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Non-Markovian recovery makes complex networks
more resilient against large-scale failures
Zhao-Hua Lin1, Mi Feng 2, Ming Tang 1,2✉, Zonghua Liu1✉, Chen Xu3, Pak Ming Hui 4 &
Ying-Cheng Lai 5

Non-Markovian spontaneous recovery processes with a time delay (memory) are ubiquitous

in the real world. How does the non-Markovian characteristic affect failure propagation in

complex networks? We consider failures due to internal causes at the nodal level and

external failures due to an adverse environment, and develop a pair approximation analysis

taking into account the two-node correlation. In general, a high failure stationary state can

arise, corresponding to large-scale failures that can significantly compromise the functioning

of the network. We uncover a striking phenomenon: memory associated with nodal recovery

can counter-intuitively make the network more resilient against large-scale failures. In natural

systems, the intrinsic non-Markovian characteristic of nodal recovery may thus be one reason

for their resilience. In engineering design, incorporating certain non-Markovian features into

the network may be beneficial to equipping it with a strong resilient capability to resist

catastrophic failures.
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The dynamics of failure propagation on complex networks
constitute an active area of research in network science and
engineering with significant and broad applications. This is

because the functioning of a modern society relies on the coop-
erative working of many networked systems such as the electrical
power grids, various transportation networks, computer and
communication networks, and business networks, but these net-
works typically possess a complex structure and are vulnerable to
failures and intentional attacks. Among the diverse failure sce-
narios, one of the most severe types is cascading failures1, where
the failure of some nodes would cause their neighbors to fail and
the process would propagate to the entire network, disabling a
large fraction of the nodes and causing malfunctioning of the
system at a large scale2–15. Classic examples of cascading failures
includes power blackout—the collapse of power grids5,6, traffic
jams16, and even economic depression14,17. Previous studies
mostly focused on how cascading failures occur, how network
structures and failure propagation are related, and on network
robustness and vulnerability to failure propagation18–22.

A tacit assumption employed in many previous studies of
cascading failures is irreversible failure propagation, where a
node, if it has failed, cannot recover and is no longer able to
function actively. A failed node is then removed from the network
completely, including all the links associated with it. There are
real-world situations of networked systems, such as financial and
transportation networks, where failed nodes can recover from
malfunctioning spontaneously after a collapse23–28. In general,
there are two types of failure-and-recovery scenarios29: internal
and external. In the first type, a node fails because of internal
causes (e.g., the occurrence of some abnormal or undesired
dynamical behaviors within the node), which is independent of
the states of its neighbors. In this case, the node can recover
spontaneously after a period of time. An example is the failure of
a company characterized by a drop in its market value due to
poor management, followed by recovery due to internal restruc-
turing. The second type is external failures, where a node’s failure
is externally triggered, e.g., by the failures of its neighboring
nodes. After a period of time, as its local “environment” is
improved, the node is able to recover spontaneously. The time of
recovery depends not only on the specific type of failure-and-
recovery mechanism, i.e., whether internal or external, but also on
the individual node and its position in the network. For example,
for a given node in the network, it may take longer to complete an
internal restructuring process to recover from a failure due to
an internal than an external cause. Previous computation and
mean-field analysis have revealed that cascading dynamics
incorporating a failure-and-recovery mechanism can exhibit a
rich variety of phenomena such as phase transitions, hysteresis,
and phase flipping29–33. With respect to the resilience responses
of networks, the effects of removing a fraction of nodes and links
on network functions were studied34–37, demonstrating that
resilience can be used to characterize the critical functionality
of the network with applications in complex infrastructure
engineering36,37.

In spite of the variations in the recovery dynamics across
networks or even nodes in the same network, generally the pro-
cess can be classified into two distinct types: Markovian and non-
Markovian. In a Markovian recovery process, an event occurs at a
fixed rate and the interevent time follows an exponential dis-
tribution38–40, rendering memoryless the process. On the con-
trary, a non-Markovian recovery (NMR) process has memory, as
the current state of a node depends not only on the most recent
state but also on the previous states. In this case, the interevent
time distribution is not exponential but typically exhibits a heavy
tail. For example, in human activity and interaction dynamics, the
occurrences of contacts among the individuals in a social network

can be characteristically non-Markovian, for which there is
mounting empirical evidence41–48. Non-Markovian type of
recovery process also occurs in biochemical reactions49 and in the
financial markets12,50. We note that, in the context of spreading
dynamics on complex networks, the effects of the non-Markovian
process, due to its high relevance to the real world, have attracted
growing attention51–58. From the point of view of mathematical
analysis, incorporating memories into the dynamical process
makes analytic treatment challenging.

While the impacts of non-Markovian processes on spreading
dynamics have been reasonably well-documented51–58, there has
been little work so far addressing the influence of non-Markovian
recovery process on failure propagation dynamics. In this paper,
we address this issue systematically through a comparison study
of two types of dynamical processes: one with Markovian and
another with NMR. In the Markovian recovery (MR) model,
failures due to internal and external causes will recover with
different constant rates. In the NMR model, such a constant rate
cannot be defined. We thus resort to the recovery time. In par-
ticular, we assume that the failed nodes due to internal and
external causes will take different time to recover, so a memory
effect is naturally built into the model. For each model, we
develop a mean-field theory and an analysis based on the pair
approximation (PA)29,59–62 that retains the two-node correlation
but ignores any correlation of higher orders. Comparing results
with numerical simulations indicates that both mean-field theory
and PA analysis capture the key features of the failure propaga-
tion dynamics qualitatively, but the PA analysis yields results that
are in better quantitative agreement with numerics. The coun-
terintuitive and striking phenomenon is then that non-Markovian
character with a memory effect makes the network more resilient
against large-scale failures. There are two implications. Firstly, in
physical, biological, or other natural networked systems, the
intrinsic non-Markovian character of nodal recovery may be one
reason for resilience of these networks and their existence in a
harsh environment. Secondly, in engineering and infrastructure
design, incorporating certain non-Markovian features into the
network may help strengthen its resilience and robustness.

Results
Spontaneous recovery models. For general failure propagation
dynamics on a network, a node can be in one of two states: an
active (labeled as A-type) state in which the node functions
properly and an inactive state (I-type) in which the node has
failed. To distinguish the causes for a node to become inactive, we
label an inactive node due to internal or external failure as X-type
or Y-type, respectively.

In the NMR model, an A-type node may fail spontaneously at
the rate β1 to become an X-type node, or it may fail at the rate β2
to become a Y-type node when the number of its A-type
neighboring nodes is less than or equal to a threshold integer
value m that sets the limit on neighboring support for proper
functioning of a node. Without loss of generality, we assume that
external failures occur more frequently than internal failures: β1 <
β2. This is often the case as internal failures can be made less
probable by building up the capability of the nodes through better
equipment and/or management, while external failures are
uncontrollable and more difficult to avoid. For examples, falling
stocks may be the result of unanticipated changes in the market
rather than poor management. In a road network, failures are
caused more often by congestion than by physical failures. Once a
node becomes inactive, it takes time τ1 to recover from an
internal failure (when the node is of the X-type) or time τ2 to
recover from an external failure (when the node is of the Y-type).
The non-Markovian characteristic is taken into account through
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the incorporation of a memory effect into the model. In
particular, the nodes that will recover at time t constitute those
that were turned into X-type inactive nodes at the time t− τ1 and
those turned into Y-type inactive nodes at the time t− τ2. Here,
we assume τ1 > τ2, for the reason that repairing a node or
restructuring the management due to the malfunctioning of the
node itself would need more time. For example, reorganizing a
company or repairing a road often takes more time. The failure
processes characterized by the rates β1 and β2 as well as the
recovery processes as determined by τ1 and τ2 are schematically
illustrated in Fig. 1.

Note that the case of τ1 < τ2 may also arise in the real world.
For example, for an infrastructure network in civil engineering,
when an earthquake strikes and destroys buildings (nodes), the
time to rebuild can be longer than that required for recovering
from internal failures, e.g., the collapse of a roof due to some
material failure. Our computations of this case yield qualitatively
similar results to those in the case of τ1 > τ2—see Supplementary
Note 3 for detail.

The MR and NMR models differ only in the recovery
processes. In the MR model, an inactive node of the X-type or
the Y-type recovers at a constant rate μ1 or μ2, respectively, as
illustrated in Fig. 1. Consequently, the number of nodes recovered
at time t depends only on the number of inactive nodes of both X-
type and Y-type at the previous time step.

To develop theories for failure propagation on networks with
MR or NMR recovery process and to identify the key differences

between the two type of dynamics, we focus on random regular
networks. In the numerical simulations, we use a relatively large
network size N= 3 × 104 with the degree k= 35. In the NMR
model, the recovery times are taken to be τ1= 100 and τ2= 1 for
the X-type and Y-type of nodes, respectively. In the MR model,
the values of the recovery rates are set to be μ1= 1/τ1= 0.01 and
μ2= 1/τ2= 1 so that they correspond to the same scales for the
recovery times in the NMR model (see Supplementary Note 1 for
a more detailed explanation). The threshold values in both
models are m= 15. Synchronous updating is invoked in
simulations with the time step Δt= 0.01.

Markovian recovery process. Mean-field theory: We start with
setting up the dynamical equations for MR dynamics and com-
paring results with simulations. Based on the mean-field theory in
“Mean-field theory for MR dynamics” of “Methods” section, we
first examine the behavior of Et([I]) in Eq. (4). Figure 2a shows
the dependence of Et([I]) on the fraction of failed nodes [I]. It can
be seen that Et exhibits two different types of behaviors over a
large part of [I]: Et ~ 0 for a wide range of small [I] values (low
failure) and Et ~ 1 for a range of large [I] values (high failure). In
the low failure state, external failure events rarely occur. In the
high failure state, an active node is supported by an insufficient
number of active neighbors and external failure events almost
always happen. It implies that the stationary state [I] can possess
two branches: setting Et= 0 in Eq. (5) gives [I] = 1 − 1/(β1/
μ1 + 1) as the low-failure branch, while setting Et= 1 gives [I]=
1 − 1/(β2/μ2 + β1/μ1 + 1) as the high-failure branch. The two
branches are shown in Fig. 2b (dashed and solid curves) in terms
of the dependence of [I] on β1, for μ1= 0.01, β2= 2, and μ2= 1 as
an example. To check which branch the system would take on
and whether there are two states for some range of parameters,
the simulation results for moving the value of β1 up (circles) and
down (squares) are shown in Fig. 2b for comparison. As the
values of β1 are increased or decreased, the initial state is taken to
be the final state corresponding to the previous value of β1—the
adiabatic process. The results indicate that: (i) the values of [I]
from simulations follow the two branches given by the mean-field
approximation, and (ii) the low-failure (high-failure) branch is
followed when moving β1 up (down) until a particular value at
which there is a jump to the high-failure (low-failure) branch—
the signature of a hysteresis. The results also imply that if one
starts from the initial conditions [X]0 ≠ 0 and [Y]0= 0, there
exists a critical value of βc ≈ 0.007 for a sudden increase in the
number of failed nodes when [X]0 is small as the system will

Fig. 1 Schematic illustration of NMR and MR models. An active (A-type)
node may fail spontaneously at the rate β1 to become an X-type node due to
internal causes, or it may fail at the rate β2 to become a Y-type node when
the number of its A-type neighbors n is less than or equal to a threshold m
setting the necessary neighboring support for the proper functioning of a
node. In the NMR model, the X-type and Y-type nodes take the time
duration τ1 and τ2 from the time they are generated to recover, respectively.
In the MR model, the X-type and Y-type nodes recover, respectively at the
rates μ1 and μ2.

a b c

Fig. 2 Behaviors of MR model. a Probability Et([I]) in the mean-field theory [Eq. (4)] as a function of [I]. b Dependence of [I] on β1 in the steady state for
β2= 2.0, μ1= 0.01, and μ2= 1. The high-failure (solid curve) and low-failure (dashed curve) branches are calculated by the mean-field theory. The
simulation data are obtained by swabbing β1 up and down in step of 0.002, starting with [I]0 = 0 for β1 = 0. The final state of a value of β1 is used as the
initial state of the simulations for the next value of β1. The arrows indicate the simulation results when the value of β1 moves up and down. c Phase diagram
on the β2/μ2-β1/μ1 plane as predicted by the mean-field theory. Systems in the bistable phase will evolve either to a high-failure or a low-failure phase
depending on the initial conditions. Beyond the critical point, there is no distinction between the low-failure and high-failure phases.
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follow the low-failure branch. However, for large [X]0, the critical
value βc becomes βc ≈ 0.003 as the system will follow the
high-failure branch. A plot of βc against [X]0 will therefore exhibit
two plateaus with βc ≈ 0.007 for small [X]0 and βc ≈ 0.003 for
large [X]0.

The mean-field approximation not only simplifies the analysis
but also provides insights into the dynamical process. For
example, the mean-field theory suggests the ratios β1/μ1 and β2/μ2
as key parameters. In general, solutions can be obtained
numerically by solving Eq. (5) together with Eq. (4). The results
are shown in Fig. 2c as a phase diagram. For parameters falling
into the regions corresponding to the low-failure (high-failure)
phase, the system will evolve into a low-failure (high-failure)
state. For parameters in the bistable phase, the system will evolve
either to a low-failure or a high-failure state, depending on the
initial conditions. The high-failure and low-failure phase
boundaries meet at the critical point determined by β1/μ1 ≈
0.745 and β2/μ2 ≈ 1.020.

In addition to the stationary state, the evolution of the system
can also be studied by iterating Eqs. (1) and (2) for a given initial
condition. Figure 3a shows the evolution of the MR dynamics as
obtained by the mean-field theory for β1= 0.004 and β2= 2. In
the three-dimensional space formed by [A], [X], and [Y], the sum
rule [A] + [X] + [Y] = 1 defines a triangular plane, as shown in
Fig. 3. At any time t, the state of the system is characterized by a
point in the plane. The results show that the MR dynamics will
evolve into either the low-failure or the high-failure state (filled
circles), depending on where the system begins. The mean-field
theory also gives a separatrix, the line traced out by the open
circles, where the system will evolve into a different state starting
from a point on a different side of the separatrix. For [X]0 > 0.38,
the system will evolve to a high-failure state with ([X], [Y], [A])
given approximately by (0.119, 0.580, 0.301). For [X]0 < 0.38, the
system may evolve to the high-failure state or a low-failure state
at around (0.285, 0, 0.715). Numerical results are shown in
Fig. 3b, verifying all the features predicted by the mean-field
theory. For example, the high-failure state is given by ([X], [Y],
[A]) ~ (0.124, 0.579, 0.298) and the low-failure state at around
(0.287, 0, 0.713), both are quite close to the values predicted by
the mean-field theory.

Pairwise approximation theory for the MR model: It is possible
to formulate a theory that takes into account of two-node spatial
correlation based on the pairwise approximation (PA). The basic
idea is to follow the evolution of different types of links, i.e., links

that connect different pairs of neighboring nodes62. The PA
method has been used widely in studying epidemic and
information spreading63–65, and in coevolving voter models and
adaptive games with two or more strategies66–69. In “Effect of
nodal correlation: pairwise approximation for the MR model” of
“Methods” section, we develop a PA based theory for the MR
model.

Figure 4 presents a comparison of the predictions of the PA
analysis and mean-field theory with the numerical results, where
Fig. 4a shows the time evolution of [X]t and [Y]t from the initial
state [X]0 = [Y]0 = 0 for β1= 0.009, β2= 2.0, μ1= 0.01, and μ2=
1. While both mean-field and PA theories capture the key features
in time evolution, the results of PA are in better agreement with
those from simulations. It is useful to understand the dynamical
behaviors in the MR model qualitatively (so as to enable a
meaningful comparison with those of the NMR model later). For
this purpose, we identify several stages in the time evolution as
marked in Fig. 4a. In the early stage, i.e., t ∈ [tO, tA], most nodes
are active and they have more active neighbors, violating the
condition nA ≤m. As a result, only internal failures occur and [X]t
grows but [Y]t decreases and eventually vanishes. For t ∈ [tA, tB],
[X]t, active nodes start to fail into Y-type nodes, leading to fewer
active nodes in the system and triggering more external nodal
failures. This results in the observed rapid increase in [Y]. In the
later stage t ∈ [tB, tC], there are more failed nodes than active
ones. While the failed nodes of X and Y types can recover with
their respective rates, the remaining or recovered active nodes will
more likely fail again through external than internal causes due to
the many failed nodes surrounding the active nodes. Conse-
quently, in this later stage, [Y]t increases and [X]t decreases
toward their respective steady-state values for t → ∞, with
[Y] > [X] when the system evolves into a high-failure state. The
PA analysis captures the behavior of [X]t over time and the onset
of [Y]t better than the mean-field analysis. Figure 4b shows the
phase diagram for μ1= 0.01 and μ2= 1.0. The mean-field phase
diagram is the same as that shown in Fig. 2c, where it can be seen
that the results of the PA analysis (solid curves) are indeed in
better agreement with the simulation results than the predictions
of the single-node mean-field theory.

Note that Fig. 2 reveals the emergence of a critical value of βc in
the spontaneous failure rate beyond which the system incurs a
large-scale failure starting from the initial conditions [X]0 ≠ 0 and
[Y]0 = 0. The critical rate βc is calculated by starting the system
from the initial conditions for different values of β1 (for a fixed

a b

Fig. 3 Evolutionary properties of MR dynamics. The dynamical process can be represented as a flow diagram with the lines showing how the fractions of
[X], [Y], and [A] evolve in time. The solid circles are the fixed points that the system will finally evolve into. a Theoretical calculations based on the mean-
field theory. The open circles trace out a separatrix, with systems on different sides evolving into different fixed points. b Simulation results. The system
parameters are β1= 0.004, β2= 2.0, μ1= 0.01, and μ2= 1.
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value of β2= 2.0) and search for the value of β1 beyond which the
system attains a high-failure state (see Supplementary Fig. 1 in
Supplementary Note 2). The critical value thus depends on [X]0,
the initial fraction of failed nodes due to an internal mechanism.
Figure 4c shows the numerically obtained functional relation
βc([X]0) (open circles), together with two types of theoretical
prediction (PA analysis and mean-field theory). As the initial
fraction [X]0 is increased from a near zero value, βc maintains at a
relatively higher constant value (about 0.007). As [X]0 increases
through the value of about 0.4, the value of the critical rate
suddenly decreases to about 0.003. We see that, again, the
prediction of the abrupt change in βc by the PA analysis is more
accurate than that by the mean-field theory.

What is the physical meaning of the abrupt decrease in the
critical value of the spontaneous failure rate as displayed in
Fig. 4c? A higher value of βc means that the network system is
more resilient to large-scale failures as it requires a larger rate
value to drive the system into a high-failure state. As the fraction
of initially failed nodes is increased, the network as a whole is
more prone to large-scale failure so we expect the value of βc to
decrease. Because of the lack of any memory effect in the ideal,
Markovian type of recovery process, i.e., after a node fails, it
either recovers instantaneously or does not recover (with
probabilities determined by the rate of recovery), we expect a
characteristic change in the system dynamics as characterized by
the value of the critical rate βc to occur in an abrupt manner.
Indeed, as Fig. 4c reveals, as the fraction of initially failed nodes is
increased through a threshold value, there is a sudden decrease of
about 50% in the value of βc, giving rise to a first-order type of
transition. This behavior of abrupt transition may not occur in
reality because of the assumed Markovian recovery process,
which is ideal and cannot be expected to arise typically in the
physical world. In the next section, we will demonstrate that
making the dynamics more physical by assuming non-Markovian
type of recovery process will drastically alter the picture of
transition in Fig. 4c.

Non-Markovian recovery process. To analyze failure propaga-
tion dynamics in systems with NMR, a viable approach is to
construct difference equations that relate the fractions of types of
nodes and links at time t + Δt to those at time t. It is necessary to
keep track of the time when a node becomes the X or Y type as
well as the time at which a link becomes type UV. In “Pairwise
approximation theory for the NMR model” of “Methods” section,
we develop a PA analysis for the NMR model. Figure 5 shows the
simulation results from the NMR model, together with

predictions of the PA analysis and mean-field approximation
for Δt = 0.01. The time evolution of [X]t and [Y]t is shown for
the parameter setting β1 = 0.009, β2 = 2.0, τ1 = 100 (thus
μ1 = 0.01), and τ2 = 1 (thus μ2 = 1). The initial conditions are
[X]0 = [Y]0 = 0. Both theories capture the key features of the
dynamics. Comparing with results from the MR model [e.g.,
Fig. 4a], we see that the time evolution of the dynamical variables
in the NMR model is different from that in the MR model, in
spite of the approximately identical steady-state values.

To describe the key features of the NMR model, we divide the
evolution into five stages with the respective time intervals
[tO, tA], [tA, tB], [tB, tC], [tC, tD], and [tD, tE], as shown in Fig. 5a.
In the earliest stage [tO, tA], [X]t increases due to internal failures
but [X]t is insufficient to cause external failures. The behavior is
similar to that in the MR model, but the duration is shorter and
the rise in [X]t is steeper in the NMR model. The reason is that
the memory effect in NMR model allows the recovery of X-type
nodes to take place only after τ1 steps, while the recovery occurs
probabilistically in the MR model. In the narrow time window of
[tA, tB], [X]t attains a level high enough to trigger the onset of
many external failures. As a result, the failed nodes constitute the
majority in the system and [A]t decreases sharply, giving rise to
the sharp increase in [Y]t. The Y-type nodes recover determinis-
tically after τ2 (τ2 < τ1) into active nodes. In the period [tB, tC], the
recovery of Y-type nodes refuels the system with active nodes that
can participate in two paths: more internal and external failures.
For tC < τ1, the existing X-type nodes have yet to recover and [X]t
continues to increase but at a slower pace due to the external
failure path, while [A]t reduces slightly.

In the time window [tC, tD], the initial internally failed nodes
begin to recover as tC > τ1, in addition to the recovery of the Y-
type nodes. The A-type nodes due to recovery will be more likely
to become Y-type as the failed nodes remain the majority (due to
the parameter setting β2 > β1 in this example). This leads to the
observed increase in [Y]t and decrease in [X]t in the time interval
[tC, tD]. In the final stage [tD, tE], [X]t stops decreasing because
the recovery of X-type nodes at the time t ≳ tD is due to those
failed internally at t ≳ tB for which the number was small.
However, the recovery of Y-type nodes at a shorter time scale
supplies fresh active nodes. The fraction of failed nodes [X]t+ [Y]t
is so high, i.e., approaching the high-failure state, that the
dynamics lead to a higher steady value of [Y] than [X] in long
time. For time well beyond tD, both [X] and [Y] become steady.

Figure 5b shows the phase diagram of the NMR model
analogous to Fig. 4b for the MR model, with μ1= 0.01 and
μ2 = 1.0. The results of the PA analysis (solid curve) are in better

a b c

Fig. 4 Comparison of simulation results with predictions from PA analysis and mean-field theory for the MR model. a Time evolution of the fraction of
inactive nodes. The initial conditions are [X]0 = [Y]0 = 0. The parameter values are β1= 0.009, β2= 2.0, μ1= 0.01, and μ2= 1.0. Several time instants are
marked to facilitate visualization of the time evolution in different stages: tO = 0, tA = 60, tB = 120.7, and tC = 480. b Phase diagram on the (β2− β1)
parameter plane. Other parameters are μ1 = 0.01, and μ2 = 1.0. c Dependence of βc on the initial value of [X]0, with [Y]0 = 0. The solid (dashed) curve is
calculated by the PA (mean-field) theory, and the symbols are for simulation results obtained by averaging over 100 realizations.
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agreement with the simulation results than those obtained from
the mean-field theory (dashed curve). The difference in dynamics
in the NMR model also alters the dependence of βc to sustain a
high-failure state on [X]0. Carrying out the same analysis as for
the MR model (see Supplementary Fig. 1 in Supplementary
Note 2 for details), we get the relationship βc([X]0) for attaining a
high-failure state for a given initial condition, as shown in Fig. 5c.
The pair approximation, again, gives more accurate prediction
than that from the mean-field theory.

The result in Fig. 5c demonstrates the striking effect of non-
Markovian type of recovery with memory on the failure
propagation dynamics, which is in stark contrast to the ideal
case of Markovian process as exemplified in Fig. 4c. In particular,
as the fraction [X]0 of initially failed nodes is increased from a
near zero value to one, the value of βc begins to decrease
continuously and smoothly until it reaches a minimum, at which
βc increases relatively more rapidly to a high value of about 0.006
for [X]0 ≈ 0.3. For [X]0 > 0.3, the value of βc remains approxi-
mately constant at 0.006. Comparing Fig. 5c with Fig. 4c, we see
two major, characteristic differences. Firstly, the behavior of an
abrupt decrease in the Markovian case is replaced by a gradual
process in the non-Markovian case, essentially converting a first-
order like process to a second-order one. Secondly and more
importantly, βc recovers from its minimum value and maintains
at a high value regardless of the value of [X]0 insofar as it
exceeds about 30%. This means that, the system can maintain
its degree of resilience even when the initial fraction of failed
nodes reaches 100%! This contrasts squarely the behavior in the
Markovian case, where the system resilience is reduced
dramatically even when only about 40% of the nodes failed
initially. In this sense, we say that a non-Markovian type of
memory effect makes the network system more resilient against
failure propagation.

While the behavior in Fig. 5c is counterintuitive, a heuristic
reason is as follows. For an initial state with many initial X-type
nodes, the few remaining nodes will switch from being active to
the Y-type and back. All the initial X-type nodes will have to wait
for the time period τ1 to recover. At that time, the system
becomes one with only a few failed nodes—effectively equivalent
to one with small [X]0 value and requiring a larger βc value to
evolve into the high-failure state. In a range of small [X]0, a
smaller βc can already cause more active nodes to become Y-type,
helping maintain the system in a high-failure state as described

for Fig. 5a. Theoretical support for the behavior is provided by the
PA analysis and mean-field theory, as shown in Fig. 5c.

In addition to the different time evolution in the MR and NMR
models, there are also cases where the same initial conditions
[X]0, [Y]0, and [A]0 would lead to different final states. Figure 6
shows the final states starting from any [X]0 and [Y]0 in the [X]0
− [Y]0 plane (the basin structure), with β1= 0.004, β2= 2.0, μ1=
0.01, and μ2= 1.0. The results from the mean-field theory
(Fig. 6a) and direct simulations (Fig. 6b) show essentially the
same features. (Results from the initial-condition setting [X]0 ≠ 0
and [Y]0= 0.0 are presented in Supplementary Fig. 2 of
Supplementary Note 2.) It is useful to contrast the final states
of the MR and NMR models. From Fig. 3, an initial state, e.g.,
[X]0 = [Y]0 = 0.5, will evolve into a high-failure state in the MR
model, but it will end up in a low-failure state in the NMR model.
This means that, the NMR process can make the system more
resilient to failures. (More examples can be found in Supple-
mentary Fig. 3 of Supplementary Note 2 where different steady
states from the two models are presented.)

MR and NMR dynamics on heterogeneous networks. So far our
analysis and simulations have been carried out for MR and NMR
dynamics on random regular networks. We find that altering the
network structure causes little change in the qualitative results.
For example, we have carried out simulations on scale-free net-
works of size N= 3 × 104 with degree range kmin;

ffiffiffiffi
N

p" #
and

degree distribution P(k) ~ k−γ. Figure 7 shows the results of βc
versus [X]0 for the MR and NMR dynamics for networks with
γ= 3. Because of the heterogeneity in the nodal degree dis-
tribution, the threshold on external failure is given in terms of the
fraction one-half of the failed neighbors.

Comparing results with Fig. 4c for MR dynamics and Fig. 5c
for NMR dynamics in random regular networks, we see that the
key features are similar when the underlying random regular
networks are replaced by scale-free networks. We have also
carried out numerical simulations on four additional types of
synthetic and empirical networks: (a) networks with
degree–degree correlation, (b) networks with a community
structure, (c) empirical arenas-email network, and (d) empirical
friendship-hamster network, with results presented in Supple-
mentary Notes 4 and 5 for the former and latter two cases,
respectively. These results, together with Fig. 7, suggest that, for

a b c

Fig. 5 Benefit of non-Markovian recovery to making the network more resilient against large-scale failures. Shown are results from the NMR model
through simulations, PA analysis, and mean-field theory. a Time evolution of inactive nodes from the initial conditions [X]0 = [Y]0 = 0, for β1 = 0.009,
β2 = 2.0, τ1 = 100 (thus μ1 = 0.01), and τ2 = 1.0 (thus μ2 = 1.0). A number of time instants are marked for better visualization of the time evolution in
different stages: tO = 0, tA = 43.51, tB = 64.68, tC = 100, tD = 164.51, and tE = 480. b Phase diagram in the (β2 − β1) parameter plane for τ1 = 100 and
τ2 = 1.0. The symbols are numerical results, and the solid and dashed curves are obtained from the PA analysis and mean-field theory, respectively. c
Dependence of βc for reaching a high-failure state on the initial value of [X]0 with [Y]0 = 0. The error bars with the simulation results are about 6 × 10−5,
which are obtained by averaging over 100 realizations.
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heterogeneous networks, a non-Markovian process tends to
enhance the network resilience against large-scale failures.

Discussion
The intrinsic memory effect associated with non-Markovian
processes makes it challenging to analyze the underlying network
dynamics, new and surprising phenomena can arise. Most pre-
vious studies treated Markovian processes through either a mean-
field type of theory60,61 or an effective degree approach59. For
non-Markovian processes, the mean-field approximation can still
be applied29,31–33, but it is necessary to invoke a higher-order
theory such as the PA analysis. Our work presents such an
example in the context of failure propagation in complex
networks.

Our study has demonstrated that, in both models, the network
can evolve into a low-failure or a high-failure state, with the latter
corresponding to the undesired state of large-scale failure. Both
the mean-field and PA theories are capable of predicting the

dynamical behaviors of failure propagation, and the performances
of the theories are gauged by simulation results, revealing that the
more laborious pair approximation gives results in better quan-
titative agreement with the numerics. Our systematic computa-
tions on different complex networks and two types of theoretical
analyses have uncovered a striking phenomenon: the non-
Markovian memory effect in the nodal recovery can counter-
intuitively make the network more resilient against large-scale
failures.

Our finding also calls for the incorporation of non-Markovian
type of memory factors into the design of communication,
computer, and infrastructure networks in various engineering
disciplines. We hope our work will stimulate interest in exam-
ining and exploiting non-Markovian processes in various network
dynamical processes. We have carried out a systematic study of
the effects of Markovian versus non-Markovian recovery on
network synchronization using the paradigmatic Kuramoto net-
work model, with the main finding that non-Markovian recovery
makes the network more resilient against large-scale breakdown
of synchronization (Supplementary Note 6).

Methods
Mean-field theory for MR dynamics. Let [A]t, [X]t, and [Y]t be the fractions of A-
type, X-type, and Y-type nodes in the system at time t, respectively. A hierarchical
set of dynamical equations for the MR model can be constructed to include
increasingly longer spatial correlation. The equations for the evolution of the
fractions of different types of nodes are:

d½X"t
dt

¼ β1½A"t $ μ1½X"t ; ð1Þ

and

d½Y"t
dt

¼ β2Et ½A"t $ μ2½Y"t ; ð2Þ

where the first term in each equation gives the supply to [X] ([Y]) due to internal
(external) failures and the second term represents the drop in [X] ([Y]) due to
recovery. Note that, because of the relation

½A"t ¼ 1$ ½X"t $ ½Y "t ' 1$ ½I"t ; ð3Þ

an equation for [A]t is unnecessary. The quantity Et is the probability of an A-type
node having j ≤m neighbors of A-type nodes at time t and thus the node will be
infected at the rate β2.

In general, the quantity Et involves the correlation between two neighboring
nodes. To connect Eqs. (1) and (2) so as to retain the simplicity of a single-node
theory, we use the approximation

Etð½I"Þ ¼
Xm

j¼0

Ck$j
k ð½I"tÞ

k$jð1$ ½I"tÞ
j; ð4Þ

Fig. 7 MR and NMR dynamics on heterogeneous networks. The networks
are scale-free with N = 30,000 nodes, degree exponent γ = 3, kmin = 6 and
kmax = 173. Shown is the dependence of βc for reaching a high-failure state
on the initial value of [X]0, with [Y]0 = 0, in the MR and NMR models for
β2 = 1.9, μ1 = 0.01, μ2 = 1, τ1 = 100, and τ2 = 1. The results qualitatively
consistent with those in Fig. 4c for MR dynamics and in Fig. 5c for NMR
dynamics on random regular networks.

a b

Fig. 6 Basin structure of NMR model. On the [X]0 − [Y]0 plane, basin structure from amean-field theory and b simulations. The colors indicate the nature
of the steady states given the initial conditions ([X]0, [Y]0). The parameter setting is the same as that in Fig. 3 for the MR model. The simulation results are
obtained by averaging over ten statistical realizations.
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where Ck$j
k ¼ k!=ðj!ðk$ jÞ!Þ. Equations (1) (4) form a set of equations, from which

the fractions of different types of nodes can be solved. This is the simplest single-
site mean-field approximation for the MR dynamics that ignores any spatial
correlation. Despite its simplicity, it is capable of revealing the key features in the
stationary state, in which Eqs. (1) and (2) require the fraction of failed nodes [I] to
satisfy

½I" ¼ 1$ 1
ðβ2=μ2ÞEtð½I"Þ þ ðβ1=μ1Þ þ 1

; ð5Þ

which can be solved for [I] self-consistently with Eq. (4). Equation (5) implies that
[I] depends only on the ratios β1/μ1 and β2/μ2 within the mean-field
approximation, and so are the other fractions [A], [X], and [Y].

Effect of nodal correlation: pairwise approximation for the MR model. Our PA
based analysis begins by defining [UV]t as the fractions of UV type of links in the
system at time t, where U, V ∈ {A, X, Y}. A connection that stems out from a node
can be classified by a type. For example, for a node with the current state being A-
type, each link that it carries can be classified into the AA, AX, or AY type,
depending on the state of the node at the other end of the link. Taking into account
every link from every node, we have that the fractions of links satisfy

X

U;V2fA;X;Yg
½UV"t ¼ 1; ð6Þ

with [UV]t = [VU]t for U ≠ V.
In general, the equations of single-node quantities, e.g., Eq. (2), necessarily

involve quantities of more extensive spatial correlation because the interplay
between the failure of a node and the states of its neighboring nodes. Since [AI]t/
[A]t = ([AX]t + [AY]t)/[A]t is the probability of an A-type node having an inactive
node regardless of the types of the neighbors, the probability that there are exactly j
neighbors of A-type and (k − j) inactive neighbors of either X or Y type is

Ck$j
k

½AI"t
½A"t

$ %k$j

1$ ½AI"t
½A"t

$ %j

; ð7Þ

where k is the degree of the node. The quantity Et in Eq. 2, as schematically
depicted in Fig. 8a, is thus given by

Et ¼
Xm

j¼0

Ck$j
k

½AI"t
½A"t

$ %k$j

1$ ½AI"t
½A"t

$ %j

; ð8Þ

which indicates explicitly that the dynamics of single-node quantities are governed
by the two-node quantity [AI]t. This is reminiscence of the BBGKY (Bogoliubov-
Born-Green-Kirkwood-Yvon) hierarchy of equations for the distribution functions
in a system consisting of a large number of interacting particles in statistical
physics70. Only under the approximation [AI]t ≈ [A]t[I]t (so that the two-node
correlation can be neglected) will the resulting equation be Eq. (4)—a set of single-
node mean-field equations.

To proceed, we derive the dynamical equations for [UV]t that will in general
involve more extensive spatial correlation. For example, a link of the type AA
would evolve into a different type depending on the neighborhoods of the two
nodes, effectively a small cluster of nodes. To develop a manageable approximation,
we retain the two-node correlation and decouple any longer spatial correlation in
terms of one-node and two-node functions. This is the idea behind PA for
obtaining a closed set of equations. In particular, the dynamical equations for [AX]t

and [AA]t are

d½AX"t
dt

¼ μ1½XX"t þ μ2½YX"t þ β1½AA"t ;

$ μ1½AX"t $ ðβ1 þ β2E
0
tÞ½AX"t ; ð9Þ

and

d½AA"t
dt

¼ 2μ1½AX"t þ 2μ2½AY "t ;

$2ðβ1 þ β2E
00

t Þ½AA"t ; ð10Þ

where

E0
t ¼

Xm

j¼0

Ck$1$j
k$1

½AI"t
½A"t

$ %k$1$j

1$ ½AI"t
½A"t

$ %j

; ð11Þ

is the probability of an A-type node having j ≤m A-type neighbors among its
(k − 1) neighbors, given that one neighbor is inactive, and

E
00

t ¼
Xm$1

j¼0

Ck$1$j
k$1

½AI"t
½A"t

$ %k$1$j

1$ ½AI"t
½A"t

$ %j

; ð12Þ

is the probability of an A-type node having j ≤m − 1 A-type neighbors among its
(k − 1) neighbors, given that one neighbor is active. Figure 8 illustrates the
meanings of Et, E0

t , and E
00

t schematically. The terms in Eqs. (9) and (10) account for
how the recovery and failure processes affect the fractions of AX-type and AA-type
links. The complete set of dynamical equations is listed in Supplementary Note 1,
which can be solved iteratively to yield the temporal variations on the type of nodes
and the type of links given an initial condition. The steady-state quantities can be
obtained through a sufficiently large number of iterations.

Pairwise approximation theory for the NMR model. Specifically, we let ½Ul"t be
the fraction of nodes of type U at time t, which became type U from some other
type only l time steps ago, and ½Ul1Vl2 "t be the fraction of links of the UV type
when the corresponding node(s) associated with a link became that of the labeled
type l1 and l2 time steps ago. The time evolution of the fraction of X-type nodes in
the NMR model is given by

½Xl "tþΔt ¼ β1Δt½A"t ; l 2 ½0;ΔtÞ; ½Xl$Δt "t ; l 2 ½Δt; τ1"; 0; l 2 ðτ1;1Þ::
&

ð13Þ

The first line in Eq. (13) gives the new supply due to internal failure of A-type
nodes in the time duration [t, t + Δt). The second line accounts for the nodes
which were inactive for a duration l − Δt at time t but have not reached the time
for recovery at time t + Δt. The third line states that all X-type nodes that came to
existence τ1 earlier have been recovered. Similarly, the time evolution of the
fraction of Y-type nodes is given by

½Yl"tþΔt ¼ β2ΔtEt ½A"t ; l 2 ½0;ΔtÞ; ½Yl$Δt "t ; l 2 ½Δt; τ2"; 0; l 2 ðτ2;1Þ;:
&

ð14Þ

where Et is defined in Eq. (8) and [AI]t = [AX]t + [AY]t. The fractions of X-type
and Y-type nodes, regardless of how long they have been in the corresponding
state, are given by ½X"t ¼

Pτ1
l¼0 ½Xl "t and ½Y"t ¼

Pτ2
l¼0 ½Yl "t , respectively. The

fraction of active nodes follows from [A]t = 1 − [X]t − [Y]t.
To develop a PA analysis for failure propagation dynamics with NMR, we

construct the equations for the time evolution of UV-types of links and retain

Fig. 8 Schematic diagram for the PA analysis of the MR model. The quantities are Et, E
0
t and E

00

t . The blue (red) color indicates a node in the active (failure)
state. Open circles are nodes that may take on A, X, or Y state. In the PA equations, Et is the probability of an A-type node having n≤m neighbors of
A-type nodes at time t, E0t is the probability of an A-type node having n≤m A-type neighbors among its (k − 1) neighbors given that one neighbor is
inactive, and E″t is the probability of an A-type node having n ≤ m − 1 A-type neighbors among its (k − 1) neighbors given that one neighbor is active.
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spatial correlation up to two neighboring nodes. Our derivation of the counterparts
of Eqs. (13) and (14) in the MR case suggests the necessity to examine the history
of the inactive nodes(s) associated with a link. For example, the time evolution of
the links in ½AXl"t is governed by

½AXl "tþΔt ¼

β1Δt½AA"t þ β1Δtð½Xτ1A"t þ ½Yτ2A"tÞ;
l 2 ½0;ΔtÞ;

½Xτ1Xl$Δt "t þ ½Yτ2Xl$Δt "t
þð1$ β1Δt $ β2ΔtE

0
tÞ

´ ½AXl$Δt "t ; l 2 ½Δt; τ1";
0; l 2 ðτ1;1Þ;

8
>>>>>>>><

>>>>>>>>:

ð15Þ

where E0 is defined in Eq. (11). The first line represents the new supply to AX-type
of links due to an internal failure in one of the active nodes associated with a link of
the AA-type, and an internal failure together with a recovery of an inactive node in
a link of the XA-types and YA-types. The second line includes the supply to AXl-
type links due to recoveries from XX and YX types as well as the links of AXl−Δt

type that became AXl type in the recent duration Δt. The last line comes from the
fact that an X-type node must recover after a time τ1 since it became inactive. The
fraction of links of AX-type, regardless of how long the node in the link has taken
in the X-type, is given by ½AX"t ¼

Pτ1
l¼0 ½AXl"t . We thus have that the fraction of

AA-type of links evolves in time as

½AA"tþΔt ¼ 2ð1$ β1Δt $ β2ΔtE
0
tÞð½AX

τ1 "t þ ½AYτ2 "tÞ;

þ ½Xτ1Xτ1 "t þ ½Yτ2Yτ2 "t þ 2½Xτ1Yτ2 "t

þð1$ 2β1Δt $ 2β2ΔtE
00

t Þ½AA"t ; ð16Þ

where E
00

t is defined in Eq. (12). Equations for other types of links can also be
constructed (Supplementary Note 1). Equations (15) and (16) are analogous to
Eqs. (9) and (10) in the MR model. The number of equations is determined by the
divisions of τ1 and τ2 into the small time steps Δt, which increases rapidly when Δt
is small compared with the other time scales in the NMR dynamics.

A crude approximation analogous to the mean-field theory can be developed for
the NMR model by retaining only the fractions of nodes in the equations, which
can be done by decoupling the two-node quantities such as [AI]t by [AI]t ≈ [A]t[I]t.
The resulting equations governing the fractions of different types of nodes become

½X"tþΔt ¼ β1Δt½A"t þ ½X"t $ ½Xτ1 "t ; ð17Þ

and

½Y"tþΔt ¼ β2ΔtEt ½A"t þ ½Y "t $ ½Yτ2 "t ; ð18Þ

where Et takes on the approximate form in Eq. (4). Equations (17), (18), and (4)
form a set of equations that can be solved to yield the fractions of different types of
nodes. The first two terms in Eqs. (17) and (18) correspond to the increase in
inactive nodes due to failure and due to those remaining inactive, and the last term
corresponds to recovery. The number of equations, again, depends on the choice of
Δt. This is the mean-field approximation for the NMR model that ignores any
spatial correlation.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2–7 and Supplementary Figs. 1–12 are available at
https://github.com/zhlin2328/Codes-for-NCOMMS-19-1125220.

Code availability
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I. SUPPLEMENTARY FIGURES

Supplementary Figure 1. Effects of initial conditions on phase transition. The initial

conditions are [X]0 ̸= 0 and [Y ]0 = 0. The phase transition is with respect to a systematic

increase in the value of parameter β1. The results are obtained from the same initial conditions

for different values of β1 (for a fixed β2 value). There is a critical value βc([X]0) beyond which

the system approaches a high-failure state. (a,b) Results for MR and NMR models, respectively,

where the blue circles, orange down triangles, green pentagons, red up triangles, purple diamonds

represent the results from different initial fractions of failed nodes: [X]0 = 0.01, 0.1, 0.23, 0.25, 0.99,

respectively. Other parameters are β2 = 2, µ1 = 0.01, µ2 = 1, τ1 = 100, τ2 = 1, and m = 15. The

network has a random regular structure with size N = 3× 104 and nodal degree k = 35.

Supplementary Figure 2. Effects of initial conditions on stationary solution. The initial

conditions are [X]0 ̸= 0 and [Y ]0 = 0. The stationary solution [I] is obtained for β1 = 0.004 for

MR (a) and NMR (b) models. Orange squares and blue circles are simulation results for MR and

NMR models, respectively. The dashed line represents the mean-field prediction. The gray dotted

vertical lines correspond to [X]0 = 0.05, 0.2, 0.3, 0.6, respectively.
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Supplementary Figure 3. Trajectories and time evolution of fractions of X-type and Y -

type nodes. The initial conditions are [X]0 ̸= 0 and [Y ]0 = 0. The results are obtained from

the mean-field theory. For fixed [X]0 = 0.05, (a) trajectories of [X] and [Y ], (b,c) time evolution

from the MR and NMR models, respectively. (d-f) The corresponding results for [X]0 = 0.2. (g-i)

The results for [X]0 = 0.3. (j-l) The results for [X]0 = 0.6. The solid blue and red lines in the

first column are the results from the NMR and MR models, respectively. The light and dark gray

dotted lines are the solutions of [Ẋ ] = 0 and [Ẏ ] = 0 from the mean-field theory for the MR model,

respectively, where their intersections give the steady-state solutions. The solid blue, orange and

green lines in the second and third columns are the results of [I], [X] and [Y ] for the MR and NMR

models, respectively. The evolution from tB′ to tC′ and then to tD′ is too fast to be distinguished

in (f), (i) and (l). The evolution from tO to tA is also too short for it to be seen in (k) and (l).

Other parameter values are β1 = 0.004, β2 = 2, µ1 = 0.01, µ2 = 1, τ1 = 100, τ2 = 1, and m = 15.

The network is the same as that in Supplementary Fig. 1.
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Supplementary Figure 4. MR and NMR dynamics in situations where external recovery

is slower than internal recovery. (a) Dependence of [I] on β1 in the steady state for β2 = 0.1,

τ1 = 1.0 (corresponding to µ1 = 1.0), τ2 = 20 (corresponding to µ2 = 0.05), and m = 15. Orange

squares (blue circles) are simulation results for the MR (NMR) model. The results are averaged

for two network configurations, each of ten realizations. The orange dot-dashed (blue dashed) line

is calculated by the PA theory for the MR (NMR) model. The gray dot-dashed (dashed) line is the

result from the MF theory for the MR (NMR) model. (b) Dependence of βc on the initial value

of [Y ]0, with [X]0 = 0. The solid (dot-dashed) lines are obtained from the PA (MF) theory. The

networks are RRNs with N = 30000 and k = 35.

Supplementary Figure 5. Basin structures. On the [X]0-[Y ]0 plane, basin structure for (a) MR

and (b) NMR model for β1 = 0.4, where the colors indicate the nature of the steady states from

different initial conditions. Other parameters are the same as those in Supplementary Fig. 4.
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Supplementary Figure 6. Visualizations of degree-degree correlation in a network. Shading

colors of the matrix correspond to the probabilities that a randomly chosen edge connects nodes i

of degree ki and j of kj , where the results are averaged with 100 UCN realizations for (a) r = 0,

(b) r = 0.5, (c) r = 0.7 and (d) r = −0.5. Each grid cell represents the average result with the

degree range of ten for visualization. Other network parameters are N = 10000, γ = 2.5, kmin = 5,

and kmax = 100.
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Supplementary Figure 7. Probability distribution of a node of degree ki connecting to a

node of degree kj . (a-d): node i of degree ki = 5, ki = 20, ki = 40 and ki = 60, respectively.

Blue circles, orange down triangles, green up triangles and red left triangles are the results for

different level of degree-degree correlation r = 0, r = 0.5, r = 0.7 and r = −0.5 in Supplementary

Figs. 6, respectively.
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Supplementary Figure 8. MR and NMR dynamics in UCNs with degree-degree correla-

tion. (a) Dependence of [I] on β1 in the steady state for the MR model. The parameter values are

β2 = 2.0, τ1 = 100 (corresponding to µ1 = 0.01), and τ2 = 1.0 (corresponding to µ2 = 1.0). The

threshold of external failure of a node is that half of its neighbors have failed. Blue circles, orange

down triangles, green up triangles and red squares are the simulation results for different values

of the degree-degree correlation coefficient: r = 0, r = 0.5, r = 0.7 and r = −0.5, respectively.

(b) Dependence of βc on the initial value of [X]0 for the MR model for [Y ]0 = 0. (c,d) Simulation

results averaged over 50 realizations for the NMR model. The networks are of the UCM type with

N = 10000, kmin = 5, kmax = 100, and different levels of degree-degree correlation.
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Supplementary Figure 9. Dynamical behaviors on UCNs with different levels of degree-

degree correlation for the MR model. (a,d) Time evolution of the fraction of Y -type nodes.

Blue circles, green up triangles and red left triangles are for r = 0, r = 0.7 and r = −0.5,

respectively. (b,e) Time evolution of the average degree of newly emerged Y -type nodes. (c,f)

Variance of the newly emerged Y-type nodes whose degrees correspond to those in Supplementary

Fig. 9(b). (a-c): Results for β1 = 0.004 and [X]0 = 0.2. (d-f) Results for β1 = 0.0022 and

[X]0 = 0.6. A single realization is used here for better visualization. Other parameter values are

the same as those in Supplementary Fig. 8.
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Supplementary Figure 10. MR and NMR dynamics in networks with a community struc-

ture. (a) Dependence of [I] on β1 in the steady state for the MR model for β2 = 2.4. Blue circles,

orange down triangles and green up triangles are simulation results for Q ≈ −0.01, Q = 0.43 and

Q = 0.46, respectively. Each data point is the result of averaging over 20 network realizations,

each with 50 random initial conditions. (b) Dependence of βc on the initial value of [X]0 for the

MR model for [Y ]0 = 0. (c,d) The corresponding simulation results for the NMR model. The

network size is N = 3000 and the mean degree is ⟨k⟩ = 6. Other parameters are the same as those

in Supplementary Fig. 8.
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Supplementary Figure 11. Comparison between MR and NMR dynamics in the empirical

networks. (a) Dependence of [I] on β1 in the steady state in the arenas-email network for β2 = 2.9.

Blue circles and orange squares are simulation results averaged over 50 realizations for the MR and

NMR dynamical models, respectively. (b) Dependence of βc on the initial value of [X]0 for the MR

and NMR models for [Y ]0 = 0. (c,d) The corresponding results in the friendship-hamster network

for β2 = 2.5. Other parameters are the same as those in Supplementary Fig. 8.
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Supplementary Figure 12. MR and NMR dynamics for power-grid synchronization. (a,c)

Dependence of order parameter R on the coupling strength λ in the steady state for a completely

connected network (CN) and a random regular network (RRN), respectively. The results are

averaged over 20 realizations. (b,d) Dependence of λc on the initial order parameter R0 for the

CN and RRN, respectively. Blue circles and orange squares are for the NMR and MR model,

respectively. Other parameters are a = 0.05, p = 0.01, ω0 = 0, ∆ = 0.5, φ = 0, ψ = π/4,

N = 5000, and ⟨k⟩ = 10 (for RRN).

II. SUPPLEMENTARY NOTES

A. Supplementary Note 1: Pairwise approximation theory

1. Markovian recovery model

We use symbols of the forms [U ]t and [UV ]t with U, V ∈ {A,X, Y } to denote the fractions
of nodes and edges in different states at time t, respectively. For example, [A]t, [X ]t and
[Y ]t represent the fractions of active nodes, X-type and Y -type failed nodes at time t,
respectively, whereas [AX ]t stands for the fraction of active nodes connected with an X-
type failed node (i.e., the fraction of AX-type links) at time t. Taking into account every link
from every node, the link fractions satisfy the “conservation law”:

∑

U,V ∈{A,X,Y }[UV ]t = 1,
with [UV ]t = [V U ]t for U ̸= V . The supplementary evolution equations for the fractions of
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various types of nodes and edges are given by

d[A]t
dt

= µ1[X ]t + µ2[Y ]t − (β1 + β2Et)[A]t, (1)

d[X ]t
dt

= β1[A]t − µ1[X ]t, (2)

d[Y ]t
dt

= β2Et[A]t − µ2[Y ]t, (3)

d[AX ]t
dt

= µ1[XX ]t + µ2[Y X ]t + β1[AA]t − µ1[AX ]t − (β1 + β2E
′

x,t)[AX ]t, (4)

d[AY ]t
dt

= µ1[XY ]t + µ2[Y Y ]t + β2E
′′

t [AA]t − µ2[AY ]t − (β1 + β2E
′

y,t)[AY ]t, (5)

d[AA]t
dt

= µ1([XA]t + [AX ]t) + µ2([Y A]t + [AY ]t)− 2(β1 + β2E
′′

t )[AA]t, (6)

d[Y Y ]t
dt

= β2E
′

y,t([AY ]t + [Y A]t)− 2µ2[Y Y ]t, (7)

d[XX ]t
dt

= β1([AX ]t + [XA]t)− 2µ1[XX ]t, (8)

d[XY ]t
dt

= β1[AY ]t + β2E
′

x,t[XA]t − (µ1 + µ2)[XY ]t, (9)

where

Et =
m
∑

j=0

Ck−j
k

(

[AI]t
[A]t

)k−j (

1−
[AI]t
[A]t

)j

, (10)

E
′

x,t =
m
∑

j=0

Ck−1−j
k−1

(

[IAX]t
[AX ]t

)k−1−j (

1−
[IAX]t
[AX ]t

)j

, (11)

E
′

y,t =
m
∑

j=0

Ck−1−j
k−1

(

[IAY ]t
[AY ]t

)k−1−j (

1−
[IAY ]t
[AY ]t

)j

, (12)

E
′′

t =
m−1
∑

j=0

Ck−1−j
k−1

(

[IAA]t
[AA]t

)k−1−j (

1−
[IAA]t
[AA]t

)j

. (13)

In the supplementary evolution equation of [X ]t ([Y ]t), the first term represents the fraction
of failed A-type nodes due to an internal (external) mechanism, which increases the fraction
of the X-type (Y -type) nodes. The second term describes the transition that X-type (Y -
type) nodes recover, which decreases the fraction of the X-type (Y -type) nodes.

In the supplementary equation of [AX ]t, the first (second) term represents the transition
that an X-type (Y -type) node connected with an X-type failed node recovers spontaneously
(i.e., become again an A-type node), which increases the fraction of AX edges. The third
term represents the situation that the A-type neighbors of the A-type nodes fail due to an
internal mechanism, which increases the fraction of AX edges. The forth term describes the
transition thatX-type nodes at the ends of AX edges recover spontaneously, which decreases
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the fraction of AX edges. The last term represents the transition that A-type nodes at the
ends of AX edges fail due to an internal or an external mechanism, which decreases the
fraction of AX edges. In the supplementary equation of [AA]t, the first (second) term
represents the transition that X-type (Y -type) nodes at the ends of AX and XA (AY and
Y A) edges recover spontaneously, which increases the fraction of AA edges. The third term
represents the transition that A-type nodes at the ends of AA edges fail due to the an
internal or an external cause (i.e., become X-type or Y -type nodes), which decreases the
fraction of AA edges.

From the set of supplementary equations, we see that, under different conditions, the
probabilities of an active node satisfying the threshold condition are different. We use the
notations Et, E

′

x,t, E
′

y,t and E
′′

t for various probabilities: Et is the probability for an active

node to satisfy the threshold condition, E
′

x,t (E
′

y,t) is the probability for an A-type node

associated with an AX (AY ) edge to satisfy the threshold condition, and E
′′

t denotes the
probability that an A-type node connected with an A-type node satisfies the threshold
condition. For all the probabilities, the threshold condition is nA ≤ m, where nA is the
number of active neighbors.

Using the pairwise approximation

[UVW ]t =
[UV ]t[VW ]t

[V ]t
, (14)

we have
[IAX]t
[AX ]t

=
[AI]t
[A]t

, (15)

[IAY ]t
[AY ]t

=
[AI]t
[A]t

, (16)

and
[IAA]t
[AA]t

=
[AI]t
[A]t

, (17)

i.e., E
′

x,t = E
′

y,t. Letting E
′

x,t = E
′

y,t = E
′

t, we have

Et =
m
∑

j=0

Ck−j
k

(

[AI]t
[A]t

)k−j (

1−
[AI]t
[A]t

)j

, (18)

E
′

t =
m
∑

j=0

Ck−1−j
k−1

(

[AI]t
[A]t

)k−1−j (

1−
[AI]t
[A]t

)j

, (19)

and

E
′′

t =
m−1
∑

j=0

Ck−1−j
k−1

(

[AI]t
[A]t

)k−1−j (

1−
[AI]t
[A]t

)j

. (20)

Altogether, in the MR model, Supplementary Eqs. (1-9) describe the failure propagation
dynamics.
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2. Non-Markovian recovery model

To capture the memory effect of the NMR process, we write the model in terms of supple-
mentary difference equations by decomposing the NMR process into a series of MR processes.
In the following, each supplementary difference equations describes the relationship among
the fractions of nodes or edges in different states at time t+∆t and time t. We invoke the
notations [U ]t and [UV ]t with U, V ∈ {A,X, Y } to represent the fractions of nodes and edges
of different types at time t, respectively. In addition, we use the notations [U l]t, [U l1V l2 ]t
and [U lV ]t, where l, l1 and l2 represent the passing time of the corresponding nodes being in
the current state at time t. Due to symmetry, we have [AX ]t = [XA]t. The supplementary
evolutionary equations of the NMR model are given by

[A]t+∆t = [Xτ1 ]t + [Y τ2 ]t + (1− β1∆t− β2∆tEt)[A]t, (21)

[X l]t+∆t =

⎧

⎪

⎨

⎪

⎩

β1∆t[A]t, l ∈ [0,∆t);

[X l−∆t]t, l ∈ [∆t, τ1];

0, l ∈ (τ1,∞),

(22)

[Y l]t+∆t =

⎧

⎪

⎨

⎪

⎩

β2∆tEt[A]t, l ∈ [0,∆t);

[Y l−∆t]t, l ∈ [∆t, τ2];

0, l ∈ (τ2,∞),

(23)

[AX l]t+∆t =

⎧

⎪

⎨

⎪

⎩

β1∆t[AA]t + β1∆t([Xτ1A]t + [Y τ2A]t), l ∈ [0,∆t);

[Xτ1X l−∆t]t + [Y τ2X l−∆t]t + (1− β1∆t− β2∆tE
′

x,t)[AX
l−∆t]t, l ∈ [∆t, τ1];

0, l ∈ (τ1,∞),
(24)

[AY l]t+∆t =

⎧

⎪

⎨

⎪

⎩

β2∆tE
′′

t [AA]t + β2∆tE
′

y,t[Y
τ2A]t + β2∆tE

′

x,t[X
τ1A]t, l ∈ [0,∆t);

[Xτ1Y l−∆t]t + [Y τ2Y l−∆t]t + (1− β1∆t− β2∆tE
′

y,t)[AY
l−∆t]t, l ∈ [∆t, τ2];

0, l ∈ (τ2,∞),
(25)

[AA]t+∆t =(1− β1∆t− β2∆tE
′

t)([X
τ1A]t + [AXτ1 ]t + [Y τ2A]t + [AY τ2 ]t)

+ ([Xτ1Xτ1 ]t + [Y τ2Y τ2 ]t + [Xτ1Y τ2 ]t + [Y τ2Xτ1 ]t)

+ (1− 2β1∆t− 2β2∆tE
′′

t )[AA]t,

(26)

[Y l1Y l2 ]t+∆t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, l1 ∈ [0,∆t) and l2 ∈ [0,∆t);

β2∆tE
′

y,t[AY
l2−∆t]t, l1 ∈ [0,∆t) and l2 ∈ [∆t, τ2];

β2∆tE
′

y,t[Y
l1−∆tA]t, l2 ∈ [0,∆t) and l1 ∈ [∆t, τ2];

[Y l1−∆tY l2−∆t]t, l1 and l2 ∈ [∆t, τ2];

0, l1 or l2 ∈ (τ2,∞),

(27)
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[X l1X l2]t+∆t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, l1 ∈ [0,∆t) and l2 ∈ [0,∆t);

β1∆t[AX l2−∆t]t, l1 ∈ [0,∆t) and l2 ∈ [∆t, τ1];

β1∆t[X l1−∆tA]t, l2 ∈ [0,∆t) and l1 ∈ [∆t, τ1];

[X l1−∆tX l2−∆t]t, l1 and l2 ∈ [∆t, τ1];

0, l1 or l2 ∈ (τ1,∞),

(28)

[X l1Y l2 ]t+∆t =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, l1 ∈ [0,∆t) and l2 ∈ [0,∆t);

β1∆t[AY l2−∆t]t, l1 ∈ [0,∆t) and l2 ∈ [∆t, τ2];

β2∆tE
′

x,t[X
l1−∆tA]t, l2 ∈ [0,∆t) and l1 ∈ [∆t, τ1];

[X l1−∆tY l2−∆t]t, l1 ∈ [∆t, τ1] and l2 ∈ [∆t, τ2];

0, l1 ∈ (τ1,∞) or l2 ∈ (τ2,∞),

(29)

where

Et =
m
∑

j=0

Ck−j
k

(

[AI]t
[A]t

)k−j (

1−
[AI]t
[A]t

)j

, (30)

E
′

x,t =
m
∑

j=0

Ck−1−j
k−1

(

[IAX]t
[AX ]t

)k−1−j (

1−
[IAX]t
[AX ]t

)j

, (31)

E
′

y,t =
m
∑

j=0

Ck−1−j
k−1

(

[IAY ]t
[AY ]t

)k−1−j (

1−
[IAY ]t
[AY ]t

)j

, (32)

and

E
′′

t =
m−1
∑

j=0

Ck−1−j
k−1

(

[IAA]t
[AA]t

)k−1−j (

1−
[IAA]t
[AA]t

)j

. (33)

In addition, we have
[AX l]t = [X lA]t, (34)

[AY l]t = [Y lA]t, (35)

[X l1Y l2 ]t = [Y l2X l1 ]t, (36)

[AI]t =
τ1
∑

l=0

[AX l]t +
τ2
∑

l=0

[AY l]t, (37)

[AI l]t = [AX l]t + [AY l]t. (38)

In the supplementary evolutionary equations of [X l]t+∆t, the fraction of X-type nodes with
l ∈ [0,∆t) at time t +∆t is equal to the fraction of A-type nodes that fail due to internal
causes in the time interval [t, t+∆t). The fraction of X-type nodes with ∆t ≤ l ≤ τ1 is equal
to the fraction of X-type nodes with ∆t ≤ l −∆t ≤ τ1 at time t. Since l cannot exceed
the recovery time, the fraction of X-type nodes with l > τ1 is zero. The supplementary
equations for [Y l]t+∆t can be obtained in a similar way.

For the supplementary equations of [AX l]t+∆t, for l ∈ [0,∆t), the first term means that
the A-type neighbors of A-type nodes fail due to internal causes, which increases the fraction
of AX l edges with l ∈ [0,∆t) at time t +∆t. The second (third) term depicts that the A-
type nodes connected with an X-type (Y -type) neighbor fail due to internal causes while
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their X-type (Y -type) neighbors recover spontaneously (i.e., recover because the recovery
time has been reached), which increases the fraction of AX l edges with l ∈ [0,∆t). For
∆t ≤ l ≤ τ1, the first (second) term describes that the X-type nodes connected with an
X-type (Y -type) neighbor recover spontaneously, which increases the fraction of AX l edges,
with l ∈ [∆t, τ1] at time t+∆t. The third term stipulates that there must be no change in
the states of AX l−∆t edges, i.e., the A-type nodes associated with AX l−∆t edges have not
failed during the time interval [t, t +∆t). For l > τ1, we have [AX l]t+∆t = 0.

In the supplementary equation of [AA]t+∆t, the first term denotes that, associated with
edges Xτ1A, AXτ1 , Y τ2A and AY τ2 , the states of A-type nodes are not changed, but the
states of the failed nodes have changed, which increases the fraction of AA edges at time
t+∆t. The second term describes that both nodes at the end ofXτ1Xτ1, Y τ2Y τ2 ,Xτ1Y τ2 , and
Y τ2Xτ1 edges recover, which increases the fraction of AA edges. The third term stipulates
that the states of both nodes at the end of AA edges must not change.

Similar to the MR model, we use Et, E
′

t, and E
′′

t to represent the probabilities that an
active node satisfies the threshold condition n ≤ m in different cases.

Using the PA [UVW ]t = [UV ]t[VW ]t/[V ]t, we have

[IAX]t
[AX ]t

=
[AI]t
[A]t

, (39)

[IAY ]t
[AY ]t

=
[AI]t
[A]t

(40)

and
[IAA]t
[AA]t

=
[AI]t
[A]t

, (41)

i.e., E
′

x,t = E
′

y,t. Letting E
′

x,t = E
′

y,t = E
′

t, we have

Et =
m
∑

j=0

Ck−j
k

(

[AI]t
[A]t

)k−j (

1−
[AI]t
[A]t

)j

, (42)

E
′

t =
m
∑

j=0

Ck−1−j
k−1

(

[AI]t
[A]t

)k−1−j (

1−
[AI]t
[A]t

)j

, (43)

and

E
′′

t =
m−1
∑

j=0

Ck−1−j
k−1

(

[AI]t
[A]t

)k−1−j (

1−
[AI]t
[A]t

)j

. (44)

The number of supplementary equations depends on the time step ∆t. If ∆t is small
compared with other time scales in the dynamics, the number of supplementary equations
will be large.
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3. Relationship between MR and NMR models

For the MR model, the supplementary mean-field equations can be written concisely as
⎧

⎪

⎨

⎪

⎩

d[X ]t
dt

= β1[A]t − µ1[X ]t,

d[Y ]t
dt

= β2Et[A]t − µ2[Y ]t,

(45)

where

Et =
m
∑

j=0

Ck−j
k ([I]t)

k−j(1− [I]t)
j. (46)

For the NMR model, in a compact form, the supplementary mean-field equations are
{

[X ]t+∆t = β1∆t[A]t + [X ]t − [Xτ1 ]t,

[Y ]t+∆t = β2∆tEt[A]t + [Y ]t − [Y τ2 ]t,
(47)

where

Et =
m
∑

j=0

Ck−j
k ([I]t)

k−j(1− [I]t)
j. (48)

When the system has reached a steady state (t → ∞), we have [Ȧ]t = 0, [Ẋ ]t = 0 and
[Ẏ ]t = 0. Supplementary Eq. (47) can be written as

{

β1[A]t − [Xτ1 ]t = 0,

β2Et[A]t − [Y τ2 ]t = 0.
(49)

From Supplementary Eq. (49), we have

[Xτ1 ]t = β1[A]t = C1 (50)

and
[Y τ2 ]t = β2E[A]t = C2, (51)

where C1 and C2 are constants. In addition, we have

[X l]t = [Xτ1 ]t+τ1−l = C1 (52)

and
[Y l]t = [Y τ2 ]t+τ2−l = C2. (53)

We then have
[X ]t = Στ1

l [X
l]t = τ1[X

τ1 ]t, (54)

which gives

[Xτ1 ]t =
1

τ1
[X ]t. (55)

Similarly, we can get

[Y τ2 ]t =
1

τ2
[Y ]t. (56)

17



Supplementary Equation (49) can then be rewritten as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

β1[A]t −
1

τ1
[X ]t = 0,

β2Et[A]t −
1

τ2
[Y ]t = 0.

(57)

Comparing with the steady-state solution of the MR model:
{

β1[A]t − µ1[X ]t = 0,

β2Et[A]t − µ2[Y ]t = 0,
(58)

we see that the steady states for both models are equivalent to each other for fixed values
of µ1 = 1/τ1 and µ2 = 1/τ2.

B. Supplementary Note 2: Effects of different initial conditions on failure propa-

gation and evolutionary trajectories of failed nodes

Supplementary Figs. 1 and 2 illustrate the effects of initial conditions on failure propa-
gation dynamics. The different recovery mechanisms make the competition processes be-
tween the X-type and Y -type nodes distinct for the MR and NMR models. In general,
non-Markovian features render more complicated the failure-recovery dynamics. Here we
investigate how the fraction of initially failed nodes [I]0 influences the phase transition in
the NMR model.

We set the initial conditions as [X ]0 ̸= 0 and [Y ]0 = 0. When the fraction of initially
failed nodes is sufficiently small, e.g., [X ]0 = 0.05, as in Supplementary Fig. 3(a), active
nodes fail most likely because of internal causes. In both MR and NMR models, the system
will evolve into a low-failure state (phase), where the trajectories evolve from tO to tA. As
[X ]0 increases to 0.2, as shown in Supplementary Fig. 3(d), the evolutionary process for the
MR model is similar to the case in Supplementary Fig. 3(a): the trajectory evolves from tO
to tA. This is because the X-type nodes not only are born at the rate β1 but also recover
at the rate µ1, driving the system to a dynamic equilibrium associated with the low-failure
phase. As a result, there are insufficient newly created X-type nodes to cause a large scale
external failure. In contrast, in the NMR model, X-type nodes are always created but, in
the early stage [tO, tA], there is no recovery because of the memory effect. Once the fraction
of failed nodes, including the initial and the newly created X-type nodes in [tO, tA], reaches
a critical value determined by the criterion that many A-type nodes with active neighbors
satisfy the threshold condition nA ≤ m, [Y ] increases rapidly and the trajectory moves from
tA to tA′. In the time interval [tA′ , tB′], [Y ] decreases slowly due to a short recovery time
τ2 = 1, while internal failures make [X ] increase slowly because tB′ < 100. In the time
interval t ∈ [100, 100 +∆t), the age of the initially failed nodes ([I]0 = [X ]0 = 0.2) reaches
the recovery time and these nodes will turn into A state simultaneously. Consequently, [X ]
decreases suddenly to a low value and the trajectory evolves sharply from tB′ to tC′. At
this time, [I] still remains at a high value, making more active nodes (including the original
and new X-type nodes) satisfy the threshold condition nA ≤ m and resulting in a rapid
growth of Y -type nodes in the time interval [tC′ , tD′]. At time tD′, [I] increases to a higher
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value, rendering more competitive Y than X state as they compete for A-type nodes. As a
result, A-type nodes fail due mostly to external causes, and [Y ] ([X ]) continues to increase
(decrease) in the time interval [tD′, tE′ ].

For [X ]0 = 0.3, as shown in Supplementary Fig. 3(g), the evolutionary process of the
MR model is consistent with that in Supplementary Fig. 3(d). For the NMR model, the
evolutionary process is different from that in Supplementary Fig. 3(b). In the time interval
[tB′ , tC′], more initially failed nodes with [I]0 = [X ]0 = 0.3 recover simultaneously because
their age (i.e., the current time) has reached the recovery time τ1 = 100. At time tC′ , a
relatively low value of [I] makes fewer active nodes satisfy the threshold condition nA ≤ m.
Because of the short recovery time, all the current Y -type nodes switch into the active
state in the time interval [tC′ , tD′]. After that, many active nodes fail internally and become
X-type nodes, so [X ] increases continuously and the trajectory moves from tD′ to tA.

When the initial value [X ]0 is sufficiently large, e.g., 0.6 as in Supplementary Fig. 3(j),
many A-type nodes will fail due to external causes and [Y ] will increase rapidly in both
models, as shown in the trajectory from tO to tA. After that, in the MR model, the increment
of [Y ] enhances the probability for active nodes to switch into the Y state, while increasingly
X-type nodes recover and turn to the A state. The corresponding trajectory moves from
tA to tB. In the NMR model, the evolutionary process is similar to that in Supplementary
Fig. 3(g).

C. Supplementary Note 3: Markovian and non-Markovian dynamics when exter-

nal recovery is slower than internal recovery

In the main text, the case where internal recovery is slower than external recovery, i.e.,
τ1 > τ2, is treated. There are situations in the real world where the opposite, i.e., τ1 < τ2, can
occur. For example, in the case of an earthquake, the recovery of a node in an infrastructure
(e.g., restoring a damaged building) may require more time than that of repair due to internal
material failures. To study this case, we fix the network topology as in Supplementary Fig. 1.
Supplementary Fig. 4 shows the representative results. Comparing Supplementary Fig. 4(a)
with Fig. 2(b) in main text, we see that they demonstrate qualitatively similar behaviors,
indicating the applicability of our theoretical framework for the case τ1 < τ2.

Supplementary Fig. 5 shows the phase diagram on the initial-condition plane ([X ]0, [Y ]0).
Comparing it with Fig. 7 in the main text, we see that both exhibit similar phenomena,
although the quantitative details are different. This further validates that our developed
framework is applicable to the case τ1 < τ2.

D. Supplementary Note 4: Effects of network structure on Markovian and non-

Markovian recovery dynamics

In general, network topology can have a significant effect on the cascading process of
failure propagation. In the main text, we have discussed two kinds of network topology, i.e.,
random regular and scale-free networks, and found that memory in the nodal recovery can
counterintuitively make both types of networks more resilient against large scale failures.
Here we study two additional types of network: those with degree-degree correlation and a
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community structure, respectively, and demonstrate the same effect of memory.

1. Effects of degree-degree correlation

To generate networks with adjustable degree-degree correlation coefficients, we use the
standard edge-rewiring procedure [1, 2]. In particular, we first generate an uncorrelated
configuration network (UCN) [3] with the degree range [kmin,

√
N ] and degree distribution

P (k) ∼ k−γ . Keeping the degree of each node unchanged, we adjust the degree-degree
correlation through the following process. Firstly, at each step, we randomly choose two
edges in the network, disconnect them, and switch the two links among the four chosen
nodes. Secondly, to generate an assortative (a disassortative) network, we add a new edge
between the highest degree and the second highest (lowest) nodes and then connect the
remaining pair of nodes. If either of the new edges already exists, we leave the network
unchanged. Thirdly, we repeat the process until the observed degree-degree correlation
coefficient has reached a target value, which is defined as [4]:

r =

∑

ij(Aij − kikj/2me)kikj
∑

ij(kiδij − kikj/2me)kikj
, (59)

where me is the total number of edges in the network, Aij = 1 if there is an edge between
the node i and j (otherwise, Aij = 0), δij is the Kronecker delta (1 if i = j and 0 otherwise).
There is no degree-degree correlation for r = 0, but the network will have positive (negative)
degree-degree correlation for r > 0 (r < 0).

Supplementary Figs. 6(a-d) show the degree-degree correlation properties of the UCNs
for r = 0, r = 0.5, r = 0.7 and r = −0.5, respectively, where it can be visually seen that the
high-degree nodes in the network with a positive correlation tend to be connected together,
while a high-degree node in the case of negative correlation tends to be connected to a low-
degree one. Supplementary Fig. 7 shows the probability distribution of one node of degree
ki connecting to another node of degree kj , where panels (a-d) correspond to the cases of
ki = 5, ki = 20, ki = 40 and ki = 60, respectively.

Supplementary Fig. 8 shows the results of spontaneous recovery dynamics on UCNs with
different levels of degree-degree correlation for N = 10000, kmin = 5, and kmax = 100.
Supplementary Figs. 8(a) and 8(c) show the dependence of [I] on adiabatic variations in β1
in the steady state for the MR and NMR models, respectively. The blue circles, orange down
triangles, green up triangles and red squares are the average simulation results for degree-
degree correlation coefficient r = 0, r = 0.5, r = 0.7 and r = −0.5, respectively, where
the system is regarded as in the low-failure phase when β1 is smaller than the critical value
βc and a large scale failure occurs when β1 exceeds βc. For the case of zero degree-degree
correlation, the network can remain in the low-failure phase for the largest possible value of
βc, indicating the highest possible degree of resilience. However, in the high-failure phase
with adiabatically decreasing value of β1, the network with a high level of degree-degree
correlation has a larger value of βc, signifying a stronger ability to recover from damage. As
a result, in spontaneous recovery models, UCNs with degree-degree correlations can make
the hysteresis region smaller, regardless of positive or negative degree-degree correlation.
Supplementary Figs. 8(b) and 8(d) present further evidence to support the finding in the
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main text that non-Markovian recovery makes the networks more resilient against large scale
failures, regardless of the detailed network structure.

To explain why positive or negative degree-degree correlation shrinks the hysteresis region
in Fig. 8, we focus on the MR model. Supplementary Fig. 9(a) shows the time evolution of
the fraction of Y-type nodes for β1 = 0.004 and [X ]0 = 0.2, where the the system is in the
low-failure phase. The degree correlation tends to reduce the resilience of system, thereby
promoting cascading failures. Corresponding to the steady-state of [I] in Supplementary
Fig. 8(a), we see that the large scale failure results from the sharp increase of [Y ]. Supple-
mentary Figs. 9(b) and 9(c) show the evolution of the mean degree of the newly emerged
Y-type nodes and the standard variance of the nodal degree, respectively. It can be seen
that, for the networks with r = 0.7 (−0.5), the degree values of many newly emerged Y-
type nodes are similar for t < 650 (t < 470). However, after that, the degrees of newly
emerged node vary. While the results of both cases look similar, the underlying topological
properties of the network are different. In particular, in scale-free networks with a highly
heterogeneous degree distribution, a large proportion of the nodes have smaller degrees than
the mean degree, but a few hubs have larger degrees. For an assortative network, nodes of
similar degree are more likely to be connected together. As a result, there are more vulner-
able nodes of low degrees connecting to each other [e.g., the nodes with ki = 5 as shown
in Supplementary Fig. 7(a)], which comprise a sizable vulnerable component, making the
network more susceptible to a large scale failure [5]. When the threshold on external failure
(i.e., the critical fraction of the active neighbors) is fixed (e.g., 0.5), a low-degree node is
vulnerable because it is more easily affected by its neighboring nodes. For a disassortative
network, the high-degree nodes prefer to connect to the vulnerable nodes of low degrees [e.g.,
the nodes of ki = 20 shown in Supplementary Fig. 7(b)], making the hubs more vulnerable
against the failures of their neighboring nodes and promoting cascading failures.

Supplementary Fig. 9(d) shows the time evolution of [Y ]t for the MR model for β1 =
0.0022 and [X ]0 = 0.6, corresponding to the case where the degree correlation suppresses
the occurrence of cascading failure when the system is in the high-failure phase. From
Supplementary Figs. 9(d-f), we see that for the cases of r = 0.7 and r = −0.5, there are
a large number of externally failed nodes of various degrees in the transient process, after
which the system undergoes a sharp decrease in [Y ]t near t = 250 and t = 570, respectively,
leaving few externally failed nodes with a similar degree. The reason that the fraction of [Y ]t
decreases sharply is also the vulnerable components. For a small value of β1, the recovery
of a few vulnerable nodes will cause successive recovery of the other connected vulnerable
nodes and eventually block failure propagation. Note that, for r = 0, the high-failure phase
continues, because a more stable high-failure phase depends on the structure in which nodes
of quite distinct degrees are connected together, as verified by the results in Supplementary
Figs. 6 and 9(f).

2. Effects of community structure

For simplicity, we consider networks that contain two two communities [6, 7], where each
community is composed of n nodes and so the network size is N = 2n. Nodes in the same
community are connected to each other with the probability pin, while links across the two
communities occur with the probability pout, so the ratio of the numbers of edges in and
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between the communities is η ≈ pin/pout. The degree distributions of the subnetwork in
each community and of the whole network are Poisson. Note that the value of η determines
the strength of the community structure. In particular, η = 1.0 means that the numbers
of edges in and between communities are the same so, effectively, there is no community
structure. Likewise, a value of η much greater than one indicates a stronger community
structure with significantly more edges within the individual communities. Quantitatively,
the community strength can be measured by the modularity Q defined as [4]

Q =
1

2me

∑

ij

(Aij −
kikj
2me

)δ(ci, cj), (60)

where me is the total number of edges in the network, Aij are the elements of the network
adjacency matrix, ci is the community to which node i belongs, and δij denotes the Kronecker
delta. The value of Q is strictly less than 1.0, where Q > 0 (Q < 0) means that there are
more (less) edges between nodes in the same communities than can be expected by chance.

In our numerical simulations, we fix N = 3000 and mean degree ⟨k⟩ = 6, and generate
three typical networks with η = 1.0, 15.0 and 30.0, with the corresponding approximate
Q values −0.01, 0.43 and 0.46, respectively. Initially, we randomly distribute seeds in the
whole network. Supplementary Fig. 10 demonstrates the dynamical behaviors for both the
MR and NMR models. It can be seen that, if the system is in a low-failure (high-failure)
phase, the community structure tends to reduce (enhance) resilience. The reason is that
nodes in the same community tend to be connected more closely and thus constitute a high
clustering structure. The failure of a node due to an external mechanism tends to enhance
the probability for other nodes in the same community to fail. Similarly, if a node has
recovered, the probability for other nodes in the same community to recover is increased.
As a result, when the system is in the low failure phase, the community structure makes
a large scale failure more likely. In contrast, if the system is in the high failure phase, the
community structure can facilitate recovery. Qualitatively, these results are consistent with
those in Supplementary Note 4.

E. Supplementary Note 5: Markovian and non-Markovian recovery dynamics in

empirical networks

We study Markovian and non-Markovian recovery dynamics in empirical networks, using
the arenas-email and the friendship-hamster networks as two examples, where the former is
an email communication network [8] of size N = 1133 and average degree ⟨k⟩ = 9.6, and
the latter is the network of friendship among the users of the website hamsterster.com [9]
with N = 1858 and ⟨k⟩ = 13.4. Simulation results reveal the same phenomenon as in other
cases, i.e., non-Markovian type of recovery with a memory tends to enhance the network
resilience against large scale failures, as shown in Supplementary Fig. 11.
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F. Supplementary Note 6: Markovian and non-Markovian recovery dynamics in

power-grid synchronization

An idealized model for a power grid is the network of Kuramoto oscillators, where the
weighted coupling coefficient between two oscillators is related to their own natural frequen-
cies [10, 11]. We study the following model [12]:

dθi
dt

= ωi +
λ|ωi|
ki

N
∑

j=1

Aij sin(θj − θi), i = 1, . . . , N , (61)

where ωi is the natural frequency of oscillator i randomly chosen from the Lorentzian dis-
tribution

g(ω) =
1

π
[

∆

(ω − ω0)2 +∆2
], (62)

λ is the overall coupling strength, ki =
∑N

j=1Aij is the degree of node i, and Aij are the
elements of the symmetric adjacency matrix. In this model, explosive synchronization [12,
13] can arise. In the regime of complete synchronization, all oscillators are localized in
the same area. To investigate the propagation of synchronization under the MR and NMR
dynamics, we fix the synchronization area and construct the following dynamical system of
phase oscillators:

dθi
dt

= ωi +
λ|ωi|
ki

N
∑

j=1

Aij sin(θj − θi)− a sin(θi − φ), i = 1, . . . , N , (63)

where a is a parameter characterizing the degree of synchronization. The first and third
terms on the right-hand side describe the self-dynamics of node i, while the second term
represents the interactions between node i and its interacting partners. To see the meaning
of φ, we introduce the order parameter R

ReiΨ =
1

N

N
∑

j=1

eiθj , (64)

where 0 ≤ R ≤ 1 and Ψ denotes the average phase. The synchronization region can then be
defined as [φ− ψ,φ + ψ]. For the MR dynamics, each oscillator in the synchronized region
has the probability p to return to the asynchronous state with a random phase between
[−π, π]. For the NMR process, each oscillator can stay in the synchronized region for time
τ = 1/p before leaving the region to become asynchronous with others.

We carry out synchronization simulations on a completely connected network (CN) and
a random regular network (RRN) with average degree ⟨k⟩ = 10. We find that, for both
networks, the system transitions to the high-failure (low-failure) phase when increasing (de-
creasing) λ towards a critical value λc. Supplementary Fig. 12 shows the dynamic behaviors
for both the MR (orange squares) and NMR (blue circles) dynamics. It can be seen that
the results are qualitatively similar to those in either Supplementary Fig. 10 or Supple-
mentary Fig. 11, indicating that non-Markovian recovery makes the network more resilient
against large scale breakdown of synchronization. The results also indicate that the network
topology can have a considerable impact on the system resilience.

23



III. SUPPLEMENTARY REFERENCES

[1] Xulvi-Brunet, R. & Sokolov, I. M. Reshuffling scale-free networks: From random to assortative.

Phys. Rev. E 70, 066102 (2004).

[2] Gao, L., Wang, W., Pan, L., Tang, M. & Zhang, H.-F. Effective information spreading based

on local information in correlated networks. Sci. Rep. 6, 38220 (2016).
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