variables
X, Y, and Z constitute a one-directional causal chain with an indirect causal
link from X to Y. c The variables constitute a causal loop, where every two
neighboring variables have, in two opposite directions, a direct and an
indirect causal link, respectively. d For a network with many interacting
variables, more indirect causal links would be falsely identified as direct
causal links.
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These parameters of embedding dimensions and time lags can be
computationally determined by the method of false nearest
neighbor (FNN) and delayed mutual information (DMI),
respectively. More advanced techniques can also be utilized20,42.
In general, for any pair of variables ξ and η ∈ {x, y, z}, we set

N̂
ξ
ðηtÞ ¼ fηt0 jξt0 2 N ðξtÞg, where N ðξtÞ is a set containing a

fixed number (usually taken as Eξ+ 1, which is the minimum
number of points needed for a bounded simplex in an Eξ-
dimensional space43) of nearest neighboring points of ξt in the

corresponding shadow manifold. For ξ ¼ η; N̂
ξ
ðηtÞ becomes

N ðηtÞ. For ξ ≠ η; N̂
ξ
ðηtÞ becomes a cross mapping neighborhood

from N ðξtÞ (for an illustrative example, see the horizontal arrows
from MY to MX in Fig. 2a). The dependence from N ðηtÞ to

N̂
ξ
ðηtÞ characterizes the causal influence from the variable pro-

ducing ηt to the variable producing ξt. Previously developed
heuristic measures for quantifying such dependence and causal
influence16–18,20,21 constitute the MCM framework. We exploit

the correlation coefficient17 between ηt and η̂ξt ¼ E½N̂
ξ
ðηtÞ',

where η̂ξt is the mapping from ξt and E½(' is an operation taking
appropriately weighted average over all the points in a given set.

Specifically, if the correlation coefficient ϱC ¼ Corrðxt ; x̂
y
t Þj j is

larger than an empirical threshold T, the MCM method will
stipulate that there is a causal influence from X to Y. MCM
complements the field of causality analysis in pairwise non-
separable dynamical systems. However, due to causation transi-
tivity, the causal link detected by MCM can be either direct or
indirect, as illustrated in Fig. 2a. Additionally, since causation
manifests its influence in a certain time delay, we search for an
optimal time delay that maximizes the causation (i.e., the
obtained correlation coefficient ϱC) between a translated Y and X
(see “Methods” for a detailed description)20.

Heuristically, ϱC, as defined above, represents the cosine of the
angle between X and X̂

Y
in the entire space, as shown in Fig. 2b.

In order to distinguish the existence of the causation transitivity,
we consider the projection of ϱC onto the information space
orthogonal to the indirect information that is induced by the
causation transitivity. To this end, we formulate our PCM
framework (see “Methods” and Supplementary Fig. 1 for detailed
formulations and practical instructions). First, for a time series
pair Z and translated Yτi

¼ fytþτi
g with possible time delay

candidates τi(i = 1, 2, …, m), we apply the conventional MCM
method to determine the optimal time delay τi ¼ τi1 , which

a

b

Fig. 2 Basic principles of the PCM framework. a For the illustrative setting of three variables interacting in a unidirectional causal chain, the MCM method

maps N ðytÞ to the left circled region N̂
y
ðxtÞ in MX, where the estimated X̂

Y
is close to the true X, denoting full causal information from X to Y and leading

to erroneous identification of the indirect causal link as the direct link. b For our proposed PCM method, partial correlation coefficient between X and X̂
Y
is

calculated by conditioning on the information about X̂
Ẑ
Y

, which is mapped from N ðytÞ through MZ and then to the right circled region N̂
zy
ðxtÞ in MX in a,

denoting indirect information flow. Geometrically, ϱC corresponds to the cosine of the angle between X and X̂
Y
in the entire space, while ϱD is the projection

of ϱC onto the subspace orthogonal to X̂
Ẑ
Y

. Because ϱC≥ ϱD, the example in a corresponds to the sketch on the right side of b, where the projection is close
to the right angle, leading to a near-zero value of ϱD.
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maximizes the correlation coefficient CorrðZ; ẐYτi Þ. Correspond-
ingly, the obtained mapping Ẑ

Yτi1 from Yτi1
is denoted by Ẑ

Y
for

simplicity. The next step is to repeat the procedure to the time
series pair X and the translated Ẑ

Y
τi
so as to obtain the optimal

time delay τi2 , as well as the mapping X̂
Ẑ
Y
τi2 from Ẑ

Y
τi2
, which

maximizes the coefficient CorrðX; X̂Ẑ
Y
τi Þ. Denoting the obtained

mapping by X̂
Ẑ
Y

, which is acquired from a successive MCM
procedure and characterizes the indirect information flow
through Z, and then obtaining X̂

Y
, which characterizes all causal

information from X to Y, by repeating the above procedure to
time series pair X and the translated Yτi

, we introduce the

correlation index: ϱD ¼ PccðX; X̂Y jX̂Ẑ
Y

Þ
####

#### to measure the direct

causation from X to Y conditioned on the indirect causation
through Z, where Pcc( ⋅ , ⋅ ∣ ⋅ ) is the partial correlation coefficient
describing the association degree between the first two variables
with information about the third variable removed44, in contrast

to the MCM index ϱC ¼ CorrðX; X̂YÞ
###

###. Note that we search for

the strongest causation on different candidate time delays in every
MCM procedure above. As a consequence, ϱD can be regarded
intuitively as the projection of ϱC onto the information space

orthogonal to the indirect information X̂
Ẑ
Y

(Fig. 2b), and thus
eliminates the indirect causal influence.

For three causally interacting variables X, Y, and Z, we
generally have ϱC ≥ ϱD. Setting an empirical threshold 1 > T ≫ 0,
we have three cases for the order of the correlation index: ϱC ≥
ϱD ≥ T, ϱC ≥ T≫ ϱD, and T > ϱC ≥ ϱD, corresponding, respec-
tively, to the three causal relations: a direct causal link from X to
Y, a sole indirect causal link from X to Y, and the absence of any
causal link from X to Y. The index ϱD thus characterizes the
degree to which direct causal links can be ascertained while
eliminating the possibility of indirect links. For the example in
Fig. 2a, the causal interaction of X and Y belongs to the second
case above, which can be inferred from the correlation index in
the same order as ϱC ≥ T≫ ϱD. In real applications, it can happen
that the causal signals in transition are not strong enough, making
the values of ϱC ≳ T and ϱD close to that of T. In such a case, the
detection of direct causal links becomes more sensitive to the
value of T. To overcome this difficulty, we introduce γ = ϱD/ϱC to
measure the proximity of the two index values. The closer the
proximity to one, the higher the possibility of the existence of a
direct causal link. Multiple tests45–47 have been conducted to
ensure statistical reliability.

The framework of PCM can be generalized to networked
systems with an arbitrary number of interacting variables:
X, Y, Z1, …, Zs (s ≥ 2) (e.g., Fig. 1d). With the full correlation
between X and X̂

Y
, we calculate their partial correlation

coefficient, denoted as ϱD1
¼ PccðX; X̂Y jfX̂Ẑ

iY

ji ¼ 1; ¼ ; sgÞ
####

####,

by removing the information of the cross mapping variables from
the s variables Z1, …, Zs, where ϱD1

is a first-order measure for
distinguishing the direct from indirect causal link from X to Y.
Motivation and formalization for extending this measure to
higher orders is described in “Methods” section. We emphasize
here that strongly coupled (synchronized) variables in nonlinear
systems are not in the scope of the PCM framework, because in
this circumstance the complete system collapses to the cause
system sub-manifold, and the effect variable becomes an
observation function on the cause system, where bidirectional

causation will always be computationally detected17. In addition,
theoretically our PCM framework is based on the Takens–Mañé
theorem, which is applicable only for autonomous systems. Data
entirely recorded from nonautonomous systems are therefore not
directly suitable for this framework48, but our method can be
applied to some nonautonomous systems. In particular, it can be
numerically used to detect piecewise causations with data from
switching systems where the switching points could be located
and each duration between the consecutive switching points is
sufficiently long. Also, our framework is suitable for some forced
systems or/and systems with weak or moderate noise because
some generalized embedding theorems could support the
soundness of our framework49,50. As for an important kind of
nonautonomous system, viz., dynamical oscillators with time-
evolving coupled functions or/and with various types of noise, the
dynamical Bayesian inference with a delicate set of function bases
can provide pretty practical solutions14. As for the future research
topics, possible investigations include combining the above
mutually complementary methods for causation detection in
more general dynamical systems without knowing explicit model
equations but with highly complex interaction structures.

Ascertaining direct causation in benchmark systems. To vali-
date our PCM method, we use the following benchmark system
of three interacting species: xt = xt−1(αx − αxxt−1− βxyyt−1)
+ ϵx,t, yt = yt−1(αy − αyyt−1 − βyxxt−1 − βyzzt−1) + ϵy,t, and zt =
zt−1(αz − αzzt−1 − βzxxt−1) + ϵz,t, for αx = 3.6, αy = 3.72, and
αz = 3.68, where ϵi,t (i ∈ {x, y, z}) are white noise of zero mean and
standard deviation 0.005. Different choices of the coupling para-
meters βxy, βyx, βyz, and βzx can lead to distinct interacting modes
(Fig. 3a). From the time series, we compute the MCM and PCM
indices, ϱC and ϱD, respectively, for detecting the causal link from X
to Y, with results listed in Fig. 3b, c. While there are cases where
both methods are effective at detecting the direct causal links, for
the causal chain and the causal loop structures with the threshold
value T = 0.5, the PCM method succeeds in discriminating the
indirect causal links, while clearly the MCM method, without
eliminating the influence of the causation transitivity, fails. As
furher shown in Supplementary Note 2, the PCM performance is
more robust than that of the MCM method with respect to varia-
tions in the value of T, making the PCM method applicable to real-
world systems when there is none or little a priori knowledge of
assigning a proper value of T. The results in Fig. 3b, c have also been
verified by using the multi-testing corrections. Additionally, for all
the other possible interaction structures of three species, including
the representative network motifs: fan-in, fan-out, and cascading
structures51,52, our systematic studies manifest that the PCM
method achieves accurate causation detections completely (see
Supplementary Note 1). More importantly, we systematically con-
ducted comparison studies with the Granger causality, the transfer
entropy and all their conditional extensions to detect the causations
for the above three species system and tested their robustness
against different noise levels and time series lengths. As clearly
shown in Supplementary Note 3, the PCM outperforms those
existing methods which are, in principle, suitable only for the
variables satisfying the separability condition. We also provided a
comparison study between the PCM framework and the dynamical
Bayesian inference in Supplementary Note 3. Both methods have
their own particular advantages and could be used in a com-
plementary manner. All these results systematically demonstrate the
universal and peculiar usefulness of our method to the typical
situation where the variables of dynamical systems are non-
separable.

Additionally, we validate the effectiveness of the PCM method
in a network model containing eight interacting species. As
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shown in Supplementary Fig. 10, the direct causal network can be
reconstructed faithfully while the indirect links are all eliminated
successfully with setting an appropriate group of T. In contrast,
with the same values of T, the MCM method produces a dense
network containing direct, indirect, and even erroneous causal
links. We also find that the ratio γ = ϱD/ϱC can be used to
improve the detection accuracy even for relatively small values of
the threshold T (Supplementary Note 4). Moreover, selecting a
practically effective threshold value is much more realizable and
robust in our PCM method (see Supplementary Fig. 11 and see
Supplementary Note 5 for detailed information on statistical tests
and methods for threshold selection). The robustness tests of
PCM against the time series lengths and the noise scales also
show good effectiveness even with small data size and relatively
strong noise in this model (Supplementary Note 3). These
additional results demonstrate the power of our PCM method in
detecting direct links and accurately reconstructing the under-
lying causal networks from multivariate time series.

Detecting direct causation in real-world networks. We test gene
regulatory networks with gene expression data available from
DREAM4 in silico Network Challenge53–55. There are five net-
works with different, synthetically produced structures. Each
network has 100 genes. We use the software GeneNetWeaver56 to
randomly select 20 interacting genes, where each gene has 10
realizations of 21 gene expression time series data. Figure 4a
presents one gene regulatory network (see Supplementary Fig. 12
for the others). For each gene, we combine all realizations as one
time series for phase-space reconstruction. We compare the direct
causal links detected by PCM with the a priori known edges of the
five networks and calculate the respective ROC (receiver operating
characteristic) curves (Fig. 4b). We find the average of the five
areas under the ROC curves approaches the value of ~0.75,
indicating high detection accuracies of direct links in gene

regulatory networks even with small data sets, a task for which
PCM outperforms the MCM method (see Supplementary Note 6).

We next consider the food chain network of three plankton
species: Pico cyanobacteria, Rotifers and Cyclopoids, with the
prey–predator relations indicated in Fig. 4c. The oscillatory
population data are selected from an 8-year mesocosm experi-
ment of a plankton community isolated from the Baltic Sea57–59.
Our PCM method yields six indices for all the possible causal
links, and we preserve the links with index values ⪆10−1 and
discard other links (see Supplementary Note 5 for issues on
threshold selection). This leads to two direct causal links, which
agree with the ground truth of the original network (Fig. 4d).
Remarkably, our PCM method successfully excludes the indirect
link from Pico cyanobacteria to Cyclopoids. For this network,
there is also a weak direct link from Rotifers to Pico cyanobacteria,
and our method is indeed able to detect it (verified with multi-
testing corrections). This reveals that the actual prey–predator
hierarchy does not necessarily match the direct causal links
among the species. For example, while predators hunt preys, a
predator through hunting can significantly influence the prey
populations when they are not tremendously abundant. In such a
case, the predator can be regarded as the causal source, giving rise
to the third relatively weak but direct causal link.

Our third real-world example is from the recorded data of air
pollution and hospital admission of cardiovascular diseases in
Hong Kong from 1994 to 1997 (see Supplementary Note 6)60–62.
As shown in Fig. 4e, f, our PCM method uncovers that only the
pollutants, that is, nitrogen dioxide and respirable suspended, are
detected as the major causes of cardiovascular diseases. Neither
sulfur dioxide nor ozone has been identified as the cause for the
diseases, which is consistent with previous results20,63. Our
method reveals a unidirectional causal relation from ozone to
sulfur dioxide, but the detected causal relations among the
recognized pollutants are bidirectional. It is likely that these
detected causal relations are either direct or indirect, because data

a b c

Fig. 3 Detection of causal links from X to Y in the benchmark systems. a Three distinct interaction modes of the system. b Causal links from X to Y
detected by the MCM method, which contain false direct causation for the second and the third interaction modes. c Direct causal links detected by the PCM
method, which successfully excludes the false direct causations in b. Randomly selected are the 100 trials with a 1000-length from 5000-length time series,
where the sampling rate is 1 Hz so that the length matches exactly the time unit of the system. The average is calculated over the results of these randomly
selected trials. The phase-space reconstruction parameters are E = 4 and τ = 1. Here superscripts of ϱC and ϱD denote the specified causal direction.
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of other factors, such as temperature, humidity, and wind speed,
are not completely available, which can be the common causes to
some pollutants (e.g., the fan-out interaction mode shown in
Supplementary Fig. 2).

We also apply the PCM method to real-world examples,
including gene expression data related to the circadian rhythms
and electroencephalography data of the human brain in Supple-
mentary Note 7. All the results demonstrate the broad applicability
of our method to different scales of data sets, and indeed reveal new
viewpoints to the dynamical underpinnings of real-world systems.

Discussion
To summarize the work, by exploiting both dynamical and statis-
tical features from the observed data, there are two major

advantages of our method: detecting direct causality based on PCM
and handling non-separability problem based on Takens–Mañé’s
embedding theorem. Actually, variables for a nonlinear dynamical
system are generally considered non-separable due to their inter-
twined nonlinear nature. Specifically, in contrast to the existing
methods on detecting causation, which either misidentify indirect
causal links as direct ones or fail due to a violation of the condition
of separability, we develop a method theoretically and computa-
tionally to solve this outstanding problem, coping with the situation
for which the existing frameworks cannot work effectively. The
central idea lies in examining the consensus between one time series
and its cross map prediction from the other with conditioning on
the part that is transferred from the third variable. Our method is
capable of not only distinguishing direct from indirect causal
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Fig. 4 Detecting direct causal links in three real-world networks. a One of the five gene regulatory networks with 20 interacting genes from
GeneNetWeaver. Each red (blue) arrow represents an activating (inhibitory) effect. b ROC curves characterizing the PCM detection performance. The
corresponding AUROCs are also indicated. The reconstruction parameters are E = 2 and τ = 1. c A food chain network of three plankton species, where the
direction of each red arrow represents a prey to predator interaction. d The PCM indices (the color region framed by red boxes) signifying successful
detection of the direct causal links (for E = 4 and τ = 1). A relatively weak but direct causal link (the yellow arrow in c) from Rotifers to Pico cyanobacteria is
identified through the index framed by the yellow box. e Results on all successfully detected interactions between air pollutants and cardiovascular diseases
(red box) for E = 7 and τ = 1. f The reconstructed causal network from the results in e. All detection results are verified using multiple testing corrections.
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influences but also removing the latter. A virtue of our method is
that it is generally applicable to nonlinear dynamical networks
without requiring the condition of separability, which complements
the missing part of causality analysis (see Supplementary Table 3).
In fact, the concept of causality in dynamical systems is different
from the widely accepted traditional statistical viewpoint that X
causes Y if and only if an intervention in X has an effect on Y. Due
to the non-separability, causality in dynamical systems should have
different formalization, which in simplest way can be intuitively
interpreted as a coupling term from X to Y in the system’s equa-
tions. Further theoretical interpretations regarding this new fra-
mework will be included in our future work. Finally, our PCM
method is validated by applying to a number of real-world systems,
yielding new insights into the dynamics of these systems. Unam-
biguous identification of direct causal links with indirect causal
influence eliminated is a key to understanding and accurately
modeling the underlying system, and our framework therefore
provides a vehicle to achieve this goal.

Methods
The concept of non-separability. We illustrate the concept, non-separability, by
using a general continuous-time dynamical system:

_x ¼ FðxÞ; ð1Þ

where the state variable xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; ¼ ; xnðtÞ'
> evolves inside a compact

manifold Mx , forming an attractor A with a dimension dA . Here, dA can be com-
puted as the box-counting dimension of A. The dynamics with an initial value x0 2
Mx are denoted by x(t) = φt(x0), where φt(⋅) is regarded as a flow along the manifold
Mx . According to Takens–Mañé’s embedding theory and its fractal generalizations,
one can, with probability one, reconstruct the system with a positive delay τ and a
smooth observation function h : Mx ! R in the sense that the delay-coordinate map
Γh;φ;τðxÞ ¼ ½hðxÞ; hðφ#τðxÞÞ; hðφ#2τðxÞÞ; ¼ ; hðφ#ðL#1ÞτðxÞÞ'

> is generically an
embedding map as long as L> 2dA . Particularly for direct illustration, we take the
observation function h(x) as a simple coordinate function: h(x) = xi, where xi is the ith
component of x. Thus, we have yðtÞ ¼ ½xiðtÞ; xiðt # τÞ; ¼ ; xiðt # ðL# 1ÞτÞ'> and
also have the manifold Mx mapped to the shadow manifold My by the embedding
map Γ. Since the embedding map is one to one, the dynamics ψτ on the shadow
manifold My are topologically conjugated with the dynamics φτ on Mx , that is,

yðt þ τÞ ¼ ψτðyðtÞÞ ¼ Γ ) φτ ) Γ
#1ðyðtÞÞ: ð2Þ

On the one hand, system (1) implies a fact that the future dynamics of one specific
component, say xj with j = (or ≠)i, is governed by

½φτ 'j : xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; ¼ ; xnðtÞ'
> ! xjðt þ τÞ ð3Þ

and thus depends on the history of all the components x1, x2, …, xn. On the other
hand, the relation in (2) implies the other fact that as long as the embedding map Γ
exists, the future dynamics of xj is also governed by

½Γ#1 ) ψτ 'j : yðtÞ ¼ ½xiðtÞ; xiðt # τÞ; ¼ ; xiðt # ðL# 1ÞτÞ'> ! xjðt þ τÞ ð4Þ

and thus only depends on the history of one variable xi and on the embedding map Γ
as well.

Generically, it is possible to make a prediction of xj(t + τ) based only on the
observation of one variable, and this prediction could be as perfect as the prediction
using the information of all the variables x1(t), x2(t), …, xn(t) of the system (this
obviously disables the idea of Granger causality and its extensions). Thus,
Takens–Mañé’s embedding theory reveals that, in such a deterministic nonlinear
dynamical system, the information of the whole dynamical system could be
generically injected into only one single variable and thus could be reconstructed
by the observation data of that variable. This therefore invites a concept of non-
separability, that is, one, prevalently, cannot remove the information of some
variable from the other variables when any prediction is made for the dynamical
systems. This also reveals that the methods based on prediction frameworks, such
as the Granger causality, the transfer entropy, and all their extensions,
mathematically are not suitable for dealing with the time series data produced by
nonlinear dynamical systems where non-separability always exists among the
internal variables. A toy example showing how GC fails in non-separable systems
could be referred to the Supplementary Materials of ref. 17.

Transitivity arousing indirect causation. To investigate how the transitivity
arouses indirect causation, we consider a heuristic logistic model of three species

connected in the following manner:

xt ¼ xt#1ðαx # αxxt#1Þ;
zt ¼ zt#1ðαz # αzzt#1 # βzxxt#1Þ;
yt ¼ yt#1ðαy # αyyt#1 # βyzzt#1Þ;

ð5Þ

where the three species X = {xt}, Z = {zt} and Y = {yt} are interacting in a causal
chain, denoted by X → Z → Y, and the coupling strengths βzx and βyz are nonzero.

Now, we shift the second equation in (5) with one time step and then substitute
it into the last equation in (5), which yields:

yt ¼ yt#1 αy # αyyt#1 #
h

βyzzt#2ðαz # αzzt#2 # βzxxt#2Þ
i
: ð6Þ

Also the last equation in (5) can be transformed as:

zt#1 ¼
1
βyz

ðαy # αyyt#1 # yt=yt#1Þ; ð7Þ

so that

zt#2 ¼
1
βyz

ðαy # αyyt#2 # yt#1=yt#2Þ: ð8Þ

Then, a substitution of Eq. (8) into Eq. (6) gives:

yt ¼ yt#1 αy # αyyt#1 # βyz
1
βyz

ðαy # αyyt#2 # yt#1=yt#2Þ
(

´ αz # αz
1
βyz

ðαy # αyyt#2 # yt#1=yt#2Þ # βzxxt#2

" #)
:

ð9Þ

Consequently, this equation, coupling with the first equation in (5), forms a
causation relation unidirectionally from X to Y. However, this causation is indirect,
induced by the transitivity, and then the influence has the effect of time delay for
discrete-time dynamical systems.

The PCM method of first order and higher order. We now formulate the PCM
framework formally (see Supplementary Fig. 1 for a schematic graph of the PCM
procedure). The first step is to translate the time series Y = {yt} with time steps
τi(i = 1, 2, …, m), generating m translated variables denoted as Yτ i

¼ fytþτi
g. For

time series pair Yτ i
and Z, we apply the conventional MCM method (see the

practical steps below) to obtain the mapping Ẑ
Yτi from Yτ i

and calculate the

correlation coefficient CorrðZ; ẐYτi Þ. For simplicity, we denote Ẑ
Y
as the mapping

Ẑ
Yτi1 with

i1 ¼ argmax1≤ i≤mCorrðZ; Ẑ
Yτi Þ: ð10Þ

The next step is to repeat the procedure to the time series pair of translated Ẑ
Y
τ i
and

X so as to obtain the mapping X̂
Ẑ
Y
τi from Ẑ

Y
τi
, and set X̂

Ẑ
Y

as X̂
Ẑ
Y
τi2 with

i2 ¼ argmax1≤ i≤mCorrðX; X̂
Ẑ
Y
τi Þ: ð11Þ

Now the obtained X̂
Ẑ
Y

represents the indirect information flow. By directly

applying MCM to the translated Yτi
and X, we could have X̂

Y
denoting all the

information transferred from X to Y, which is simplified for X̂
Yτi3 with

i3 ¼ argmax1≤ i≤mCorrðX; X̂
Yτi Þ: ð12Þ

We now introduce the correlation index:

ϱD ¼ PccðX; X̂Y jX̂Ẑ
Y

Þ
####

####; ð13Þ

where Pcc( ⋅ , ⋅ ∣ ⋅ ) is the partial correlation coefficient describing the association
degree between the first two variables with information about the third variable
removed. We review the definition of partial correlation coefficient here. For time
series X, Y, and Z1, …, Zs, the partial correlation coefficient between X and Y
conditioned on Z1 is

PccðX;Y jZ1Þ ¼ CorrðX;YÞ # CorrðX;Z1ÞCorrðY;Z1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1# CorrðX;Z1Þ2Þð1# CorrðY ;Z1Þ2Þ

q : ð14Þ

The partial correlation coefficient between X and Y conditioned on both Z1 and Z2 is

PccðX;YjZ1;Z2Þ ¼ PccðX;Y jZ1Þ# PccðX;Z2 jZ1ÞPccðY ;Z2 jZ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1#PccðX;Z2 jZ1Þ2Þð1# PccðY;Z2 jZ1Þ2Þ

p ; ð15Þ

and the partial correlation coefficient between X and Y conditioned on more
variables can be defined recursively. For the computation and more information on
the partial correlation coefficient, see refs. 44,64.

To provide detailed instruction to our method, we summarize the practical
steps here:

Procedure A: MCM for detecting causation from U ¼ futg
L
t¼1 to V ¼ fvtg

L
t¼1:
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1. Reconstruct the phase space by using delay-coordinate embedding for time
series U and V, the reconstruction parameters (embedding dimensions
Eu, Ev and time lags τu, τv) can be selected by FNN algorithm and by the
method of DMI, respectively (see Supplementary Note 5);

2. For each time index t, find the set of neighboring points N ðvtÞ of vt (Ev + 1
nearest neighbors are used since it is the minimum number of points needed
for a bounded simplex in an Ev-dimensional space43);

3. Find the corresponding points in MU that have the same time indexes as the
points in N ðvtÞ and calculate their weighted average (the weights are
determined by the distances between the point in N ðvtÞ and vt, which
defines the operation E½(') to obtain the estimated ûvt ;

4. Use an appropriate index (such as ϱC ¼ Corrðut ; ûvt Þ
## ##) to characterize the

consensus of the estimated time series Û
V0 (subscript 0 is denoted for no

translation of V here to keep consistency with the following notations) and
the original time series U, which measures the causation from U to V.

Procedure B: PCM for detecting direct causation from X to Y conditioning on Z:

1. Translate time series Y with different candidate time delays τi(i= 1, 2,…,m)
to generate Yτi

¼ fytþτi
g;

2. For each pair Z to Yτi
, perform Procedure A to obtain CorrðZ; ẐYτi Þ, and

denote Ẑ
Y
as Ẑ

Yτi1 , where the time delay τi1 maximizes CorrðZ; ẐYτi Þ as in
(10);

3. Translate time series Ẑ
Y
with different candidate time delays τi(i= 1, 2,…,m)

to generate Ẑ
Y
τi
;

4. For each pair X to Ẑ
Y
τi
, perform Procedure A to obtain CorrðX; X̂Ẑ

Y
τi Þ, and

denote X̂
Ẑ
Y

as X̂
Ẑ
Y
τi2 , where the time delay τi2 maximizes CorrðX; X̂Ẑ

Y
τi Þ as in

(11);
5. For each pair X to Yτi

, perform Procedure A to obtain CorrðX; X̂Yτi Þ, and
denote X̂

Y
as X̂

Yτi3 , where the time delay τi3 maximizes CorrðX; X̂Yτi Þ as in
(12);

6. Use ϱD ¼ PccðX; X̂Y jX̂Ẑ
Y

Þ
####

#### to measure the direct causation from X to Y
conditioning on Z.

Note that we search for the strongest causation on different candidate time
delays in every MCM procedure above. For consistency, in the whole research, all
the MCM results are also based on this strategy. Moreover, it is possible to
characterize the causal relations among variables on a distribution of time delays
(i.e., a causal spectrum). This full causal description will be included in our
future work.

As described above, the first-order PCM method can be established as following
definition for networked systems of more than three interacting variables:
X, Y, Z1, …, Zs(s ≥ 2) (e.g., Fig. 1d), based on which high-order method can be
derived,

ϱD1
¼ Pcc X; X̂

Y
X̂
Ẑ
iY

% ####i ¼ 1; ¼ ; s
####

&' (####

####: ð16Þ

In a complex dynamical networks, the indirect causation could also be transferred
through more than one variables (e.g., through two variables X → Z1 → Z2 → Y).
The high-order PCM method is derived to specifically characterize this situation. In

particular, we calculate the correlation coefficient between X and X̂
Y
, and the

partial correlation coefficient between them through removal of the information
about the cross mapping variables via two variables out of the s variables Z1, …, Zs.
The partial correlation coefficient

ϱD2
¼ Pcc X; X̂

Y
X̂
Ẑ
iẐ
jY( #####i≠ j; i; j 2 f1; ¼ ; sg

#####

) !#####

##### ð17Þ

represents effectively a second-order method for differentiating the direct and
indirect causal links from X to Y that is transferred through two mediate variables.
Analogously, the nth order measure, denoted by ϱDn

, can be defined through any
combinations of n mediate variables from Z1, …, Zs as

ϱDn
¼

#####Pcc

 

X; X̂
Y

#####

(

X̂
Ẑ
i¼
1

ẐinY
#####ði1; ¼ ; inÞ is an n# combination fromf1; ¼ ; sg

)!#####:

ð18Þ
Together with ϱC; ϱDn

ðn ¼ 1; ¼ ; sÞ and the PCM measure

γ ¼ ðΠs
n¼1ϱDn

Þ=ϱsC; ð19Þ

reflecting the proximity of all these coefficients, we obtain higher-order PCMmethods
for detecting direct causal links in large networks. However, for a relatively large order
n, the possible number of combinations of n mediate variables is quite large. We will
study the computations and applications of the high-order methods in future work,
and in this research, we only consider the first-order problem.

In practice, the partial correlation procedure will encounter calculation
problems if the network scale is relatively large and thus a large conditioning set
should be taken into account. In this case, we could adopt the technique of
selecting several nodes Zi that maximize ϱX!Zi

C þ ϱZ
i!Y

C (or minfϱX!Zi

C ; ϱZ
i!Y

C g),
which means a high probability of the existence of an indirect link through Zi, and

make conditioning on these nodes. Moreover, if we have a priori knowledge that
the network is sparse, that is, indirect connections are seldom, we could also make

conditioning on Z1, …, Zs one by one, and take the minimum value of ϱX!YjZi

D as
the final result.

Moreover, the PCM idea can be further developed or varied by substituting the
partial correlation to other possible measures characterizing the conditional
dependence. For example, the coefficient of determination (denoted r2) is a possible
choice to serve as an index directly estimated from the cross map neighbors in
parceling out effect sizes for each contributing factor. Another heuristic thinking is
that for indirect causal influence X → Z → Y, cutting off either the link X → Z or
Z → Y is enough to eliminate the whole indirect information flow, which also
provides variation of the PCM framework. These further variations will be included
in our future work.

Data availability
The data sets generated during and/or analyzed during the current study are all available
from the corresponding author on reasonable request. The links/references for the public
data sets used and analyzed during the current study are all provided in Supplementary
Information.

Code availability
The codes as well as their directions for the PCM framework that we developed in this
article are publicly available at https://github.com/Partial-Cross-Mapping.

Received: 3 December 2019; Accepted: 22 April 2020;

References
1. Granger, C. W. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37, 424–438 (1969).
2. Geweke, J. F. Measurement of linear dependence and feedback between

multiple time series. J. Am. Stat. Assoc. 77, 304–313 (1982).
3. Geweke, J. F. Measures of conditional linear dependence and feedback

between time series. J. Am. Stat. Assoc. 79, 907–915 (1984).
4. Ding, M., Chen, Y. & Bressler, S. L. In Handbook of Time Series Analysis

437–460 (Wiley, Hoboken, 2006).
5. Guo, S., Ladroue, C. & Feng, J. In Frontiers in Computational and Systems

Biology 83–111 (Springer, New York, 2010).
6. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85, 461 (2000).
7. Vicente, R., Wibral, M., Lindner, M. & Pipa, G. Transfer entropy-a model-free

measure of effective connectivity for the neurosciences. J. Comput. Neurosci.
30, 45–67 (2011).

8. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley,
Hoboken, 2012).

9. Sun, J., Cafaro, C. & Bollt, E. M. Identifying the coupling structure in complex
systems through the optimal causation entropy principle. Entropy 16,
3416–3433 (2014).

10. Cafaro, C., Lord, W. M., Sun, J. & Bollt, E. M. Causation entropy from
symbolic representations of dynamical systems. Chaos 25, 043106 (2015).

11. Sun, J., Taylor, D. & Bollt, E. M. Causal network inference by optimal
causation entropy. SIAM J. Appl. Dyn. Syst. 14, 73–106 (2015).

12. Duggento, A., Stankovski, T., McClintock, P. V. & Stefanovska, A. Dynamical
bayesian inference of time-evolving interactions: from a pair of coupled
oscillators to networks of oscillators. Phys. Rev. E 86, 061126 (2012).

13. Stankovski, T., Duggento, A., McClintock, P. V. & Stefanovska, A. A tutorial
on time-evolving dynamical bayesian inference. Eur. Phys. J. Spec. Top. 223,
2685–2703 (2014).

14. Stankovski, T., Ticcinelli, V., McClintock, P. V. & Stefanovska, A. Coupling
functions in networks of oscillators. N. J. Phys. 17, 035002 (2015).

15. Stankovski, T., Pereira, T., McClintock, P. V. & Stefanovska, A. Coupling
functions: universal insights into dynamical interaction mechanisms. Rev.
Mod. Phys. 89, 045001 (2017).

16. Schiff, S. J., So, P., Chang, T., Burke, R. E. & Sauer, T. Detecting dynamical
interdependence and generalized synchrony through mutual prediction in a
neural ensemble. Phys. Rev. E 54, 6708 (1996).

17. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338,
496–500 (2012).

18. Ma, H., Aihara, K. & Chen, L. Detecting causality from nonlinear dynamics
with short-term time series. Sci. Rep. 4, 7464 (2014).

19. Jiang, J.-J., Huang, Z.-G., Huang, L., Liu, H. & Lai, Y.-C. Directed dynamical
influence is more detectable with noise. Sci. Rep. 6, 24088 (2016).

20. Ma, H. et al. Detection of time delays and directional interactions based
on time series from complex dynamical systems. Phys. Rev. E 96, 012221
(2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16238-0

8 NATURE COMMUNICATIONS | ��������(2020)�11:2632� | https://doi.org/10.1038/s41467-020-16238-0 | www.nature.com/naturecommunications



21. Harnack, D., Laminski, E., Schünemann, M. & Pawelzik, K. R. Topological
causality in dynamical systems. Phys. Rev. Lett. 119, 098301 (2017).

22. Joskow, P. L. & Rose, N. L. In Handbook of Industrial Organization, Vol. 2,
1449–1506 (Elsevier, Amsterdam, 1989).

23. Kamiński, M., Ding, M., Truccolo, W. A. & Bressler, S. L. Evaluating causal
relations in neural systems: Granger causality, directed transfer function and
statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001).

24. Banos, R. et al. Optimization methods applied to renewable and sustainable
energy: a review. Renew. Sust. Energ Rev. 15, 1753–1766 (2011).

25. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-
driven contagion phenomena. Science 342, 1337–1342 (2013).

26. Deyle, E. R. et al. Predicting climate effects on pacific sardine. Proc. Natl Acad.
Sci. USA 110, 6430–6435 (2013).

27. Van Nes, E. H. et al. Causal feedbacks in climate change. Nat. Clim. Change 5,
445 (2015).

28. Tsonis, A. A. et al. Dynamical evidence for causality between galactic cosmic
rays and interannual variation in global temperature. Proc. Natl Acad. Sci.
USA 112, 3253–3256 (2015).

29. Hirata, Y. et al. Detecting causality by combined use of multiple methods:
climate and brain examples. PLoS ONE 11, e0158572 (2016).

30. Ma, H., Leng, S., Aihara, K., Lin, W. & Chen, L. Randomly distributed
embedding making short-term high-dimensional data predictable. Proc. Natl
Acad. Sci. USA 115, E9994–E10002 (2018).

31. Leng, S., Xu, Z. & Ma, H. Reconstructing directional causal networks with
random forest. Chaos 29, 093130 (2019).

32. Guo, S., Seth, A. K., Kendrick, K. M., Zhou, C. & Feng, J. Partial granger
causality-eliminating exogenous inputs and latent variables. J. Neurosci.
Methods 172, 79–93 (2008).

33. Frenzel, S. & Pompe, B. Partial mutual information for coupling analysis of
multivariate time series. Phys. Rev. Lett. 99, 204101 (2007).

34. Zhao, J., Zhou, Y., Zhang, X. & Chen, L. Part mutual information for
quantifying direct associations in networks. Proc. Natl Acad. Sci. USA 113,
5130–5135 (2016).

35. Runge, J., Heitzig, J., Petoukhov, V. & Kurths, J. Escaping the curse of
dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett.
108, 258701 (2012).

36. Schelter, B. et al. Direct or indirect? graphical models for neural oscillators. J.
Physiol. 99, 37–46 (2006).

37. Nawrath, J. et al. Distinguishing direct from indirect interactions in oscillatory
networks with multiple time scales. Phys. Rev. Lett. 104, 038701 (2010).

38. Runge, J. Causal network reconstruction from time series: from theoretical
assumptions to practical estimation. Chaos 28, 075310 (2018).

39. Runge, J., Petoukhov, V. & Kurths, J. Quantifying the strength and delay of
climatic interactions: the ambiguities of cross correlation and a novel measure
based on graphical models. J. Clim. 27, 720–739 (2014).

40. Takens, F. In Dynamical Systems and Turbulence, Warwick 1980, 366–381
(Springer, New York, 1981).

41. Mañé, R. In Dynamical Systems and Turbulence, Warwick 1980, 230–242
(Springer, New York, 1981).

42. Kantz, H. & Schreiber, T. Nonlinear Time Series Analysis, Vol. 7 (Cambridge
Univ. Press, Cambridge, 2004).

43. Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series. Nature 344, 734 (1990).

44. Bailey, N. T. Statistical Methods in Biology (Cambridge Univ. Press,
Cambridge, 1995).

45. Noble, W. S. How does multiple testing correction work? Nat. Biotechnol. 27,
1135 (2009).

46. Shaffer, J. P. Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584
(1995).

47. Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V. & Stefanovska, A. Surrogate
data for hypothesis testing of physical systems. Phys. Rep. 748, 1–60 (2018).

48. Clemson, P. T. & Stefanovska, A. Discerning non-autonomous dynamics.
Phys. Rep. 542, 297–368 (2014).

49. Stark, J. Delay embeddings for forced systems. i. deterministic forcing. J.
Nonlinear Sci. 9, 255–332 (1999).

50. Stark, J., Broomhead, D. S., Davies, M. & Huke, J. Delay embeddings for
forced systems. II. Stochastic forcing. J. Nonlinear Sci. 13, 519–577 (2003).

51. Milo, R. et al. Network motifs: simple building blocks of complex networks.
Science 298, 824–827 (2002).

52. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev.
Genet. 8, 450 (2007).

53. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. USA 107, 6286–6291 (2010).

54. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic in
silico gene networks for performance assessment of reverse engineering
methods. J. Comput. Biol. 16, 229–239 (2009).

55. Prill, R. J. et al. Towards a rigorous assessment of systems biology models: the
dream3 challenges. PLoS ONE 5, e9202 (2010).

56. Schaffter, T., Marbach, D. & Floreano, D. Genenetweaver: in silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics 27, 2263–2270 (2011).

57. Benincà, E., Jöhnk, K. D., Heerkloss, R. & Huisman, J. Coupled predator–prey
oscillations in a chaotic food web. Ecol. Lett. 12, 1367–1378 (2009).

58. Benincà, E. et al. Chaos in a long-term experiment with a plankton
community. Nature 451, 822 (2008).

59. Neutel, A.-M., Heesterbeek, J. A. & de Ruiter, P. C. Stability in real food webs:
weak links in long loops. Science 296, 1120–1123 (2002).

60. Lee, B.-J., Kim, B. & Lee, K. Air pollution exposure and cardiovascular disease.
Toxicol. Res. (Seoul., Repub. Korea) 30, 71 (2014).

61. Wong, T. W. et al. Air pollution and hospital admissions for respiratory and
cardiovascular diseases in hong kong. Occup. Environ. Med. 56, 679–683
(1999).

62. Fan, J. & Zhang, W. Statistical estimation in varying coefficient models. Ann.
Stat. 27, 1491–1518 (1999).

63. Milojevic, A. et al. Short-term effects of air pollution on a range of cardiovascular
events in England and Wales: case-crossover analysis of the minap database,
hospital admissions and mortality. Heart 100, 1093–1098 (2014).

64. Baba, K., Shibata, R. & Sibuya, M. Partial correlation and conditional
correlation as measures of conditional independence. Aust. N. Z. J. Stat. 46,
657–664 (2004).

Acknowledgements
W.L. is supported by the National Key R&D Program of China (No. 2018YFC0116600),
by the National Natural Science Foundation of China (Nos 11925103 and 61773125), and
by the STCSM (Nos 18DZ1201000, 19511132000, and 2018SHZDZX01). L.N.C. is
supported by the National Key R&D Program of China (No. 2017YFA0505500), by the
Strategic Priority Project of CAS (No. XDB38000000), by the Natural Science Foundation
of China (Nos 31771476 and 31930022), and by Shanghai Municipal Science and
Technology Major Project (No. 2017SHZDZX01). S.Y.L. and K.A. are supported by JSPS
KAKENHI (No. JP15H05707) and by AMED (No. JP20dm0307009). Y.-C.L. is sup-
ported by ONR (No. N00014-16-1-2828). H.F.M. is supported by the National Key R&D
Program of China (No. 2018YFA0801100) and the National Natural Science Foundation
of China (No. 11771010). J.K. is supported by the project RF Government Grant 075-15-
2019-1885.

Author contributions
W.L. and L.N.C. conceived the idea; S.Y.L., H.F.M., W.L., K.A., and L.N.C designed the
research; S.Y.L., H.F.M., and W.L. performed the research; All authors, S.Y.L., H.F.M.,
J.K., Y.-C.L., W.L., K.A., and L.N.C., analyzed the data and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-16238-0.

Correspondence and requests for materials should be addressed to W.L., K.A. or L.C.

Peer review information Nature Communications thanks Aneta Stefanovska and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16238-0 ARTICLE

NATURE COMMUNICATIONS | ��������(2020)�11:2632� | https://doi.org/10.1038/s41467-020-16238-0 | www.nature.com/naturecommunications 9



Supplementary Information for

Partial cross mapping eliminates indirect causal influences

Leng et al.

𝐳𝑡−2

𝐲𝑡−1

𝐳𝑡−1

𝐲𝑡𝐲𝑡−2
𝐱𝑡−1

ො𝒛𝒕−𝟏

𝐱𝑡

ො𝐳𝑡
𝐲

𝐱𝑡−2

𝑀𝑌

… …

… 𝐳𝑡 …ො𝐳𝑡−1
𝐲ො𝐳𝑡−2

𝐲… …

… …

… …

… …

ො𝐱𝑡−2ො𝐳𝐲

ො𝐱𝑡−1
𝐲

𝑀𝑍

𝑀𝑋

Mutual Cross Mapping

ො𝐱𝑡
𝐲ො𝐱𝑡−2

𝐲

ො𝐱𝑡−1ො𝐳𝐲 ො𝐱𝑡ො𝐳
𝐲

𝑋

𝑋𝑌

𝑋 𝑍𝑌

መ𝑍𝑌 𝑍

𝑌
τ = 1τ = 1

X

Z

Y

True Network

ϱD = Pcc(𝑋, 𝑋𝑌| 𝑋 𝑍𝑌)

𝐲

ො𝐳𝐲

ො𝐱ො𝐳𝐲

ො𝐱𝐲

Supplementary Figure 1. A precise illustration for the PCM framework of the three variables interacting in a unidirectional causal
chain. Here, the time delay of causal influence is set illustratively as 1. The indirect information is denoted by a successive estimating from
MY to MZ then to MX (the slashed grey arrows labeled with Partial Cross Mapping) and the mapping from MY to MX (the horizontal
grey arrows labeled with Mutual Cross Mapping) contains both direct and indirect information. The partial correlation thus eliminates the
indirect part. Here in each mapping procedure, an optimal time delay is searched to maximize the information transfer.
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Supplementary Figure 2. Basic network motifs with causation detection. Large-scale networks possess a small set of recurring patterns,
i.e., network motifs, which are the basic building blocks of any complex network. The red dashed arrows show spurious causation that easily
to be wrongly detected by the existing methods.
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Supplementary Figure 3. Detection accuracy versus threshold T for the PCM and the MCM methods for the benchmark logistic
model of three species in the main text. Shown are the accuracy with 18 indices (%D or %C) for all possible links in the three network
structures listed in Figs. 1a-c of the main text. Notice that when T = 0.5, the MCM method not only misidentifies the indirect causal links,
but also reaches wrong results in other links. When 0.95 > T > 0.85, MCM could achieve 100% accuracy, however, it is not reasonable to
choose such a high threshold value larger than 0.85 in practice. Notice that in this benchmark system, the index values (%C or %D) for a true
positive direct causal link are of a rather high level, therefore the detection accuracy only decreases when the threshold is approaching 1 (see
the partial enlarged view).

Time length 200   Noise scale 0.005
Supplementary Figure 4. Comparison results of the causation detection methods using a model of three species interacting in a chain
mode. The true structure is shown by the left panel. The representative methods, including the GC, the cGC, the pGC, the TE, and the pTE,
cannot identify the correct structures, while our method, the PCM, is able to identify the true causations correctly and completely. Here the
denoted time lengths and the noise scales are relative to the real scale of the system.
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Supplementary Figure 5. Comparison results for causations detection by using the GC, the cGC, and the pGC. Here the denoted time
lengths and the noise scales are relative to the real scale of the system.
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Supplementary Figure 6. Comparison results for causations detection by using the TE, the pTE, and the PCM. The PCM method
outperforms all the other methods here and the methods in Supplementary Figure 5 as well. Here the denoted time lengths and the noise scales
are relative to the real scale of the system.
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Supplementary Figure 7. Robustness tests of PCM against time series of different time lengths and noise scales with the networked
system consisting of eight species in Supplementary Note 4. The shaded area represents the standard deviation of the PCM results of 100
simulations. The system becomes divergent when the noise scale exceeds 0.01 (shown by “⇥” on the horizontal axis). Here the time lengths
denote the system’s absolute time unit and the noise scales are the ratio of the noise strength to the system’s amplitude. The threshold value is
selected to be 0.5 in this analysis.
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(b) Air pollutants and cardiovascular diseases.

Supplementary Figure 8. Comparison results of causations detection methods with the representative real-world examples. Here, the
regions highlighted by the dash boxes correspond to the detected causal links by the respective methods, and the names, Cyclopoids, Rotifers,
and Pico cyanobacteria, are abbreviated as C, R, and P, respectively.
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Supplementary Figure 9. Detection accuracy versus threshold T when the PCM and the MCM methods are in the logistic model
Supplementary Equation (4) of eight interacting species. (a) No use of the accessory measure �. (b) The accessory measure � � 70% is
used, which improves the detection accuracy (� 80%) for the PCM method for small values of T . The partial enlarged views show that the
accuracy decreases when the threshold is too large.
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Supplementary Figure 10. Using the PCM and the MCM methods to reconstruct the causal networks, respectively, with different
values of T for model Supplementary Equation (4). The blue and pink arrows indicate the correctly and falsely detected direct causal links,
respectively.
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Supplementary Figure 11. Threshold value selected by k-means classifier for the eight species model. (a) The threshold value induced
from k-means classifier is ineffective which produces a lot of false positives for MCM results. (b) For PCM results, the two groups with and
without direct causality are distinguished from each other but are concentrated within the interior. This fact facilitates the practical selection of
the threshold value and improves the robustness of the PCM method.
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Supplementary Figure 12. Four gene regulatory networks. The four networks together with the one described in the main text [Fig. 4a],
with which the PCM and the MCM methods are tested, respectively, in Supplementary Figure 13.
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Supplementary Figure 13. Detection accuracy versus the threshold T by using the PCM and the MCM methods for the five gene
regulatory networks. The red (blue, resp.) thick curve corresponds to an average detection accuracy of the red (blue, resp.) thin curves, for
the five gene regulatory networks by using the PCM (MCM, resp.) method.
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Supplementary Figure 14. Comparison results on causations detection in the real gene regulatory networks containing key genes of
circadian rhythms by using different methods. Here, two sub-functional regulatory gene networks with 37 (a) and 18 (c) genes are
analyzed, respectively. The PCM method outperforms the other methods in the analyses of the both networks [(b) and (d)]. The phase space
reconstruction parameters are taken as E = 2 and ⌧ = 1, and the networks are plotted by the software Pajek (http://mrvar.fdv.uni-lj.si/pajek/).
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Supplementary Figure 15. The results by using the PCM method on the EEG recordings data for the 10 subjects, respectively. Here,
each figure corresponds to an average over 10 randomly selected blocks during which the recording is a continuous measurement that is
cleaned of apparent artefacts. In particular, the small circles are positioned at the approximate location of the corresponding electrode placed
on the skull. The causation measures from one electrode channel to all the others are displayed at the same relative position within the small
circle. The plotting scheme is adapted from [1]. The phase space reconstruction parameters are taken as E = 6 and ⌧ = 6.

(a) (b)

Supplementary Figure 16. Using the PCM method reveals direct electrical information pathways in the human brain. Here, (a) the
PCM and (b) the MCM measures are shown between all the possible pairs of 19 channels of the EEG recordings, averaged over 10 subjects
and 10 randomly-selected blocks. The detection result using the PCM method is able to reveal the information pathways [e.g., a sample
pathway is highlighted by the red arrows in (a)], while the MCM method produces very dense network in every small circle in (b), which
indicates the information transmitting in almost every direction but no pathway of specific function.
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Supplementary Table 1. Using the PCM method to detect causations for all the possible types of interacting structures of three
species. Here, the detecting results are shown, respectively, in the colored matrices, where the direction of each causal interaction is from the
variable in the column of the matrix to the different variable in the row. In generating the data of time series, the initial values are taken
randomly from the interval [0, 1]. The parameters of the phase space reconstruction are taken as: E = 4 and ⌧ = 1.

Zero link One link Five links Six links 

Two links 

Three links 

Four links 
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Supplementary Table 2. Measures of all possible causal directions and the corresponding p-values. The system is the benchmark model
of three interacting species in the three modes shown in Figs. 1a-c of the main text. The values in bold are the detections for T � 0.5 (p ' 0).

Directions X ! Y Y ! X X ! Z Z ! X Y ! Z Z ! Y

MCM in Fig. 1a 0.9847(X) 0.3493 0.0140 0.0134 6.0100e-04 0.1035
PCM in Fig. 1a 0.9817(X) 0.3322 0.0137 0.0175 0.0032 0.0961
p-values for PCM 0(X) 6.9751e-26 0.6727 0.5910 0.9211 0.0031
MCM in Fig. 1b 0.8681(⇥) 0.4501 0.9846(X) 0.6565(⇥) 0.5307(⇥) 0.9746(X)
PCM in Fig. 1b 0.1871 0.2262 0.9573(X) 0.3479 0.3662 0.9499(X)
p-values for PCM 6.3838e-09 1.7688e-12 0(X) 2.1943e-28 1.7027e-31 0(X)
MCM in Fig. 1c 0.8052(⇥) 0.9674(X) 0.9718(X) 0.6005(⇥) 0.7576(⇥) 0.9593(X)
PCM in Fig. 1c 0.4467 0.9590(X) 0.8609(X) 0.2725 0.2685 0.9480(X)
p-values for PCM 9.7651e-48 0(X) 3.8035e � 280(X) 1.2785e-17 3.9153e-17 0(X)

Supplementary Table 3. The scope of the GC-based, TE-based and PCM causation detection methods. The abbreviations could be find
in Supplementary Note 3.

Separable system Non-separable system
Pairwise GC, cGC, pGC, TE, pTE MCM, PCM
Network cGC, pGC, pTE PCM

Supplementary Table 4. For the PCM method, the p-values associated with the seven detected direct causal links for the logistic model
of the eight interacting species. Here, all the p-values for the true links are approximately zero, showing high statistical significance and
accurate detection results as the PCM method is used.

Directions 1 ! 3 2 ! 3 2 ! 4 3 ! 5 3 ! 6 6 ! 7 6 ! 8
p-values 0 9.8212e � 148 0 0 1.7441e � 306 0 8.2680e � 240

Supplementary Table 5. For the food chain network of three plankton species, the p-values associated with all possible causal
directions. The names of Cyclopoids, Rotifers, and Pico cyanobacteria are abbreviated as C, R, and P, respectively. The values in bold are the
detections for T � 10�1 (p < 0.0016).

Directions C ! R R ! C C ! P P ! C R ! P P ! R
p-values 0.7495 1.1302e � 17 0.0054 0.8259 0.0011 1.2119e � 05

Supplementary Table 6. PCM generated p-values for all possible causal directions between the air pollutants and the admission
numbers of cardiovascular diseases in major hospitals in Hong Kong. The values in bold are the detections for p < 10�9.

Directions Cardio ! NO2 NO2 ! Cardio Cardio ! SO2 SO2 ! Cardio
p-values 1.1268e-06 4.0209e � 11 2.0593e-05 0.0038

Directions Cardio ! Rspar Rspar ! Cardio Cardio ! O3 O3 ! Cardio
p-values 8.7456e-05 3.3594e � 14 5.0206e-05 6.7548e-08

Directions NO2 ! SO2 SO2 ! NO2 NO2 ! Rspar Rspar ! NO2

p-values 8.6071e � 21 6.8415e � 47 6.5167e � 55 4.0150e � 63
Directions NO2 ! O3 O3 ! NO2 SO2 ! Rspar Rspar ! SO2

p-values 2.8376e-09 6.9308e-09 3.3639e � 21 8.1370e � 16
Directions SO2 ! O3 O3 ! SO2 Rspar ! O3 O3 ! Rspar
p-values 2.3718e-07 1.7075e � 12 2.6498e � 20 2.0512e � 18
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Supplementary Note 1. Detecting causations in all types of structures for
three interacting species

In addition to the three interacting structures for three species in the main text, our proposed PCM method is effec-
tively applicable to detecting causations for all the other types of interacting structures as listed in Supplementary
Table 1. Particularly, as is well-known, the structures, such as the fan-out spurious causation due to the common
source [Supplementary Table 1 #2-II and Supplementary Figure 2(b)] and the indirect spurious causation due to
the cascading [Supplementary Table 1 #2-I and Supplementary Figure 2(c)], always result in false detections when
the existing methods are used. However, our PCM can achieve in distinguishing these spurious links. Additionally,
these two spurious links, with the fan-in mode [Supplementary Table 1 #2-III and Supplementary Figure 2(a)],
become the elementary structures for building blocks in any complex networks [2, 3]. Since the PCM method can
achieve accurate detections of causations in these elementary modes, using the PCM method to reconstruct causal
networks of large scale becomes doable and reliable.

In our systematic analyses, the species dynamics of X , Y , and Z are taken as the logistic maps with unchanged
parameters for all the possible interacting structures. More precisely, the model of the interacting species is:
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with the parameters that are set, respectively, as ↵
x

= 3.7, ↵
y

= 3.78, and ↵

z

= 3.72. The coupling strength are
taken as 0.35 or 0 to form the corresponding structure. The last term ✏

i,t

(i 2 {x, y, z}) in the above equations
are the white noise with the strength 0.005 (see Supplementary Note 3 for detailed information on the scale of the
noise). We consider 100 trails with the length of 1000 points, which are randomly selected from the generated
time series with the length of 5000 points. Here, the sampling rate is 1 Hz, so the number of time points matches
exactly the time unit of the system. The average of the PCM index for each possible causal direction over these
100 trails is shown in Supplementary Table 1.

Supplementary Note 2. Additional information for benchmark systems
in the main text

As described in the main text, the value of the threshold T is set to be 0.5. The PCM method reconstructs correctly
the causal networks of different structure for the benchmark system. How does the choice of the threshold T affect
the detection accuracy for PCM or the previous MCM method? For the benchmark systems in main text [Fig. 3],
we show in Supplementary Figure 3, for both methods, the detection accuracy varies as the threshold value is
increased. Here detection accuracy denotes total correct classification rate (both negative and positive) of direct
causal links. However, the range of T values in which the detection accuracy approaches 100% is much broader
for PCM than for MCM, demonstrating the robustness and broad applicability of the PCM method to real-world
systems when a priori knowledge for prescribing the value of T is lacking.

For data integrity and statistical significance, we list in Supplementary Table 2 all the computational results
for all the possible causal directions for the three modes in Figs. 1a-1c [or Fig. 3a] in the main text. Also listed in
this table are the results on the corresponding p-values for the PCM measures, where the p-values are obtained by
testing the hypothesis of no partial correlation against the alternative that there is non-zero partial correlation. The
final results are all verified by multi-testing corrections via the Bonferroni adjustment (p < ↵/n), where n is the
number of the edges in the network [4, 5].

Supplementary Note 3. Systematic comparison of the PCM method with
the representative methods

Presently, there are three major paradigms for identifying and quantifying causal interactions: the celebrated
Granger causality, the entropy based methods, and the mutual cross mapping. The Granger causality and the
entropy based methods are likely to work ineffectively in the situation where the relevant dynamical variables are
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non-separable. As a matter of fact, in the benchmark and real-world nonlinear dynamical systems, which are also
the systems we are mainly investigating in this work, the non-separable variables are dominantly present. The mu-
tual cross mapping based methods allow for detecting causations between the non-separable variables but cannot
distinguish direct causation from indirect ones (as described and compared in the main text). Here, we perform
systematic comparison studies on the performances of the representative methods in the literature and our PCM
method using the benchmark systems and the real-world examples. The scope of the methods investigated here are
summarized in Supplementary Table 3.

3.1. Benchmark systems with different time lengths and different noise scales
We still use the coupled logistic maps Supplementary Equations (1)-(3) as a benchmark system to perform the
comparison study. We consider the causal chain mode X ! Z ! Y where �

yz

= 0.1, �
zx

= 0.1, and the other
coupling parameters are set as zero. Different lengths of time series (i.e., 100, 200, 500, 1000, 3000) and different
noise levels (i.e., 0, 0.005, 0.01, 0.015, 0.02) are, respectively, taken into account. Here, the sampling rate is 1 Hz,
so the number of time points matches exactly the time unit of the system. We will use the term “time length” to
denote the absolute length of the time duration for a time series. Additionally, we generate the white noises with
respect to each time unit and use the term “noise scale” as the ratio between the noise strength and the amplitude
of the system dynamics (e.g., the amplitude is 1 for the logistic map, so the noise strength is exactly the same as
the noise scale here). We compute the causation index for all the six possible causation directions by using the
following methods, respectively: the Granger causality (GC), the conditional Granger causality (cGC), the partial
Granger causality (pGC), the transfer entropy (TE), the partial transfer entropy (pTE), and our method, the PCM.
The realization details for all the methods, the significance test methods, and the other numerical configurations
are summarized in Supplementary Note 5.

We first compare the six methods using the time series with the time length of 200 and with the noise scale
0.005 as well. As shown in Supplementary Figure 4, only the proposed PCM method is able to identify the correct
causation structure of the unidirectional chain, while the other methods are all failed in finding the correct structure.

Next, we test the above-mentioned methods with different time lengths and different noise scales. We then
illustrate the range of application for each method in details. For the original GC, the detection results are quite
unstable [Supplementary Figure 5], which is due to the non-separable variables are present in our nonlinear sys-
tem. As a matter of fact, the Granger causality method and its extensions (the cGC and the pGC), which are all
based on regression, are theoretically unsuitable for causation detection for nonlinear systems with non-separable
variables. Although the conditional and the partial Granger causality tests perform well only when the time length
is sufficiently long, the detection results are not based on the solid ground. This is because the regression actually
produces a tremendously large deviation from the true dynamics in the first step of the GC detection where a pre-
sumed regression model is required to fit with the observed time series. Such a fitting deviation definitely renders
the results obtained by the GC method unreliable. As for the data produced by a presumed model with strong
stochasticity, the GC as well as its extensions is still regarded as the most useful technique in causation detections.
However, as for the data produced by any unknown dynamical model with weak and moderate stochasticity, our
PCM method is more reliable and effective due to its solid ground of dynamical systems theory.

The TE method was developed to deal with both linear and nonlinear systems. For the special case of the
Gaussian variables, the GC and the TE are in fact equivalent to each other [6]. However, the TE and the pTE
methods require reconstruction of the probability distributions of the pertinent variables from the observed data.
The performance of causation detections by using these two method thus significantly depend on the time length
of the available time series, as shown in Supplementary Figure 6. Moreover, it is emphasized that, theoretically,
neither the TE nor the pTE allow for any non-separate variables in causation detections.

However, for our proposed PCM method, we could easily find that PCM indeed outperforms the other rep-
resentative frameworks of causation detections. PCM is not restricted by the separability condition and effective
even when the time length is not sufficiently long. However, the PCM is sensitive to large noise, and will produce
false negative detections which is inevitable.

To further explore the robustness of the PCM framework against time series lengths and the noise scales, we
performed an additional numerical analysis using the eight species system introduced in Supplementary Note 4.
As expected, Supplementary Figure 7 shows that the detection accuracy increases with the time length of the time
series used in simulations but always remains at a high level, confirming the effectiveness of our PCM framework
in dealing with an extremely small amount of data. In addition, increasing the noise scale only slightly lowers the
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detection accuracy. Note that the system becomes divergent as the noise scale is larger than 0.01 [shown by “⇥”
on the horizontal axis in Supplementary Figure 7(b)]. These also demonstrate that our PCM framework is useful
when the noisy perturbation is introduced in a manner of small or moderate intensity.

3.2. Comparison on real-world examples
We will compare our PCM method with other causal assessment methods also on the real-world examples. Here
we perform the comparison with the three plankton species food chain network and the example of air pollution
with cardiovascular diseases.

As shown in Supplementary Figure 8, the GC and cGC could successfully identify the chain structure among
the three species, but fail to detect the weak causation from Rotifers to Pico cyanobacteria. However, GC even
produces a false link from Cyclopoids to Rotifers, which shows GC is unsuitable for detecting causality in this
system. Moreover, pGC, TE and pTE can hardly detect the structure and even produce false positive. As to
the second example, methods except PCM all find causal links from cardiovascular diseases to the air pollutants,
which is unreasonable to the true network. And cGC and pGC fail to find any causal relation from air pollutants to
cardiovascular diseases, which has been proved in literature [7, 8].

3.3. Comparison of PCM and DBI
First, the method of the dynamical Bayesian inference (DBI) does not require the detailed knowledge of the ex-
plicit equations in the models but only uses a delicate selection of a basis set in some function space for data
regression [9, 10, 11, 12]. It is applicable for general autonomous and nonautonomous systems. Our PCM frame-
work is a model-free method, only based on the embedding theorem, which is theoretically suitable for dealing
with autonomous systems or/and nonautonomous systems with some particular forms as mentioned in the main
text. More concretely, the PCM framework works for the switching systems where the switching points can be
located and each duration between the consecutive switching points is sufficiently long, while the DBI is applicable
for more types of nonautonomous systems, including the dynamical oscillators with time-evolving coupled func-
tions or/and with various types of noise [9]. Second, the DBI method can infer the exact coupling functions and
underlying dynamical mechanisms, while our PCM framework focuses much on the detection of causal relations.
So, the connections detected by the DBI could be regarded as effective connectivity while the causal relations
found by the PCM framework are more like functional connectivity [13]. Additionally, our PCM is able to dis-
tinguish direct causations from indirect ones, while the DBI method could be further extended to a conditional
version. Both methods have their own particular advantages and could be used in a complementary manner. For
example, in highly complex networks, our PCM framework can first detect the basic network structures based on
the observed data, significantly simplifying initial regression structure with the function basis set.

Supplementary Note 4. Reconstruction of direct causal networks of eight
benchmark species

We consider the system

x1(t) = x1(t� 1)[3.9� 3.9x1(t� 1)] + ✏1,t,

x2(t) = x2(t� 1)[3.5� 3.5x2(t� 1)] + ✏2,t,

x3(t) = x3(t� 1)[3.62� 3.62x3(t� 1)� 0.35x1(t� 1)� 0.35x2(t� 1)] + ✏3,t,

x4(t) = x4(t� 1)[3.75� 3.75x4(t� 1)� 0.35x2(t� 1)] + ✏4,t,

x5(t) = x5(t� 1)[3.65� 3.65x5(t� 1)� 0.35x3(t� 1)] + ✏5,t,

x6(t) = x6(t� 1)[3.72� 3.72x6(t� 1)� 0.35x3(t� 1)] + ✏6,t,

x7(t) = x7(t� 1)[3.57� 3.57x7(t� 1)� 0.35x6(t� 1)] + ✏7,t,

x8(t) = x8(t� 1)[3.68� 3.68x8(t� 1)� 0.35x6(t� 1)] + ✏8,t,

(4)

where ✏

i,t

(i = 1, . . . , 8) terms are white noise of zero mean and standard deviation 0.005 (see Supplementary
Note 3 for detailed information on the scale of the noise). Supplementary Figure 9 shows the detection accuracy
versus the threshold T for both the PCM and MCM methods. The PCM method gives much better performance in
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reconstructing the direct causal networks. The accessory measure � introduced in the main text is also shown in
Supplementary Figure 9. Taking � into account can improve the detection accuracy for small values of T .

Supplementary Figure 10 presents the reconstructed direct causal networks for three different values of T :
T = 0.3, T = 0.5, and T = 0.7. We see that, even for T = 0.3, the PCM method recovers almost all the direct
causal links, and for T = 0.5 and T = 0.7, the reconstruction error is essentially zero. In contrast, the MCM
method gives dense networks containing many indirect causal links and false direct links even for T above 0.5.
Supplementary Table 4 lists the p-values verified by the multi-testing corrections for the seven direct causal links.

It is worthwhile to mention that using the PCM method with a larger value of T does not always result in
the most accurate detection of causations not only for the data that are generated by dynamical models (see Sup-
plementary Figures 3 & 9) but particularly for the real-world data where the internal or external perturbations
are unavoidable. The PCM measurement that we design actually quantifies the association between the variables
whose interacting structure is even nonlinear. Such a nonlinear interaction, together with computation of nor-
mal/partial correlation and various types of perturbations, are likely to reduce to some extent the absolute value
of our measurement, which makes the selection of a larger value of T impractical for causations detection in real
applications. Therefore, the results in Supplementary Figure 10 manifest that the PCM method does not require
the use of a larger value of T , more applicable to applications. The effective selection of threshold value is also
much more realizable and robust for our PCM method than for MCM method, see Supplementary Note 5 and
Supplementary Figure 11.

Supplementary Note 5. Quick tips for parameter selections, significance
tests, and numerical configurations

Q1. How to determine computationally the embedding dimensions and time lags in the phase space recon-
struction?

A1. A theoretical requirement guaranteeing the topological equivalency between reconstructed manifold and the
original attractor is that the embedding dimension is twice lager than the fractal dimension of the attractor. In
practice, we use the method of false nearest neighbor (FNN) and delayed mutual information (DMI) to deter-
mine the embedding dimensions and time lags respectively. Moreover, method of linear autocorrelation or other
advanced techniques can also be applied in determining these parameters [14, 7]. In the EEG example in Supple-
mentary Note 7, the embedding parameters are adapted from [15]. All these parameters are listed in the captions
of the corresponding figures.

Q2. How many nearest neighbors are used in the mutual cross mapping procedure?

A2. We use E + 1 nearest neighbors (E is the embedding dimension), which is the minimum number of points
needed for a bounded simplex in an E-dimensional space.

Q3. How to determine the threshold value T in practice?

A3. The selection of the threshold is indeed to some extent empirical. In this research, we provide robustness
tests on the detection accuracy versus different threshold levels, which shows a practically effective threshold
value really exists in a rather wide range (refer to Supplementary Figures 3, 9, 10, 13). Moreover, we additionally
provide possible methods regarding the selection of threshold in practice. Unsupervised classifiers such as k-
means clustering [16] could be applied to determine the threshold value by classifying the detection results into
two groups (i.e., with or without direct causation). And the t-test could also be performed to determine the
significance level of the difference between pairs of nodes with or without direct causal relation, while a low
p-value represents the two groups are distinguished from each other but concentrated within the interior, thus
the selection of a threshold is indeed realizable. As an example, we show in Supplementary Figure 11 the
threshold values selected by k-means clustering for classification method for the MCM and PCM detection results
of the eight species model discussed in Supplementary Note 4, where results for all possible causal directions
are denoted. For the MCM results, though the true positive direct causal links have relatively higher index
values, it is difficult to clearly distinguish the two groups with or without direct causality, and the threshold
value induced from k-means classifier is ineffective which produces a lot of false positives. However, our PCM
method successfully eliminates indirect causation with a distinguishable difference between the two groups. The
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threshold value automatically induced from k-means classifier achieves 100% detection accuracy. Moreover, the
possible range of threshold value for 100% detection accuracy is quite large, which facilitates practical selection
of the threshold value and improves the robustness of the PCM method. T-test also reveals a significant difference
in PCM detection results between pairs of nodes with or without direct causal relation with p < 6.2397e � 25 in
all possible directions of the network. All these results provide effective methods in selecting the threshold value
robustly in practice.

Q4. How long is the time series used in the numerical experiments?

A4. If not specified in the context of the corresponding experiments, all the simulations utilize 1000 time length
series (with the sampling rate 1 Hz, so that the length matches exactly the time unit of the system).

Q5. How to guarantee the robustness of the numerical experiments?

A5. For all the examples of toy models, randomly selected are the 100 trials with a certain time length (usually
1000 time points if not specified) from 5000-length time series (here, the sampling rate is 1 Hz, so that the length
matches exactly the time unit of the system). The average is calculated over results on these randomly selected
trials. All the results are verified by the multi-testing corrections via the Bonferroni adjustment (p < ↵/n), where
n is the number of the edges in a network.

Q6. What are the numerical configurations and software packages used in the comparison studies?

A6. For the GC evaluations, we perform a standard GC test (i.e., F-test) and set the critical value of the signifi-
cance (i.e., p-value) as 0.05. For consistency, we show the value (0.05�p) in the figures of relevance to represent
the GC test results. We estimate and test the cGC and the pGC by using the MVGC Multivariate GC Toolbox
v1.0 [17] and show in the figures of relevance the product of the index value and the significance value (i.e., 1 or
0). For the data from the toy model, we use the criterion, the AIC, to determine the model order with a ceiling
value 10 time units when the GC, the cGC, the pGC are taken into account. However, for real-world data set, we
determine the model order by AIC with the ceiling orders as, respectively, 5 time units for the DREAM4 GRN
example, 60 time units for the air pollution with cardiovascular diseases system, 15 time units for the real gene
regulatory network example, and 25 time units for the EEG example (the corresponding time units are stated in
the text of each example). We normalize (i.e., detrend and demean) the time series when the GC method and its
extensions are used in causations detection. For the TE evaluations, we utilize the package, TIM Matlab 1.2.0
(http://www.cs.tut.fi/ timhome/tim/tim.htm). The evaluation procedure actually begins with the reconstruction of
the state space also using the delay-coordinate embedding technique, which is the same as the phase reconstruc-
tion step in the PCM framework. The package uses 20 nearest neighbors and the mutual information to determine
the value of the model lag (see the user documentation http://www.cs.tut.fi/ timhome/tim/user documentation.htm
for details). The maximal lags are determined as 1, 10, 15, and 60 time units, respectively, for the logistic model,
the plankton system, the real gene regulatory networks, and the air pollution with cardiovascular diseases system.
Additionally, we use the permutation test to distinguish the causal link whose significance (p-value) is smaller
than 0.05. The configurations of the pTE evaluations are in the almost same manner as those of the TE evaluations
where only the estimator is changed to the partial version. For the case where the number of variables is more
than three, we take each third-party variable as conditioning node and count the average pTE in the final results.

Q7. How to directly reproduce the numerical experiments in this research?

A7. We provided the references and access to all the data sets that we used in the research, and we also provide
the codes for our PCM framework (publicly available at https://github.com/Partial-Cross-Mapping). Thus, using
all these resources, one can reproduce all the results obtained in this work.

Supplementary Note 6. Additional information for real-world systems in
the main text

6.1. Gene regulatory networks
In addition to the gene regulatory network shown in Fig. 4a of the main text, we investigate four other such
networks, with structures shown in Supplementary Figure 12. Supplementary Figure 13 shows the detection accu-
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racies versus the threshold T using both the PCM and MCM methods for the five gene regulatory networks. The
ROC curves shown in the main text together with Supplementary Figure 13 demonstrate that the PCM method is
remarkably effective in ascertaining direct causal links in gene regulatory networks.

6.2. Food chain of plankton species
In this analysis, the species abundances time series are measured from 12/07/1990 to 20/10/1997 with unequal
sampling interval time. We interpolate the data to make equally-spaced time series with 794 points (the time unit
of one time point is per 3.35 days). Supplementary Table 5 lists the p-values associated with all possible causal
directions in the food chain network of three plankton species described in the main text. For all the direct links,
the p-values are extremely small, signifying high statistical significance.

6.3. Air pollution and cardiovascular disease
Air pollution is believed to be one of the major causes of cardiovascular diseases. To establish this causal relation,
we investigate real data sets of air pollutants and disease occurrence in the city of Hong Kong, where the collected
data constitute the daily concentrations (in µgm�3) of nitrogen dioxide (NO2), sulfur dioxide (SO2), respirable
suspended particulate (Rspar), and ozone (O3) from the air-monitoring stations in Hong Kong from 1994 to 1997.
Simultaneously recorded was the daily number of cardiovascular disease admissions (Cardio) into major hospitals
in Hong Kong. To avoid the effect of sudden addition of hospital beds in early 1995, we choose the time series
of 1000 days from March 1995 to November 1997 (the unit of one time point is per day). The corresponding
p-values for all the possible causal directions with the PCM method are listed in Supplementary Table 6. Here, the
significance index verified by the multi-testing corrections is set to be p < 10�9.

Supplementary Note 7. Additional real-world examples: From gene reg-
ulatory networks to electrical information path-
ways

In order to further demonstrate the broad applicability of the PCM method, we investigate more real-world exam-
ples, revealing new viewpoints to the dynamical underpinnings of the real-world systems.

7.1. Reconstructing gene regulatory networks of circadian rhythm
We validate the effectiveness of our method with the real gene expression data. We consider the gene expres-
sion time series that were measured by Affimetrix microarray (Genechip Rat Genome 230 2.0) of the labora-
tory rat (Rattus norvegicus) cultured cells sampled from suprachiasmatic nucleus (SCN) for studying circadian
rhythm [18, 19, 20, 21]. To elucidate the gene regulatory network architecture, we select the time series consisting
of 16 time points, which is measured after the drug perturbation in the 19th hour (one measured time point corre-
sponds to per 4.5 hours, more detailed information on data collection can be found in [18]). For the mammalian
circadian clocks, it has been identified that there are approximately 17 genes involved in the core regulatory net-
work, where the transcriptional circuits are formed by regulation of E/E’ boxes, DBP/E4BP4 binding elements,
and RevErbA/ROR binding elements, respectively [22, 23]. Moreover, in addition to the gene-level interactions,
there are also regulatory interactions at the protein level, e.g., the transcription factor Clock is phosphorylated by
PFK family genes and the cyptochrome genes, Cry1 and Cry2, are phosphorylated by MAPK family genes [18].
Thus, we consider a gene regulatory network containing 17 core circadian genes and 20 kinase genes, as shown
in Supplementary Figure 14(a). We interpolate the original time series to the series of 136 points (one point per
half-hour). We thus apply the PCM method to the interpolated series to detect the directional regulatory relations
among all the genes and depict the corresponding ROC curve in Supplementary Figure 14(b). As a comparison, we
show the ROC curves obtained by using all the other causations detection methods in Supplementary Figure 14(b)
as well.

We emphasize that the inference of the gene regulatory network based only on one single and short-term series
is a challenging task. The existing inference methods can usually reach a value of AUC around 0.7 for synthetic
data but only around 0.5 for real experimental data [24]. This is also confirmed by our comparison study. In
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fact, for the 37-genes network, the GC-based and the TE-based methods can hardly detect any structure in the
regulatory networks where the value of AUC is around 0.5, while the PCM method, whose AUC value reaches
0.65, outperforms all the other methods. In a relatively large network with very dense interactions, the current PCM
method also could produce false negative detection results due to the over conditioning. Some optimal technique
needs to be introduced to avoid such over conditioning situation, which becomes one of our present research works.

Additionally, we further demonstrate the effectiveness of the PCM method by investigating another sub-
functional regulatory network with 18 genes, the core circadian genes and the PFK family [see Supplementary
Figure 14(c)]. Clearly, the PCM method achieves a relatively high AUC value, approximately 0.73, while all the
other methods cannot produce such a good performance in causations detection.

7.2. Revealing direct electrical information pathways in the human brain through EEG
dataset

This example investigates the brain dynamics through analyzing the EEG recordings, which contain time series
from 10 subjects with 19 electrodes per subject at a sampling rate of 256 Hz. Each recording lasts around 1 minute.
All the data and their detailed descriptions are available at: http://clopinet.com/causality/data/nolte/ [1]. The data
are filtered with a stop-band at 3 Hz to remove slow drifts. The data is divided into blocks of 4 seconds (i.e., 1024
data points) during which the recording is a continuous measurement that is cleaned of apparent artifacts. For each
subject, we randomly select 10 blocks, calculate the PCM measures for every pair of electrode channels in the
blocks, and show the average of the detection results in Supplementary Figure 15. Since the detection results on
all the subjects show homogeneous properties, we further display an average over the detection results of all the
subjects in Supplementary Figure 16(a). It shows that, instead of the remote connections between the brain regions,
the signals (or information) are transferred majorly through the neighboring regions. This type of neighboring
connections can be regarded as direct causations detected by our PCM framework. The detected connections
also reveal the direct information pathways in the human brain. For example, the left hemisphere and the right
hemisphere are connected successively by the middle channels, and a directional pathway is identified from frontal
to dorsal channels in Supplementary Figure 16(a). These are consistent almost with the results presented in the
literature [1, 15]. However, as shown in Supplementary Figure 16(b), using the MCM method in the same manner
on the EEG data produces dense connections which are replete with indirect and remote links. This thus cannot
bring any information pathways in the human brain.
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