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Equivalence and its invalidation between
non-Markovian and Markovian spreading
dynamics on complex networks
Mi Feng 1,2,3, Shi-Min Cai2,3, Ming Tang 1,4 & Ying-Cheng Lai 5

Epidemic spreading processes in the real world depend on human behaviors and, conse-

quently, are typically non-Markovian in that the key events underlying the spreading

dynamics cannot be described as a Poisson random process and the corresponding event

time is not exponentially distributed. In contrast to Markovian type of spreading dynamics for

which mathematical theories have been well developed, we lack a comprehensive framework

to analyze and fully understand non-Markovian spreading processes. Here we develop a

mean-field theory to address this challenge, and demonstrate that the theory enables

accurate prediction of both the transient phase and the steady states of non-Markovian

susceptible-infected-susceptible spreading dynamics on synthetic and empirical networks.

We further find that the existence of equivalence between non-Markovian and Markovian

spreading depends on a specific edge activation mechanism. In particular, when temporal

correlations are absent on active edges, the equivalence can be expected; otherwise, an exact

equivalence no longer holds.
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D isease or virus spreading on complex networks, because of
its broad relevance to health care, social, economical, and
political sciences as well as information technologies, has

been an active area of research on contemporary network science
and engineering1–8. Traditional models of spreading dynamics on
networks are memoryless Markovian in the sense that, for all
individuals in the network, both contracting a virus and reco-
vering from it are viewed as a Poisson process. The time interval
between two successive contracting events and that between two
adjacent recovery events follow an exponential distribution with
a constant rate—the arrival rate of the respective Poisson pro-
cess. Associated with the exponential distribution is the mem-
oryless property: any future waiting time does not depend on the
previous waiting time. This property fits with that of a mem-
oryless Markovian process as, what matters in order to predict
the future is the current state, not the history of the process. The
Markovian assumption greatly facilitates the development of
mathematical theories of spreading process on complex
networks5,7 through, e.g., a mean-field type of analyses1,9–11 of
the standard susceptible-infected-susceptible (SIS) or
susceptible-infected-recovered (SIR) process. There has been
increasing empirical evidence and modeling effort that the
occurrences of contacts associated with human activities are
non-Markovian temporal processes with a heavy tailed inter-
event time distribution12–33. A Markovian description of net-
work spreading dynamics is thus ideal and provides only an
approximate picture of the real world.

The past decade has witnessed a growing interest in non-
Markovian spreading dynamics on complex networks34–50. The
failure of the Markovian framework in describing human inter-
actions in relation to disease spreading was noted quite early, and
it was found that the deviation from the exponential distribution
of the inter-event time to being heterogeneous can impede
spreading35. A non-Markovian SIR model with arbitrary time
distributions of infection and recovery was solved through the
approach of dynamical message passing37. It was also found that
a heavy-tailed waiting time distribution can slow down the pre-
valence decay39. An SIR model with fixed recovery time but with
a heavy-tailed infection time distribution was studied with the
finding that temporal heterogeneity in the contact process can
significantly suppress epidemic spreading40. A relatively sig-
nificant alteration of the outbreak threshold was reported for
non-Markovian type of SIS infection events and certain equiva-
lence between non-Markovian and Markovian models through
redefining the effective infection rate was pointed out41,42. Two
basic dynamical rules governing a non-Markovian type of SIS
spreading process were uncovered43. More recently, a method
was proposed to estimate the effective infection rate for non-
Markovian type of spreading dynamics47.

A common theoretical tool to deal with network spreading
dynamics is mean-field analysis. The earlier version of the mean-
field theory assumed that all nodes in the network are regarded as
statistically equivalent9. To account for the non-homogeneous
nature of real world networks, a heterogeneous mean field theory
was developed in which the nodes with the same degree are
considered as equivalent1. A more systematic approach to fully
capturing the network topology was articulated—the so-called
quench mean-field approximation10,11. To take into account
dynamic correlations, the method of pairwise approximation can
be exploited51–54 which centers about analyzing the evolution of
the states of nodal pairs. An approximate master equation theory
can lead to more accurate theoretical predictions and can be
reduced to the pair-wise approximation theory and the mean field
theory through proper approximations55. A mean-field analysis
based on the pair approximation for non-Markovian SIR
dynamics on networks was recently developed45,46,48.

Our work is motivated by two considerations. The first con-
cerns about the development of a general theoretical framework
to deal with non-Markovian processes. In particular, in spite of
the previous studies, a comprehensive framework to analyze and
understand the full dynamical evolution of non-Markovian
spreading processes is still lacking. Especially, in the existing lit-
erature on network spreading dynamics, Markovian or non-
Markovian, a central focus has been on the final steady state of
the system, with the transient dynamics leading to the final state
largely ignored. In nonlinear dynamical systems, transient beha-
viors have been recognized as relevant as or even more important
than the final state. For example, transient chaos arises commonly
in nonlinear dynamical systems and is typically more ubiquitous
than attractors (final states)56. In ecological systems, transient
dynamics have been long recognized as the main source on which
empirical observations rely and are thus a key driving force of
natural evolution57–61. For non-Markovian type of network
spreading dynamics, we lack a theory to describe both transient
dynamics and final steady state. The second motivation is that,
since Markovian spreading processes, while ideal, are amenable to
rigorous mathematical analyses and thus often afford a complete
understanding of the detailed underlying dynamics, it is of great
interest to uncover conditions under which a non-Markovian
process is equivalent to or can be approximated by a
Markovian one.

In this paper, we articulate a first-order mean field theory for
SIS dynamics with non-Markovian infection and recovery pro-
cesses. We define the probability density function of state age of
node (or of edge) and derive the corresponding partial differential
equations that govern the evolution of the density functions. We
demonstrate that the theory can predict well both the transient
behaviors and the steady states of non-Markovian spreading on
synthetic and empirical networks. A key finding is that the edge
activation rule determines whether there is an equivalence
between non-Markovian and Markovian SIS dynamics, and we
show that a specific type of activation rule can lead to an exact
equivalence. For non-Markovian processes that are not equivalent
to Markovian ones, a relatively large infection density of the
whole network makes the process closer to being Markovian.
With the ability to analyze transient dynamics, the developed
theoretical framework not only leads to a picture of the entire
evolution process of non-Markovian spreading dynamics,
but also results in a deeper understanding of the conditions
under which a non-Markovian process is equivalent to a
Markovian one.

Results
Non-Markovian spreading dynamics on complex networks. In
the classical, Markovian SIS model, a node in a network can be in
the susceptible or infected state. An infected node can pass on the
virus to any of its susceptible neighbors at certain transmission
rate and return to the pool of susceptible nodes at a fixed recovery
rate. Because of the Markovian and memoryless nature of the
model, transmission of disease and recovery of nodes both are
Poisson processes, i.e., both the infection and recovery time are
exponentially distributed. In contrast, in a non-Markovian epi-
demic process with memory, neither the infection nor the
recovery time follows an exponential distribution. Instead, such
distributions are typically “fat-tailed” due to the highly hetero-
geneous nature of various human behaviors12–33.

For a non-Markovian epidemic process, the infection and
recovery rates are generally time dependent. To gain insights into
defining these rates, we begin with a key quantity: the infection
age (or susceptibility age) τ of a node, which is the time elapsed
from the birth of its current state, i.e., an infected state or a
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susceptible state, to the current time t. If a node becomes infected
at time t− τ and has not recovered by time t, its infection age at
time t will be τ. An infected node decays spontaneously into the
susceptible state after a random time τ whose probability
distribution is ψrec(τ), indicating that the infected node will
recover during the infinitesimal infection age interval (τ, τ+ dτ)
with the probability ψrec(τ)dτ. Similarly, the activation age (or
non-activation age) κ of an edge can be defined, where the active
edges host statistically independent stochastic infection processes
of the same distribution ψinf(κ). That is, the probability that an
active edge transmits the disease during the infinitesimal active
age interval (κ, κ+ dκ) is ψinf(κ)dκ. If a susceptible node has more
than one active edge, an infection process will take place
independently along each active edge.

The time dependent recovery and infection rates can then be
evaluated43,47 based on the distributions ψrec(τ) and ψinf(κ). In
particular, if an event has not taken place by a time since the
process was initiated, it will take place in the next time interval
with a conditional probability. The recovery and infection rates
are thus given by, respectively,

ωrecðτÞ ¼
ψrecðτÞ
ΨrecðτÞ

ð1Þ

and

ωinf ðκÞ ¼
ψinf ðκÞ
Ψinf ðκÞ

; ð2Þ

where Ψrec(τ) and Ψinf(κ) are the corresponding survival
probabilities. Especially,

ΨrecðτÞ ¼
Z þ1

τ
ψrecðτ′Þdτ′ ð3Þ

is the probability that the infected node will not recover before the
infection age τ and

Ψinf ðκÞ ¼
Z þ1

κ
ψinf ðκ′Þdκ′ ð4Þ

is the probability that the active edge never transmits the disease
in the range of the active age from 0 to κ. Substituting Ψrec(τ) and
Ψinf(κ) into Eqs. (1) and (2), we obtain

ΨrecðτÞ ¼ e%
R τ

0
ωrecðτ′Þdτ′ ð5Þ

and

Ψinf ðκÞ ¼ e%
R κ

0
ωinf ðκ′Þdκ′ ð6Þ

The recovery and infection time distributions can thus be
expressed, respectively, as

ψrecðτÞ ¼ ωrecðτÞe
%
R τ

0
ωrecðτ′Þdτ′; ð7Þ

and

ψinf ðκÞ ¼ ωinf ðκÞe
%
R κ

0
ωinf ðκ′Þdκ′: ð8Þ

In the special case of memoryless Markovian model, the temporal
processes follow the Poisson statistics, where the distributions are
exponential with their respective constant rate.

For epidemic spreading on a network, there are various
mechanisms to activate edges. We focus on the two basic
mechanisms to generate active edges43,47. In general, an
undirected edge can be regarded as being equivalent to two
directed edges in the opposite directions, and a directed edge with
starting node j and ending node i is denoted as i ← j. For the first
mechanism (type-I), which is the same as rule 1 in ref. 43, one
defines a directed link i ← j as an active edge when node j is an
infected node and node i is susceptible. If an active edge i ← j

transmits the disease, the healthy node i will turn into the infected
state and the edge i ← j will become non-active. For the second
mechanism (type-II), which is the same as that in ref. 47, a
directed link i ← j is defined as an active edge when node j is an
infected node regardless of the state of node i. Once the active
edge i ← j transmits the disease, node i will turn into the infected
state if it is susceptible, or nothing happens to node i if it is
already infected. At the same time, the active edge i ← j will
become a new active edge with active age κ= 0. Figure 1 shows
the cases in which the active age of an active edge is zero. In the
special case of non-Markovian process where ψinf(κ) follows an
exponential distribution and the infection rate ωinf(κ) is a
constant independent of time, the SIS models constructed
according to the two respective mechanisms are equivalent.

First-order mean-field theory for non-Markovian spreading.
To describe the full dynamical evolution of non-Markovian epi-
demic spreading on networks, we articulate a theoretical frame-
work based on the approach of first-order mean-field analysis.
Specifically, we begin by defining Ii(τ; t) and Si(τ; t) as the
probability density functions that node i stays in the infected and
susceptible state aged τ at time t, respectively48. The probability of
node i being in the infected state aged from τ to τ+ dτ is thus Ii(τ;
t)dτ. In the time interval (t, t+ dt), node i returns to the sus-
ceptible state with probability ωrec(τ)dt and the probability that
the state of the node remains unchanged is 1− ωrec(τ)dt. After
the infinitesimal time interval dt has elapsed, the age of node i
and that of the active edge i ← j both will increase by the amount
dt. We thus have dt= dτ= dκ. At time t+ dt, the probability
density function that node i still remains in the infected state aged
τ+ dτ is given by

Iiðτ þ dτ; tþ dtÞ ¼ ½1% ωrecðτÞdτ'Iiðτ; tÞ: ð9Þ

This difference equation can be rewritten as a partial differential
equation:

ð ∂
∂τ

þ ∂
∂t
ÞIiðτ; tÞ ¼ %ωrecðτÞIiðτ; tÞ: ð10Þ

Since the infected node i with infection age ranging from 0 to +∞
can switch into the susceptible state of age zero insofar as there is
a recovery, the probability density function that node i returns to
the susceptible state aged τ= 0 is

Sið0; t þ dtÞ ¼
Z þ1

0
ωrecðτÞIiðτ; tÞdτ: ð11Þ

To describe the time evolution of Si(τ; t), we assume that the ages
of two connected nodes are uncorrelated. The probability density
function that node i in the susceptible state of age τ is infected by
node j at time t can be written as Φi←j(τ; t). During the time
interval (t, t+ dt), the susceptible node i aged τ is infected by its

neighbors with the probability
PN

j¼1
aijΦi jðτ; tÞdτ, where N is the

network size and aij is the ijth element of the network adjacency
matrix. We thus get the partial differential equation governing the
evolution of Si(τ; t) as

∂
∂τ

þ ∂
∂t

! "
Siðτ; tÞ ¼ %Siðτ; tÞ

XN

j¼1

aijΦi jðτ; tÞ: ð12Þ

Since a susceptible node i with any susceptibility age ranging from
0 to +∞ can be infected and switches into the infected state aged
zero as a result of the infection process, the probability density

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11763-z ARTICLE

NATURE COMMUNICATIONS | ��������(2019)�10:3748� | https://doi.org/10.1038/s41467-019-11763-z | www.nature.com/naturecommunications 3



function that node i enters into the infected state aged τ= 0 is

Iið0; t þ dtÞ ¼
Z þ1

0
Siðτ; tÞ

XN

j¼1

aijΦi jðτ; tÞdτ: ð13Þ

For different activation mechanisms of active edges, namely, type-
I and type-II, the forms of Φi←j(τ;t) are different. For type-I
mechanism, once an infected node j and a susceptible node i
appear on both ends of an edge, the directed edge i ← j will be
activated or, equivalently, the edge will enter into an active state
aged κ= 0. Ignoring the dynamical correlation between any
pairwise nodes, the age of the active edge is determined by the
smaller age of the connected nodes, min(τ, τ′), where τ and τ′ are
the susceptibility age of node i and the infection age of node j,
respectively. We thus have

Φi jðτ; tÞ ¼
Z þ1

0
ωinf ½minðτ; τ′Þ&Ijðτ′; tÞdτ′; ð14Þ

where ωinf[min(τ, τ′)] is the infection rate of the active edge
whose age is equal to the smaller one of the end nodes.

For type-II mechanism, the age of the active edge i ← j depends
on the infected node j only, and we have

Φi jðτ; tÞ ¼
Z þ1

0
ηðτ′ÞIjðτ′; tÞdτ′; ð15Þ

where the infection rate η(τ) of the infected node j aged τ satisfies

the integral equation

ηðτÞ ¼
Z τ

0
ηðτ′Þψinf ðτ ' τ′Þdτ′þ ψinf ðτÞ: ð16Þ

The solution of Eq. (16) can be written as

ηðτÞ ¼
Z σþi1

σ'i1

ψ̂inf ðsÞ
1' ψ̂inf ðsÞ

esτds; ð17Þ

where ψ̂inf ðsÞ is the Laplace transform of ψinf(τ):

ψ̂inf ðsÞ ¼
Z þ1

0
ψinf ðτÞe

'sτdτ ð18Þ

Supplementary Fig. 1 in Supplementary Note 2 presents the
analysis of η(τ) for type-II edge activation mechanism.

Equations (10) and (12) govern the time evolution of non-
Markovian SIS spreading dynamics in general, with the boundary
conditions given by Eqs. (11) and (13). The state transition
processes can be described as the probability flows between the
infected and susceptible states determined by the functions Ii(τ; t)
and Si(τ; t), as well as those within each state. A schematic
illustration of the various probability flows is shown in Fig. 2. The
initial conditions for Eqs. (10) and (12) are the initial probability
distributions of each node:

Iiðτ; 0Þ ¼ ρiðτÞ ð19Þ
and

Siðτ; 0Þ ¼ χiðτÞ; ð20Þ
where ρi(τ) and χi(τ) are the probability densities of the ages of
node i being in the infected and susceptible state, respectively.

Transient behaviors. To test the power of our mean-field theory
to predict transient behaviors in non-Markovian processes, we
carry out Monte Carlo simulations47,62 of SIS dynamics on dif-
ferent types of networks (see “Methods” for details). To be gen-
eral, in the simulations, we set ψinf(κ) and ψrec(τ) to be the long-
tailed, Weibull type of distribution as

ψinf ðκÞ ¼
αI
βI
ð κ
βI
ÞαI'1e'ð κβIÞ

αI

ð21Þ

and

ψrecðτÞ ¼
αR
βR

ð τ
βR

ÞαR'1e'ð τ
βR
ÞαR ; ð22Þ

where (αI, αR) are the shape parameters and (βI, βR) are scale
parameters. A smaller value of the shape parameter and/or a
larger value of the scale parameter corresponds to more extensive
heterogeneity of the age distribution.

Figure 3 shows, for three different types of networks, the
evolution of the infected density of the entire network over time,
where the density value predicted by the mean-field theory is

calculated with IðtÞ ¼
PN

i¼1
IiðtÞ=N . Initially, 1% of the nodes are

randomly chosen to be the infection seed and their infection ages
are all zero. A small αI value for which the distribution ψinf(κ) is
strongly heterogeneous will lead to a large-scale disease outbreak,
due mainly to the small mean infection time. In Fig. 3a–c, the
Monte-Carlo simulation results and the theoretical predictions
for the type-I activation mechanism are presented for Erdös-
Rényi (ER) random, Barabási-Albert (BA) scale-free, and
Hamsterster networks, respectively. The Hamsterster network is
a real-world social network in the human society63. Figure 3d–f
shows the comparison results of the temporal evolution of the
infected density for processes with type-II activation mechanism.
The mean-field predictions of the time evolution are generally in
good agreement with those of non-Markovian type of SIS
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Fig. 1 Two mechanisms to activate edges. For the first mechanism (type-I),
there are two cases in which the state age of an active edge is set to zero: a
the event is driven by the generation of infected node, b it results from the
generation of an susceptible node. For the second mechanism (type-II),
there are four independent scenarios for setting zero the age of an active
edge: c, d the event occurs because of the generation of an infected node, e,
f it is caused by the transmission of the disease. Blue dashed and red solid
circles represent susceptible and infected nodes, respectively. Purple
dashed and orange solid arrows denote nonactive and active edges,
respectively. Each state transition takes place in an infinitesimal time
interval dτ or dκ, where dτ= dκ
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spreading dynamics on random (homogeneous), scale-free
(heterogeneous), and Hamsterster (real-world) networks.

However, in some cases (e.g., αI= 4 for ER random networks),
there are some discrepancies between the predictions from the
first-order mean-field theory and the simulation results [c.f.,
insets in Fig. 3a, d], due to the exclusion of any dynamical
correlation. For a more accurate description of non-Markovian
spreading processes, the dynamical correlation in the evolution of
states of connected nodal pairs must be taken into account. To

meet this challenge, we articulate a second-order mean field
approach and show that it is capable of predicting the simulation
results more accurately than the first-order theory, even for
extreme situations where the disease decays rapidly [e.g., the αI=
4 case in Supplementary Fig. 2c, d]. The second-order theory
indicates that, in general, dynamical correlation such as temporal
correlation between active edges can significantly affect the
accuracy of the mean-field analysis (see Supplementary Fig. 2 and
Supplementary Note 3 for details). Due to the limitation of
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probability ωrec(τ)Ii(τ; t)dτ or Siðτ; tÞ
PN

j¼1
aijΦi jðτ; tÞdτ and converges to

Rþ1
0 ωrecðτÞIiðτ; tÞdτ and

Rþ1
0 Siðτ; tÞ

PN

j¼1
aijΦi jðτ; tÞdτ, respectively. c Each block

moves one step to the right, and the empty blocks Si(0;t+ dt) and Ii(0;t+ dt) are filled with the probabilities
Rþ1
0 ωrecðτÞIiðτ; tÞdτ and
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PN
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aijΦi jðτ; tÞdτ, respectively. d The distributions Ii(τ; t+ dt) and Si(τ; t+ dt) at time t+ dt
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computational feasibility, we have tested the predictions of the
second-order mean field theory for homogeneous networks. To
extend the study to heterogeneous networks is currently infeasible
due to the extreme high computational complexity required to
treat all possible nodal pairs separately.

We further investigate the effects of infection time
distribution and degree distribution on the transient time in
Supplementary Notes 4 and 5, respectively. For a certain
network topology and a given edge activation mechanism, a
larger value of the shape parameter αI leads to a longer
transient phase. Intuitively, a narrower distribution of the
infecting activities makes it easier for the system to reach a
final steady state. (Supplementary Fig. 3 displays results on
transient time versus αI). For fixed values of the structural and
dynamical parameters, random networks lead to longer
transients, due mainly to the lack of hub nodes that can act
as “super-spreaders”. We find that a smaller value of the
power-law exponent and a larger value of the lower-cutoff
degree can lead to a shorter transient lifetime, indicating
that hub nodes in a scale-free network can expedite spreading
processes of the non-Markovian type. Supplementary Fig. 4
presents systematic results on the transient lifetime versus
the values of the power-law exponent and the lower-cutoff
degree.

Equivalence between non-Markovian and Markovian spread-
ing. To establish the conditions under which an equivalence
between non-Markovian and Markovian type of SIS spreading
dynamics arises, we analyze the steady-state behavior. For non-
Markovian type of SIS spreading dynamics for t→+∞, we define
the following asymptotic probability density functions:

~IiðτÞ ¼ lim
t!þ1

Iiðτ; tÞ; ð23Þ

~SiðτÞ ¼ lim
t!þ1

Siðτ; tÞ; ð24Þ

~Φi jðτÞ ¼ lim
t!þ1

Φi jðτ; tÞ: ð25Þ

From Eqs. (10) and (12), we obtain the differential equations for
the probability density functions in the steady state as

d~IiðτÞ
dτ

¼ %ωrecðτÞ~IiðτÞ; ð26Þ

d~SiðτÞ
dτ

¼ %~SiðτÞ
XN

j¼1

aij ~Φi jðτÞ: ð27Þ

In the steady state, the probabilities that a node is newly infected
and that a node recovers are equal11, so we have

~Iið0Þ ¼ ~Sið0Þ: ð28Þ

In the steady state, the probabilities that node i is in the infected
state and in the susceptible state are, respectively,

~Ii ¼
Z þ1

0

~IiðτÞdτ ð29Þ

and

~Si ¼
Z þ1

0

~SiðτÞdτ: ð30Þ

For type-I activation mechanism, we can obtain a relation
between the probabilities of node i being in the infected and
susceptible state as

1
~Ii
¼ 1

~Si

Xþ1

n¼1

δeffϑ
ðnÞð0Þð 1

PN

j¼1
aij~Ij

Þn;
ð31Þ

or

1
~Ii
¼ 1

λ&eff~Si
PN

j¼1
aij~Ij

þ 1
~Si

Xþ1

n¼2

δeffϑ
ðnÞð0Þð 1

PN

j¼1
aij~Ij

Þn;
ð32Þ

where the effective recovery rate is

δeff ¼
1

Rþ1
0 ΨrecðτÞdτ

; ð33Þ

ϑ(τ) is the inverse of the function Ω(τ) given by

ΩðτÞ ¼ δeff

Z τ

0

Z þ1

0
ωinf ½minðτ′; τ′′Þ(Ψrecðτ′Þdτ′dτ′′; ð34Þ

and ϑ(n)(0) is the nth derivative of ϑ(τ) at τ= 0 and λ&eff is defined
as

λ&eff ¼ 1=½δeffϑð1Þð0Þ(: ð35Þ

The procedure to derive Eqs. (31) and (32) is detailed in Sup-
plementary Note 1.

For type-II activation mechanism, the relation between the
probabilities can be obtained as

~Ii ¼ λeff~Si
XN

j¼1

aij~Ij; ð36Þ

where λeff is the effective infection rate with the specific form

λeff ¼
Z þ1

0
ηðτÞΨrecðτÞdτ: ð37Þ

Substituting Eq. (17) for η(τ) into Eq. (37), we have

λeff ¼
1
2πi

Z

C

ψ̂inf ðsÞψ̂recð%sÞ
1% ψ̂inf ðsÞ

ds
s
; ð38Þ

where ψ̂inf ðsÞ ¼
Rþ1
0 ψinf ðτÞe%sτdτ, ψ̂recðsÞ ¼

Rþ1
0 ψrecðτÞe%sτdτ,

and C is a contour that encloses the entire Re(s) > 0 region42,64
(see Supplementary Note 2 for details).

Under what conditions can one expect the non-Markovian SIS
dynamics to reduce to Markovian dynamics in the steady state?
To address this question, we note that the equivalence requires
that the non-Markovian steady-state equations be written42,47 in
the form of Eq. (36), or

1
~Ii
¼ 1

λeff~Si
PN

j¼1
aij~Ij

:
ð39Þ

For non-Markovian SIS spreading dynamics with type-II
activation mechanism, such an equivalence does exist.

However, for processes with type-I activation mechanism,
because of the high-order terms (n ≥ 2) in Eq. (32), in general an
equivalence to Markovian dynamics cannot be expected. None-
theless, under certain conditions, an approximate equivalence can
arise. In particular, if both ϑ(1)(0) and ϑ(n)(0)(n ≥ 2) have a finite

value, a large value of
PN

j¼1
aij~Ij will dominate the right-hand side of

Eq. (32), making the high-order terms
Pþ1

n¼2ϑ
ðnÞð0Þð1=

PN
j¼1aij~IjÞ

n

negligibly small. The approximation depends on the local nodal
properties, which is typically valid locally for large degree nodes and
high infected density of neighboring nodes. For the small-degree
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nodes, the high-order terms in Eq. (32) can no longer be neglected.
In general, the validity of the approximation for the whole network
depends not only on the infection density but also on the network
structure, and the approximate equivalence holds if the small-
degree nodes are not abundant in the network. If there is an
appreciable fraction of small-degree nodes in a strongly hetero-
geneous network, the approximate equivalence would fail. Other-
wise, the effective infection rate can be approximated as

λeff ! λ"eff : ð40Þ

Furthermore, when the infection process is Markovian regardless of
whether the recovery process remains non-Markovian or Marko-
vian, there exists an equivalence between non-Markovian and
Markovian types of SIS dynamics with the following equality (see
Supplementary Note 1):

λeff ¼ λ"eff : ð41Þ

For non-Markovian SIS dynamics which can be equivalent to
Markovian dynamics, the outbreak threshold is given by65

λeffc ¼ 1
Λmax

; ð42Þ

where Λmax is the maximum eigenvalue of the network
adjacency matrix. For processes with type-I mechanism where
there is no equivalence between non-Markovian and Markovian
dynamics, it is generally difficult to identify a relevant
parameter to characterize the phase transition associated with
disease outbreak.

To test when an equivalence between non-Markovian and
Markovian spreading processes arises, we focus on the effects of
the infection time distribution on the stationary infected density
with both types of edge activation mechanisms. We first consider
the case of type-II mechanism. We set αI= 0.5, 1, 2, 4, αR= 2,
and βR= 0.5 and adjust λeff by changing βI through Eq. (37).
Figure 4 shows the simulation results on random, scale-free and
Hamsterster networks, which are the same as the networks in Fig.
3. It can be seen that, regardless of the network structure, the
stationary infected density agrees well with both the result from
Markovian process simulation and the analytical solution of the
Markovian dynamics from Eq. (39) or (36). The theoretical
thresholds calculated from Eq. (42) on random, scale-free, and
Hamsterster networks are 0.096, 0.040 and 0.020, respectively,
which are quite close to the simulated values of the threshold in
Fig. 4. (Supplementary Fig. 5 in Supplementary Note 6 provides a
comparison of stationary probability density distribution between
simulation and theoretical prediction).

We now turn to the type-I case. For αI= 1, the distribution
of infection time is exponential, making the underlying non-
Markovian process completely equivalent to a Markovian
process with the effective recovery rate δeff and effective
infection rate λeff given by Eqs. (33) and (41), respectively.
Indeed, we find that, as λeff is increased, or, equivalently, as βI
is decreased, the infected density for the non-Markovian
process with type-I activation mechanism agrees with the
theoretical value of the corresponding Markovian process
(Supplementary Fig. 6 in Supplementary Note 7 shows the
results). For αI ≠ 1, the exact equivalence breaks down.
However, under certain conditions, an approximate equiva-
lence can still be expected. To obtain the approximate
equivalence, we analyze the effect of higher-order terms in
Eq. (31) for non-Markovian process with type-I activation
mechanism. For simplicity, we assume that ψrec(τ) is from

Eq. (22) but ψinf(τ) is a Beta distribution:

1
Bðσ; γÞ κ

σ&1ð1& κÞγ&1 ð43Þ

with σ= 1. We have

ψinf ðκÞ ¼ γð1& κÞγ&1; ð44Þ

where 0 ≤ κ < 1 and ωinf(κ)= γ/(1− κ). Especially, Eq. (44)
turns into a uniform distribution ψinf(κ)= 1(0 ≤ κ < 1) for γ= 1.
We set αR= 0.5, 1, 2, 4 and βR= 0.5, and adjust ϑ(n)(0) by
changing the value of γ. From Eqs. (34), (31) and (44), for a fixed
value of αR, the proportional relationship among all ϑ(n)(0)
can remain invariant through a proper modification in the value
of γ. In particular, an increase in the value of θ multiplying γ
will result in an increase in the value of ωinf(τ) by θ times. As a
result, every value of Ω(τ) will increase by the same factor θ. For
∀n ≥ 0, the quantity ϑ(n)(0) will decrease by the factor of θ,
making the proportional relationship unchanged. From Eq. (40),
we obtain the approximate effective infection rate as λeff ≈ γ/δeff.
Figure 5 demonstrates a significant deviation in the stationary
infected density, when its values are relatively small, of the
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Fig. 4 Demonstration of equivalence. Comparison of stationary infected
density with type-II activation mechanism between non-Markovian and
Markovian processes for a random b scale-free, and c Hamsterster
networks which are the same as the networks in Fig. 3. Solid, dashed,
dotted, and dot-dashed curves represent the results for αI= 0.5, 1, 2, 4,
respectively, and the triangles and circles correspond to simulation results
from the Markovian process and the analytical solutions, respectively.
Other parameters are αR= 2 and βR= 0.5
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non-Markovian process from that of the Markovian process with
the effective infection rate λeff. However, as the values of λeff and ~I
are increased, the results for the non-Markovian process
gradually converge to those for the Markovian process. For a
large value of αR, the values of ϑ(n)(0) for n ≥ 2 are reduced,
decreasing the gap between the results from the non-Markovian
and Markovian processes. Simulation results on strong hetero-
geneous networks also verify these results (see Supplementary Fig.
7 in Supplementary Note 8 for details).

Discussion
Disease or virus spreading dynamics in networked systems in the
real world are non-Markovian in that the temporal sequences of
the occurrences of the key events underlying the spreading pro-
cess do not follow a Poisson distribution. The non-Poisson
behaviors make mathematical analyses of the spreading dynamics
difficult, hindering their understanding. It is desired to develop a
theoretical framework for non-Markovian spreading dynamics on
complex networks. An issue of interest concerns about the inter-
relation between non-Markovian and Markovian dynamics.
Especially, while Markovian spreading processes with the Poisson
characteristic are not a true reflection of real world situations,
rigorous analyses and a relatively comprehensive understanding

of the underlying dynamics are possible, as demonstrated in the
past two decades5,7. A curiosity driven and practically significant
question is then under what conditions will a non-Markovian
process be equivalent to a Markovian one. And, if such an
equivalence does not exist, to what extent can a non-Markovian
process be approximated by a Markovian one? In spite of pre-
vious work on non-Markovian spreading dynamics on complex
networks34,35,37,39–48, these issues have not been addressed
satisfactorily, which motivated our current work.

We have developed a first-order mean field theory to solve
both the transient phase and steady states of non-Markovian, SIS
type of spreading dynamics. The theory can be used to assess
accurately the difference between non-Markovian and Markovian
dynamics, for any network structure. A finding is that, whether
there is an equivalence between non-Markovian and Markovian
processes depends on the specific edge activation mechanism.
There are situations where non-Markovian SIS type of dynamics
cannot be understood in terms of equivalent Markovian
dynamics. We have identified one generic condition under which
a complete equivalence between non-Markovian and Markovian
processes holds: absence of any temporal correlation on active
edges. When the correlation cannot be ignored due to the
influence of susceptible nodes on active edges, the equivalence no
longer holds. However, an approximate equivalence may still hold
for the whole network, depending on the infection density and
the network structure. We have found that, in the regime of
relatively large infected density, a non-Markovian process can be
approximated by a Markovian one for heterogeneous networks if
small-degree nodes are not abundant in the network. All these
findings were enabled by the theory developed in this paper.

While we have focused on non-Markovian, SIS type of
spreading dynamics, a hope is that our mean-field theory can be
extended to other types of dynamics such as SIR spreading or
even cascading processes. Our work suggests the importance of
accurately identifying the edge activation mechanisms responsible
for spreading processes in the real world, which are key to
determining whether an equivalence to Markovian dynamics
exists so as to gain a deeper understanding of the underlying
spreading process. Besides the two edge activation mechanisms,
other types of edge activation mechanisms have been studied in
the literature. For example, rule 2 in ref. 43 prescribes that the age
of an active link is solely determined by the age of the infected
node, which bears certain similarity but not identical to type-II
edge activation studied in this paper. For this edge activation
mechanism, an equivalence between non-Markovian and Mar-
kovian processes holds (see Supplementary Note 9 and Supple-
mentary Figs. 8–10 for details). The issues of dynamical
correlation and network communicability66 are also critically
important to non-Markovian spreading dynamics, for which a
theoretical framework, e.g., a higher-order mean field framework,
is lacking. An interesting question is whether the equivalence
holds in the higher-order mean field framework or in a transient
process. For example, when the system is in transient, the dis-
tribution of the state age varies with time, making invalid
dimension reduction in the analysis of the infection and sus-
ceptible probabilities. At the present, it is not feasible to deter-
mine whether there is an equivalences between non-Markovian
and Markovian processes in the transient regime.

Methods
Random number generation. Taking ψinf(κ) for example, its survival probability
distribution is expressed as Ψinf ðκÞ ¼

Rþ1
κ ψinf ðκ′Þdκ′. In order to obtain a random

number κ, we generate a random number p uniformly distributed between zero and
one and solve the equation

Ψinf ðκÞ ¼ p: ð45Þ
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Fig. 5 Demonstration of approximate equivalence. Shown are the stationary
infected density with type-I activation mechanism for a random, b scale-
free, and c Hamsterster networks, which are the same as the networks in
Fig. 3, for βR= 0.5. Solid, dashed, dotted, and dot-dashed curves represent
the results for αR= 0.5, 1, 2, 4, respectively. Triangles and circles denote
the results from the Markovian process and its analytical solution,
respectively. An approximate equivalence arises in the regime of large
infected density
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For the Weibull distribution in Eq. (21) and the Beta distribution in Eq. (44), the
value of κ is given by

κ ¼ βIðln
1
p
Þ1=αI ð46Þ

and

κ ¼ 1$ p1=γ; ð47Þ

respectively. We calculate the elapsed time τ with the distribution ψrec(τ) in a
similar way.

Simulation method. In a network, each infected node or active edge is marked
with an event-time defined as the absolute time when the infected node will recover
or when the active edge will transmit the disease. The event-times of susceptible
nodes and non-active edges are set as +∞. All nodes and edges are assigned to a
min-heap according to their event-times. Once the event-time of a node or an edge
has changed, its position will be shifted in the min-heap instantaneously. Thus, the
event-time of the node or edge at the root must be minimum. At each step, it is
only necessary to make the node or edge at the root of the min-heap recover or
transmit the disease62, respectively.

For an infected node located at the root, meaning that the recovery event of
the node will occur first among all the events including recovery and disease-
transmitting events in the network, we update the absolute time t to the event-
time of the node and let the node recover. The event-time of the node then turns
into +∞. This recovery event will lead to state changes of some edges connected
to the node. If some edges become active, we assign them new event-times κ+ t,
where κ is a random number generated from the distribution ψinf(κ) and t is the
current absolute time. The new event-time means the active edge will transmit
disease at the absolute time κ+ t. If some edges become non-active, their event-
times become +∞.

If an active edge is located at the root, i.e., the disease transmission event of the
edge will occur first among all the events, we update the absolute time t to the
event-time of the edge, and then let the edge transmit disease. This transmission
event can lead to a series of state changes of some nodes or edges and,
consequently, the event-times of the new active and non-active edges are renewed
to κ+ t and +∞, respectively. In addition, the event-time of a new infected node
will be updated to τ+ t, where τ follows the distribution ψrec(τ).

Data availability
The source data underlying Figs. 3–5 and Supplementary Figs. 2–9 are provided as a
Source Data file.

Code availability
C++ code to reproduce the data in the main text and the Supplementary Information is
available at https://github.com/fengmi9312/Codes-for-NCOMMS-19-00777.
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SUPPLEMENTARY NOTE 1. STEADY STATE SOLUTION OF NON-MARKOVIAN

SIS MODEL WITH TYPE-I ACTIVATION MECHANISM

When the system reaches a steady state, the di↵erential equations governing the evolution
of the probability density functions of node i in the infected and susceptible states are,
respectively,

dĨ

i

(⌧)

d⌧

= �!

rec

(⌧)Ĩ
i

(⌧) and (1)

dS̃

i

(⌧)

d⌧

= �S̃

i

(⌧)
NX

j=1

a

ij

Z
+1

0

!

inf

[min(⌧, ⌧ 0)]Ĩ
j

(⌧ 0)d⌧ 0, (2)

with the initial condition
Ĩ

i

(0) = S̃

i

(0). (3)

From Supplementary Eq. (1), we have

Ĩ

i

(⌧) = Ĩ

i

(0) 
rec

(⌧), (4)

where  
rec

(⌧) = e

�
R ⌧
0 !rec(⌧

0
)d⌧

0
. From Supplementary Eq. (2), we have

S̃

i

(⌧) = S̃

i

(0)e�
R ⌧
0

PN
j=1 aij

R+1
0 !inf[min(⌧

0
,⌧

00
)]

˜

Ij(⌧
0
)d⌧

0
d⌧

00
. (5)

Substituting, respectively, Supplementary Eqs. (4) and (5) into

Ĩ

i

=

Z
+1

0

Ĩ

i

(⌧)d⌧ and S̃

i

=

Z
+1

0

S̃

i

(⌧)d⌧, (6)

we obtain the stationary distribution of node i being in the infected and susceptible state,
respectively, as

Ĩ

i

= Ĩ

i

(0)

Z
+1

0

 
rec

(⌧)d⌧ and (7)

S̃

i

= S̃

i

(0)

Z
+1

0

e

�
R ⌧
0

PN
j=1 aij

R+1
0 !inf[min(⌧

0
,⌧

00
)]

˜

Ii(⌧
0
)d⌧

0
d⌧

00
d⌧ . (8)

Defining the e↵ective recovery rate as

�

e↵

= 1/

Z
+1

0

 
rec

(⌧)d⌧ , (9)

we can reduce Supplementary Eq. (7) to

Ĩ

i

=
Ĩ

i

(0)

�

e↵

. (10)

Combining Supplementary Eqs. (4) and (10), we obtain

Ĩ

i

(⌧) = Ĩ

i

�

e↵

 
rec

(⌧). (11)
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Equation (8) can then be rewritten as

S̃

i

= S̃

i

(0)

Z
+1

0

e

��e↵
R ⌧
0

R+1
0 !inf[min(⌧

0
,⌧

00
)] rec(⌧

0
)d⌧

0
d⌧

00 PN
j=1 aij

˜

Ij
d⌧ . (12)

Dividing Supplementary Eq. (10) by Supplementary Eq. (12) and using the initial condition
Supplementary Eq. (3), we obtain

�

e↵

Ĩ

i

=
S̃

iR
+1
0

e

��e↵
R ⌧
0

R+1
0 !inf[min(⌧

0
,⌧

00
)] rec(⌧

0
)d⌧

0
d⌧

00 PN
j=1 aij

˜

Ij
d⌧

, (13)

which can be further reduced to

Ĩ

i

=
S̃

i

�

e↵

R
+1
0

e

�⌦(⌧)
PN

j=1 aij
˜

Ij
d⌧

, (14)

where

⌦(⌧) = �

e↵

Z
⌧

0

Z
+1

0

!

inf

[min(⌧ 0, ⌧ 00)] 
rec

(⌧ 0)d⌧ 0d⌧ 00. (15)

Note that ⌦(0) = 0. Defining #(⌧) as the inverse function of ⌦(⌧), we have #(0) = 0.
Equation (14) can be rewritten as

Ĩ

i

=
S̃

i

�

e↵

R
+1
0

e

�⇠

d[#( ⇠PN
j=1 aij

˜

Ij
)]
, (16)

where ⇠ = ⌦(⌧)
P

N

j=1

a

ij

Ĩ

j

. Expanding #(⌧) as a Taylor series about ⌧ = 0, we have

#(
⇠

P
N

j=1

a

ij

Ĩ

j

) = #(0) +
+1X

n=1

1

n!
#

(n)(0)(
⇠

P
N

j=1

a

ij

Ĩ

j

)n, (17)

where #(0) = 0 and #

(n)(0) is the nth derivative of #(n)(⌧). Note that, in order to have
meaningful solutions, the right side of Supplementary Eq. (17) must converge. Combining
Supplementary Eqs. (16) and (17), we obtain

Ĩ

i

=
S̃

i

�

e↵

R
+1
0

e

�⇠
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+1
n=1
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, (18)

which can be rearranged as
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(n)(0)( 1PN
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e
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. (19)

Using the property of the gamma function

�(n) ⌘
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+1
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d⇠ = (n� 1)!, (20)
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we have

Ĩ

i

=
S̃

i

�

e↵

P
+1
n=1

#

(n)(0)( 1PN
j=1 aij

˜
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)n
, (21)
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1
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1
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The higher order derivatives of the inverse function #(⌧) can be calculated as [1]

#

(1)(0) =
1

⌦(1)(0)
. (23)

For n � 2, we have
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(#(i)(0))(�x)i]n
. (24)

For the non-Markovian dynamics to be equivalent to Markovian, it is necessary that Sup-
plementary Eq. (22) be reduced to the form of the steady state equation for Markovian
spreading dynamics. The necessary condition is then that the quantity #(n)(0) must be zero
for 8n > 1. In this case, Supplementary Eq. (22) can be rewritten as

1

Ĩ

i

=
�

e↵

#

(1)(0)

S̃

i

P
N

j=1

a

ij

Ĩ

j

, (25)

Since #(1)(0) is a finite value, we have #(⌧) = #

(1)(0)⌧ . The inverse function of #(⌧) is
⌦(⌧) = ⌧/#

(1)(0). From Supplementary Eq. (15), we get the first-order and second-order
derivatives of ⌦(⌧) as
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Z
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(⌧ 0) 
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(⌧ 0)d⌧ 0 = 0. (27)

Because
R
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(⌧ 0)d⌧ 0 is a monotonically decreasing function of ⌧ in Supplementary E-

q. (27), we have !0
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(⌧) = 0 and !
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(⌧) = 1/#(1)(0) while the integral
R
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⌧

 
rec

(⌧ 0)d⌧ 0

does not decrease to zero. Using the fact that the infection time distribution follows the
distribution
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)d

0
, (28)

we have
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(⌧) =
1

#

(1)(0)
e

�⌧
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, (29)

which is an exponential time distribution typical of a Markovian process and strictly follows
the stationary state of Supplementary Eq. (25). If, for ⌧ = ⌧

0

, the following integral vanishes,
Z

+1

⌧0

 
rec

(⌧ 0)d⌧ 0 = 0, (30)
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we then have !

0
inf

(⌧
0

) 6= 0 and !

inf

(⌧
0

) 6= 1/#(1)(0). However, in this case the quantities
!

0
inf

(⌧
0

) and !

inf

(⌧
0

) are not physically meaningful because an infected node has recovered
when the value of the integral

R
+1
⌧

 
rec

(⌧ 0)d⌧ 0 decreases to zero. Taken together, the analysis
enables us to draw the conclusion that, for SIS processes with type-I activation mechanis-
m, only when the infection times are distributed exponentially will the whole process be
equivalent to a Markovian process.

SUPPLEMENTARY NOTE 2. THEORETICAL ANALYSIS OF NON-MARKOVIAN

SIS MODEL WITH TYPE-II ACTIVATION MECHANISM

We first derive the infection rate ⌘(⌧) of infected node j of age ⌧ . Define A

l i

(, ⌧ ; t) as
the two-dimensional probability density function that the edge l  i is active with age 

and the infection age of node i is ⌧ . The probability density function that node i stays in
the infected state aged ⌧ at time t is given by

I

i

(⌧ ; t) = lim
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�X
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A

l i
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A

l i
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It is worth noting that, for ⌧ = 0, the following equality holds:

I

i

(0; t) = lim
�!0

A

l i

(0, 0; t)� = A

l i

(0, 0; t)d. (32)

At time t, the probability that the edge l  i is active with age ranging from  to +d and
node i is in the infected state with infection age in the interval (⌧, ⌧+d⌧) is A

l i

(, ⌧, t)dd⌧ .
In this case, node i returns to the susceptible state with probability !

rec

(⌧)d⌧ . The evolution
equation of I

i

(⌧ ; t) is

(
@

@⌧

+
@

@t
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(⌧ ; t) = �!
rec

(⌧)I
i

(⌧ ; t). (33)

The probability that the edge l  i transmits disease outward is !
inf

()d. The probability
that neither recovery nor transmission occurs is 1 � !

rec

(⌧)d⌧ � !

inf

()d. The evolution
equation of A

l i

(, ⌧ ; t) can then be written as

(
@
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+
@
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+
@

@t
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l i
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inf

() + !

rec

(⌧)]A
l i

(, ⌧ ; t). (34)

Since an infected node i with infection age in the range from zero to +1 can transition
into the susceptible state aged zero insofar as recovery is possible, we obtain the probability
density function that node i returns to the susceptible state of zero age as

S

i

(0; t+ dt) =

Z
+1

0

Z
⌧

0

!

rec

(⌧)A
l i
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To describe the time evolution of S
i

(⌧ ; t), we assume that the ages of two connected nodes
are uncorrelated, and thus �

i j

(⌧ ; t) is the probability density function that node i in the
susceptible state of age ⌧ is infected by node j at time t. During the period (t, t + dt), a
susceptible node i aged ⌧ is infected by its neighbors with probability

P
N

j=1

a

ij

�
i j

(⌧ ; t)d⌧ ,
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Supplementary Figure 1. Mechanism of probability flows with type-II activation mechanism. The

magnitude of A
l i

(, ⌧ ; t) is represented by the color of the squares, where a darker color indicates

a larger value. a At time t, there are two distributions, A
l i

(, ⌧ ; t) and S
i

(⌧ ; t). b Each square in

A
l i

(, ⌧ ; t) loses probability densities !
inf

()dA
l i

(, ⌧ ; t) and !
rec

(⌧)d⌧A
l i
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(, ⌧ ; t)dd⌧ . Each block

of S
i

(⌧ ; t) losses probability density S
i

(⌧, t)
P

N

j=1

a
ij

�
i j

(⌧ ; t)d⌧ and converges in the integralR
+1
0

S
i

(⌧, t)
P

N

j=1

a
ij

�
i j

(⌧ ; t)d⌧ . c An amount of the density
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where N is the network size and a

ij

is the element of the network adjacency matrix. We
thus have
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(, ⌧ 0; t)dd⌧ 0. (37)

Regardless of the value of the active age, from zero to 1, of the edge l  i in the active
state, if it propagates the disease, it is still in the active state but of age zero. We thus have
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(0, ⌧ + d⌧ ; t+ dt) =

Z
⌧

0

!
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(⌧)A
l i

(, ⌧ ; t)d. (38)

Since a susceptible node i with any susceptibility age ranging from zero to1 can transition
into the infected state aged zero insofar as the infection process occurs, we obtain the
probability density function that the edge l  i becomes the active state aged ⌧ =  = 0 as

A
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Z
+1
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Supplementary Fig. 1 illustrates the probability flow between A

l i

(, ⌧ ; t) and S

i

(⌧ ; t) and
those in their respective interiors. To reduce the dimension of the evolution equations, we
define
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0
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i j

(, ⌧ ; t)d
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which is the infection rate ⌘(⌧ ; t) of an infected node j aged ⌧ at time t. Equation (37) can
be rewritten as
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From Supplementary Eq. (34), we get
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Supplementary Eq. (42) as
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Equation (38) can then be rewritten as
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Dividing both sides of the equation by I

j

(⌧ ; t) = I

j

(0; t � ⌧) 
rec

(⌧) [from Supplementary
Eq. (33)] and combining it with Supplementary Eq. (38), we have

⌘(⌧ ; t) =
A

i j

(0, ⌧ + d⌧ ; t+ dt)

I

j

(0; t� ⌧) 
rec

(⌧)
=

Z
⌧

0

A

i j

(0, ⌧ � ; t� ) 
inf

()

I

j

(0; t� ⌧) 
rec

(⌧ � ) d. (45)
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From Supplementary Eqs. (32) and (38) as well as the condition  
rec

(0) = 1, we get

⌘(⌧ ; t) =

Z
⌧�d⌧

0

A

i j

(0, ⌧ � ; t� ) 
inf

()

I

j

(0; t� ⌧) 
rec

(⌧ � )
d+  

inf

(⌧)

=

Z
⌧

d⌧

A

i j

(0, ⌧ + d⌧ � ; t+ dt� ) 
inf

(� d⌧)

I

j

(0; t� ⌧) 
rec

(⌧ + d⌧ � )
d+  

inf

(⌧).

(46)

Because of the relation
Z

d⌧

0

A

i j

(0, ⌧ + d⌧ � ; t+ dt� ) 
inf

(� d⌧)

I

j

(0; t� ⌧) 
rec

(⌧ + d⌧ � )
d! 0, (47)

Supplementary Eq. (46) can be written as

⌘(⌧ ; t) =

Z
⌧

0

A

i j

(0, ⌧ + d⌧ � ; t+ dt� ) 
inf

(� d⌧)

I

j

(0; t� ⌧) 
rec

(⌧ + d⌧ � )
d+  

inf

(⌧). (48)

Moreover, using the relations  
inf

(� d⌧) !  

inf

() and  
rec

(⌧ + d⌧ � ) !  
rec

(⌧ � ), we
can rewrite Supplementary Eq. (48) as

⌘(⌧ ; t) =

Z
⌧

0

A

i j

(0, ⌧ + d⌧ � ; t+ dt� ) 
inf

()

I

j

(0; t� ⌧) 
rec

(⌧ � )
d+  

inf

(⌧). (49)

With the definition of ⌘(⌧ ; t) in Supplementary Eq. (45), we get

⌘(⌧ ; t) =

Z
⌧

0

⌘(⌧ � ; t� ) 
inf

()d+  

inf

(⌧)

=

Z
⌧

0

⌘(; t� ⌧ + ) 
inf

(⌧ � )d+  

inf

(⌧)
(50)

For 8t � 0, we have
⌘(0; t) =  

inf

(0). (51)

Solving the partial derivative of t for Supplementary Eq. (50), we get

⌘

0
t

(⌧ ; t) =

Z
⌧

0

⌘

0
t

(; t� ⌧ + ) 
inf

(⌧ � )d. (52)

The partial derivative of t for ⌘(⌧ ; t) at ⌧ = 0 is thus zero:

⌘

0
t

(0; t) = 0, (53)

and ⌘0
t

(0; t� ⌧) = 0. From Supplementary Eq. (52), we obtain the solution series: ⌘0
t

(d⌧ ; t�
⌧ + d⌧) = 0, ⌘0

t

(2d⌧ ; t� ⌧ + 2d⌧) = 0, . . . , ⌘0
t

(⌧ ; t) = 0. We thus have

8t > 0, 8⌧  t, ⌘

0
t

(⌧ ; t) = 0, (54)

where ⌘(⌧ ; t) is independent of t. Letting ⌘(⌧) = ⌘(⌧ ; t), we rewrite Supplementary Eq. (50)
as

⌘(⌧) =

Z
⌧

0

⌘() 
inf

(⌧ � )d+  

inf

(⌧). (55)
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Performing Laplace transform on both sides of the equation, we obtain the following integral
equation:

⌘(⌧) =
1

2⇡i

Z
�+i1

��i1

 ̂

inf

(s)

1�  ̂

inf

(s)
e

s⌧

ds, (56)

where [2]

 ̂

inf

(s) =

Z
+1

0

 

inf

(⌧)e�s⌧d⌧ . (57)

Finally, Supplementary Eqs. (34), (36), (38) and (39) can be reduced to:

(
@

@⌧

+
@

@t

)I
i

(⌧ ; t) = �!
rec

(⌧)I
i

(⌧ ; t), (58)

(
@

@⌧

+
@

@t

)S
i

(⌧ ; t) = �S

i

(⌧, t)
NX

j=1

a

ij

�
i j

(⌧ ; t), (59)

I

i

(0; t+ dt) =

Z
+1

0

S

i

(⌧ ; t)
NX

j=1

a

ij

�
i j

(⌧ ; t)d⌧ , (60)

S

i

(0; t+ dt) =

Z
+1

0

!

rec

(⌧)I
i

(⌧ ; t)d⌧ , (61)

where

�
i j

(⌧ ; t) =

Z
t

0

⌘(⌧ 0)I
i

(⌧ 0, t)d⌧ 0. (62)

When the system reaches a steady state, we obtain the di↵erential equations of probability
density functions of node i being in the susceptible and infected states as

dĨ

i

(⌧)

d⌧

= �!
rec

(⌧)Ĩ
i

(⌧), (63)

dS̃

i

(⌧)

d⌧

= �S̃

i

(⌧)
NX

j=1

a

ij

Z
+1

0

⌘(⌧ 0)Ĩ
j

(⌧ 0)d⌧ 0, (64)

and
Ĩ

i

(0) = S̃

i

(0). (65)

Solving these equations, we obtain

�

e↵

Ĩ

i

=
S̃

iR
+1
0

e

��e↵
R ⌧
0

R+1
0 ⌘(⌧

0
) rec(⌧

0
)d⌧

0
d⌧

00 PN
j=1 aij

˜

Ij
. (66)

Defining

�

e↵

⌘
Z

+1

0

⌘(⌧) 
rec

(⌧)d⌧ , (67)

we can reduce the equation to

Ĩ

i

= �

e↵

S̃

i

NX

j=1

a

ij

Ĩ

j

, (68)

9



Combining Supplementary Eq. (56) and the definition of �
e↵

:

�

e↵

⌘
Z

+1

0

 
rec

(⌧)
1

2⇡i

Z
�+i1

��i1

 ̂

inf

(s)

1�  ̂

inf

(s)
e

s⌧

d⌧ds, (69)

and exchanging the integration order, we obtain

�

e↵

=
1

2⇡i

Z
�+i1

��i1

 ̂

inf

(s)[ ̂
rec

(�s)� 1]

1�  ̂

inf

(s)

ds

s

, (70)

where

 ̂

rec

(s) =

Z
+1

0

 

rec

(⌧)e�s⌧

d⌧ . (71)

Note that
1

2⇡i

Z
�+i1

��i1

 ̂

inf

(s)

1�  ̂

inf

(s)

ds

s

= 0, (72)

when we take the integration path as a contour of an infinite radius, i.e., s = re

i✓, where
r ! +1, �⇡

2

< ✓ <

⇡

2

, and

lim
r!+1

 ̂

inf

(rei✓)

1�  ̂

inf

(rei✓)
= 0. (73)

We thus have

�

e↵

=
1

2⇡i

Z

C

 ̂

inf

(s) ̂
rec

(�s)

1�  ̂

inf

(s)

ds

s

, (74)

where C is a contour that encloses the entire Re(s) > 0 region [2].

SUPPLEMENTARY NOTE 3. SECOND-ORDER MEAN FIELD THEORY AND

ERROR ANALYSIS

A. Second-order mean field theory

For SIS type of spreading dynamics, there are three distinct types of mean field theories,
in the order of increase in the prediction accuracy and computational complexity: (1) the
classical mean field theory based on the assumption that all nodes are equivalent [3], (2)
heterogeneous mean field theory in which all the nodes with the same degree are assumed to
be equivalent to each other [4], and (3) quench mean field theory where the state changes of
individual nodes are treated separately [5, 6]. In these theories, the dynamical correlation
between any pair of connected nodes is ignored, i.e., the states of any two connected nodes
are regarded as independent. The three types of theories thus belong to first-order mean
field analysis. To capture the dynamical correlation, a second-order approximation taking
into account the evolution of the states of nodal pairs together is needed [7–13]. In fact, the
pairwise approximation approach is a second-order theory, which regards nodal pairs with
the same degree as equivalent [7–9, 13]. The master equation approach deals with not only
the state changes of the nodes with the same degree, but also the state changes of their
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neighbors. With approximations, it can be reduced to the evolution equations of pairwise
approximation and mean field framework [14].

Here we develop a second-order mean field theory to deal with non-Markovian SIS dy-
namics. We first define the states of every pair of nodes. Specifically, for each pair of nodes,
there are four di↵erent states: the hIIi or hAAi state indicating that both nodes have been
infected, the hSIi or hSAi state denoting that one node is susceptible and the other has
been infected, the hISi or hASi state specifying that one node has been infected and the
other is susceptible, and the hSSi state signifying that both nodes are susceptible. Note
that the nodal pair states hIIi, hSIi, hISi are for type-I edge activation mechanism, and
hAAi, hSAi, hASi are for type-II edge activation mechanism.

The computational complexity required by the second-order mean field theory can often
be prohibitively high. To make an analysis feasible, we restrict our study to the homogeneous
case where the nodal pairs are equivalent in the Erdös-Rényi (ER) type of random networks.
For type-I edge activation mechanism, we define hIIi(⌧

1

, ⌧

2

; t) as the probability density
function that one node in a pair is in the infected state with the age of ⌧

1

and the other
node is in the susceptible state with the age of ⌧

2

at time t. Similarly, the probabilities
hSIi(⌧

1

, ⌧

2

; t), hISi(⌧
1

, ⌧

2

; t), and hSSi(⌧
1

, ⌧

2

; t) can be defined. The evolution equations of
the pair node states for type-I activation are

(
@

@⌧

+
@

@t

)I(⌧ ; t) = �!

rec

(⌧)I(⌧ ; t), (75)

S(0; t+ dt) =

Z
+1

0

!

rec

(⌧)I(⌧ ; t)d⌧ , (76)

(
@

@⌧

+
@

@t

)S(⌧ ; t) = �S(⌧ ; t)hki�(⌧ ; t), (77)

I(0; t+ dt) =

Z
+1

0

S(⌧ ; t)hki�(⌧ ; t)d⌧ , (78)

(
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hIIi(⌧
1

, ⌧

2

; t) = �[!
rec

(⌧
1

) + !

rec

(⌧
2

)]hIIi(⌧
1

, ⌧

2

; t), (79)

hSIi(0, ⌧
2

; t) =

Z
+1

0

!

rec

(⌧
1

)hIIi(⌧
1

, ⌧

2

; t)d⌧
1

, (80)

hISi(⌧
1

, 0; t) =

Z
+1

0

!

rec

(⌧
2

)hIIi(⌧
1

, ⌧

2

; t)d⌧
2

, (81)

(
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hSIi(⌧
1

, ⌧

2

; t)

=� {(hki � 1)�(⌧
1

; t) + !

inf

[min(⌧
1

, ⌧

2

)] + !

rec

(⌧
2

)}hSIi(⌧
2

, ⌧

2

; t),
(82)

hIIi(0, ⌧
2

; t) =

Z
+1

0

{(hki � 1)�(⌧
1

; t) + !

inf

[min(⌧
1

, ⌧

2

)]}hSIi(⌧
1

, ⌧

2

; t)d⌧
1

, (83)

hSSi(⌧
1

, 0; t) =

Z
+1

0

!

rec

(⌧
2

)hSIi(⌧
1

, ⌧

2

; t)d⌧
2

, (84)

(
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hISi(⌧
1

, ⌧

2

; t)

=� {!
rec

(⌧
1

) + (hki � 1)�(⌧
2

; t) + !

inf

[min(⌧
1

, ⌧

2

)]}hSIi(⌧
1

, ⌧

2

; t),
(85)
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hSSi(0, ⌧
2

; t) =

Z
+1

0

!

rec

(⌧
1

)hISi(⌧
1

, ⌧

2

; t)d⌧
1

, (86)

hIIi(⌧
1

, 0; t) =

Z
+1

0

{(hki � 1)�(⌧
2

; t) + !

inf

[min(⌧
1

, ⌧

2

)]}hISi(⌧
1

, ⌧

2

; t)d⌧
2

, (87)

(
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hSSi(⌧
1

, ⌧

2

; t)

=� [(hki � 1)�(⌧
1

; t) + (hki � 1)�(⌧
2

; t)]hSSi(⌧
1

, ⌧

2

; t),
(88)

hISi(0, ⌧
2

; t) =

Z
+1

0

(hki � 1)�(⌧
1

; t)hSSi(⌧
1

, ⌧

2

; t)d⌧
1

, (89)

hSIi(⌧
1

, 0; t) =

Z
+1

0

(hki � 1)�(⌧
2

; t)hSSi(⌧
1

, ⌧

2

; t)d⌧
2

, (90)

where

�(⌧ ; t) =

Z
+1

0

!

inf

[min(⌧, ⌧
2

)]
hSIi(⌧

1

, ⌧

2

; t)

S(⌧ ; t)
d⌧

2

. (91)

Equations (79)-(81) describe that, in the hIIi nodal pair state, recovery of the infected node
with age ⌧

1

converts the pair into the hSIi state, and the second node recovers to turn the
pair into the hISi state. Equations (82)-(84) represent that, in the hSIi state, infection of
the susceptible node turns the nodal pair into the hIIi state, while recovery of the infected
node changes the pair into the hSSi state. Equations (85)-(87) dictate that, in hISi nodal
pair state, recovery of infected node switches the pair into the hSSi state while infection
of the susceptible node converts the pair into the hIIi state. Equations (88)-(90) indicate
that, in the hSSi state, infection of the susceptible node with age ⌧

1

transforms the pair into
the hSIi state, while infection of the susceptible node with age ⌧

2

converts the pair into the
hISi state.

For type-II edge activation mechanism, we define hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t) as the probability
density function that a directed edge from an infected node with age 

1

to an infected node
with age 

2

is in the active state at age 
1

, while the inverted edge is in the active state with
age 

2

. We define the probability density functions hSAi(⌧
1

,

2

, ⌧

2

; t), hASi(
1

, ⌧

1

, ⌧

2

; t), and
hSSi(⌧

1

, ⌧

2

; t) accordingly. The evolution equations of a nodal pair states can be written as

(
@

@

+
@

@⌧

+
@

@t

)A(, ⌧ ; t) = �[!
inf

() + !

rec

(⌧)]A(, ⌧ ; t), (92)

A(0, ⌧ + dt; t+ dt) =

Z
+1

0

!

inf

()A(, ⌧ ; t)d, (93)

S(0; t+ dt) =

Z
+1

0

!

rec

(⌧)A(, ⌧ ; t)d⌧ , (94)

(
@

@⌧

+
@

@t

)S(⌧ ; t) = �S(⌧ ; t)hki�(⌧ ; t), (95)

A(0, 0; t+ dt) =

Z
+1

0

S(⌧ ; t)hki�(⌧ ; t)d⌧ , (96)

(
@

@

1

+
@

@⌧

1

+
@

@

2

+
@

@⌧

2

+
@

@t

)hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t)

=� [!
inf

(
1

) + !

rec

(⌧
1

) + !

inf

(
2

) + !

rec

(⌧
2

)]hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t),
(97)
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hAAi(0, ⌧
1

,

2

, ⌧

2

; t) =

Z
+1

0

!

inf

(
1

)hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t)d
1

, (98)

hSAi(0,
2

, ⌧

2

; t) =

Z
+1

0

!

rec

(⌧
1

)hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t)d⌧
1

, (99)

hAAi(
1

, ⌧

1

, 0, ⌧
2

; t) =

Z
+1

0

!

inf

(
2

)hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t)d
2

, (100)

hASi(
1

, ⌧

1

, 0; t) =

Z
+1

0

!

rec

(⌧
2

)hAAi(
1

, ⌧

1

,

2

, ⌧

2

; t)d⌧
2

, (101)

(
@

@⌧

1

+
@

@

2

+
@

@⌧

2

+
@

@t

)hSAi(⌧
1

,

2

, ⌧

2

; t)

=� {(hki � 1)�(⌧
1

; t) + !

inf

(
2

) + !

rec

(⌧
2

)}hSAi(⌧
1

,

2

, ⌧

2

; t),
(102)

hAAi(0, 0,
2

, ⌧

2

; t) =

Z
+1

0

(hki � 1)�(⌧
1

; t)hSAi(⌧
1

,

2

, ⌧

2

; t)d⌧
1

, (103)

hAAi(0, 0, 0, ⌧
2

; t) =

Z
+1

0

!

inf

(
2

)hSAi(⌧
1

,

2

, ⌧

2

; t)d
2

, (104)

hSSi(⌧
1

, 0; t) =

Z
+1

0

Z
+⌧2

0

!

rec

(⌧
2

)hSAi(⌧
1

,

2

, ⌧

2

; t)d
2

d⌧

2

, (105)

(
@

@

1

+
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hASi(
1

, ⌧

1

, ⌧

2

; t)

=� {!
inf

(
2

) + !

rec

(⌧
1

) + (hki � 1)�(⌧
2

; t)}hASi(
1

, ⌧

1

, ⌧

2

; t),
(106)

hAAi(0, ⌧
1

, 0, 0; t) =

Z
+1

0

!

inf

(
1

)hASi(
1

, ⌧

1

, ⌧

2

; t)d
1

, (107)

hSSi(0, ⌧
2

; t) =

Z
+1

0

Z
+⌧1

0

!

rec

(⌧
1

)hASi(
1

, ⌧

1

, ⌧

2

; t)d
1

d⌧

1

, (108)

hAAi(
1

, ⌧

1

, 0, 0; t) =

Z
+1

0

(hki � 1)�(⌧
2

; t)hASi(
1

, ⌧

1

, ⌧

2

; t)d⌧
2

, (109)

(
@

@⌧

1

+
@

@⌧

2

+
@

@t

)hSSi(⌧
1

, ⌧

2

; t)

=� [(hki � 1)�(⌧
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Equations (98)-(101), respectively, describe that in the hAAi nodal pair state, disease trans-
mission from an infected node with age ⌧

1

and directed edge age 

1

to an infected node of
age ⌧

2

and directed edge age 

2

converts the nodal pair into the hAAi state with 

1

= 0,
the recovery of an infected node with age ⌧

1

transforms the pair into the hSAi state, disease
transmission from the infected node with age ⌧

2

and directed edge age 

2

to the infected

13



node of age ⌧
1

and directed edge age 
1

turns the pair into the hAAi state with 

2

= 0, and
the recovery of the infected node with age ⌧

2

places the pair into the hASi state. Similarly,
Supplementary Eqs. (102)-(105), respectively, indicate that in the hSAi state, the suscep-
tible node is infected by its neighbors other than the infected node aged at ⌧

2

so that the
pair is turned into the hAAi state, the susceptible node is infected by the infected node of ⌧

2

and so the pair gets into the hAAi state, and recovery of the infected node aged at ⌧
2

places
the pair into the hSSi state. Equations (106)-(109) indicate, respectively, that in the hASi
state, disease transmission from an infected node with age ⌧

1

and directed edge age 

1

to a
susceptible node of age ⌧

2

changes the pair into the hAAi state, recovery of the infected node
with age ⌧

1

transforms the pair into the hSSi state, and the susceptible node is infected by
its neighbors other than the infected node and thus the nodal pair transitions into the hAAi
state. Equations (110), (111), and (112) mean, respectively, that for the hSSi state pair,
the susceptible node aged at ⌧

1

is infected and thus the pair moves into the hASi state, and
the susceptible node aged at ⌧

2

is infected and so the pair changes into the hSAi state.
To verify the accuracy of the second-order mean field theory, we set the infection time and

recovery time distributions to be the Weibullean type. Supplementary Fig. 2 shows that the
theory is capable of predicting the simulation results more accurately than the first-order
theory for ER random networks, even for the situation where the disease has a high decay
rate [e.g., ↵

I

= 4 in Supplementary Figs. 2(c) and 2(d)].

B. Error Analysis

Our development of the second-order theory, due to its relatively high accuracy, enables
an analysis of the source of errors in the first-order mean field theory through a comparison
between the results from the first-order and the second-order theories. (For a network
with N nodes, the most accurate description is the Nth-order mean field theory, but it is
practically infeasible to analyze theories with order higher than two.) Because the dynamical
correlation between any nodal pair is completely ignored in the first-order theory, the error
analysis enables an understanding of the e↵ects of dynamical correlation on non-Markovian
dynamics with respect to di↵erent edge activation mechanisms.

To begin a systematic error analysis, we rewrite the relevant equations from the first-order
theory in a similar form to those in the second-order theory. Recall that the assumptions
employed in the first-order theory, which are

hIIi(⌧
1

, ⌧

2

; t) = I(⌧
1

; t)I(⌧
2

; t), (114)

hSIi(⌧
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1

; t)I(⌧
2

; t), (115)
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1
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2
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1

; t)S(⌧
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; t), (116)

hSSi(⌧
1
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2

; t) = S(⌧
1

; t)S(⌧
2

; t), (117)
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1

, ⌧

1

,

2

, ⌧

2

; t) = A(
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1

; t)A(
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; t), (119)

hASi(
1
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; t) = A(
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; t)S(⌧
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; t). (120)
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Supplementary Figure 2. Comparison of time evolution between simulated and theoretical results.

a,b Time evolution for type-I and type-II mechanism, respectively. c,d Extinction process with

↵
I

= 4 for type-I and type-II mechanism, respectively. In all panels, the solid symbols represent

the simulation results averaged over 100 realizations on ER random networks, the open symbols

represent the results of theoretical solutions obtained from the first-order mean field theory, and

the half solid symbols correspond to the theoretical results from Supplementary Eqs. (75)-(113) in

the second-order theory. Diamonds, circles, triangles, and stars are for ↵
I

= 0.5, 1, 2, 4, respectively.

The random networks have size N = 104 and mean degree hki ⇡ 10. Other parameters are �
I

= 1,

↵
R

= 2, and �
R

= 0.5.

For hSIi(⌧
1

, ⌧

2

; t), we can obtain its evolution equation as
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For type-I edge activation mechanism, we can get another form of the first-order mean field
theory as
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For type-II edge activation mechanism, we have
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For type-I edge activation mechanism, we compare Supplementary Eqs. (79)-(81) with Sup-
plementary Eqs. (124)-(126) to assess the dynamical correlation of the hIIi state. We find
that the two groups of equations are essentially identical, so there is no dynamical corre-
lation between two infected nodes. Comparing Supplementary Eqs. (82) and (83), we see
that, in Supplementary Eqs. (127) and (128) !

inf

[min(⌧
1

, ⌧

2

)] is replaced by �(⌧
1

; t), indi-
cating that the first-order mean field theory ignores any temporal correlation between an
infected node and a susceptible node, enlarging the bias in describing the hSIi state. For
the hISi state, the method of analysis is the same as that for the hSIi state. For the hSSi
state, we compare Supplementary Eqs. (88)-(90) with Supplementary Eqs. (133)-(135) and
find that the quantity hki � 1 is replaced by hki. This means that the first-order mean field
theory attempts to include the non-existent process of infection between two susceptible
nodes, which is another source of error.

For type-II edge activation mechanism, we compare Supplementary Eqs. (97)-(101) with
Supplementary Eqs. (137)-(141) to assess the dynamical correlation of the hAAi state. Note
that the two groups of equations are identical, so there is no dynamical correlation between
any pair of infected nodes. For the hSAi state, we compare Supplementary Eqs. (102)-(103)
with Supplementary Eqs. (142)-(143) and identify the simple replacement of hki � 1 by
hki. In addition, the quantity hAAi(0, 0, 0, ⌧

2

; t) in Supplementary Eq. (144) is replaced by
hSAi(

1

, ⌧

1

, 0, ⌧
2

; t) in Supplementary Eq. (104). In the first-order equations, the infection
of a susceptible node from any of its neighbors and the disease transmission through the
active edge are considered as two independent processes. Specifically, the susceptible node
would be infected by all its neighbors including the infected node [see Supplementary E-
q. (143)], but disease transmission through such an active edge cannot result in the infection
of the susceptible node [see Supplementary Eq. (144)]. This means that the first-order mean
field theory ignores the causality between disease transmission through an active edge and
infection of the susceptible node. For the hSSi state, we compare Supplementary Eqs. (110)-
(112) with Supplementary Eqs. (150)-(152), and find that hki�1 in the latter is replaced by
hki in the former, which means that the first-order mean field erroneously takes into account
the non-existent infection process between two susceptible nodes.

The error analysis indicates that the two activation rules have distinct e↵ects of dynamical
correlation on active edges. For type-I edge activation mechanism, the errors in the first-
order mean field theory mainly result from the temporal correlations on active edges, while
for type-II edge activation mechanism, the errors are caused by the causality between disease
transmission through the active edge and infection of the susceptible node.
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Supplementary Figure 3. Transient time versus ↵
I

. The extent of the infection time distribution

is characterized by ↵
I

, where a smaller value of ↵
I

corresponds to a narrower distribution. Panels

a-b are for results from the SIS model with type-I activation and type-II activation mechanisms,

respectively. The solid and open symbols represent simulation and theoretical results, respectively.

Diamonds, circles, and triangles, respectively, are for random, scale-free and Hamsterster networks.

SUPPLEMENTARY NOTE 4. EFFECT OF INFECTION TIME DISTRIBUTION

ON TRANSIENT TIME

The e↵ect of the inter-event time distribution on the speed of spreading dynamics is an
issue of interest [15–19]. Because the time that the system has reached a steady state cannot
be sharply defined, we set the empirical rule to determine the transient time T

half

as the
time at which the infected density reaches the average value between the initial density I(0)
and the steady-state density Ĩ. Supplementary Fig. 3 shows that a narrower distribution
of the inter-event times, which corresponds to a smaller value of ↵

I

, makes it easier for the
system to reach a final steady state.

SUPPLEMENTARY NOTE 5. EFFECT OF DEGREE DISTRIBUTION ON TRAN-

SIENT TIME

In general, the network topology can a↵ect the spreading speed as well [20–25]. To
address this issue, we investigate the relationship between transient lifetime and the degree
distribution. To be concrete, we study the transient time on scale-free networks constructed
from the uncorrelated configuration model [28]. Supplementary Fig. 4(a) shows that a
smaller value of the power-law degree exponent � enables the spreading dynamics to reach
its steady state faster. The lower-cuto↵ degree D

low

of the degree distribution can also a↵ect
the transient lifetime, as shown in Supplementary Fig. 4(b), where a larger value of D

low

can
also expedite the spreading dynamics in approaching the final steady state. These results
indicate that e↵ects of degree distribution on transient time for non-Markovian spreading
dynamics are consistent with those for Markovian dynamics.
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Supplementary Figure 4. E↵ect of network degree distribution on transient lifetime. Shown is the

transient time versus two specific network structural parameter: power-law degree exponent � and

lower-cuto↵ degree D
low

. In general, a smaller value of � corresponds to the network with more

hub nodes. a-b Results for SIS dynamics with respect to � and D
low

, respectively. The solid and

open symbols represent simulation and theoretical results, respectively. Diamonds and circles are

for type-I and type-II activation, respectively. In a, the value of D
low

is fixed at five, while that

of � is set to be 2.3 in panel b. The networks have size N = 104 and the structural cuto↵ is

characterized by the maximum degree k
max

⇠ N1/2. Other parameters are ↵
I

= 2, �
I

= 1, ↵
R

= 2,

and �
R

= 0.5.

SUPPLEMENTARY NOTE 6. STATIONARY PROBABILITY DENSITY DIS-

TRIBUTIONS

To validate our proposed first-order mean field theory for non-Markovian processes, we
examine the stationary probability density functions Ĩ(⌧) and S̃(⌧) defined as

Ĩ(⌧) =

P
N

i=1

Ĩ

i

(⌧)

N

, (154)

S̃(⌧) =

P
N

i=1

S̃

i

(⌧)

N

, (155)

and compare the theoretical predictions with the simulation results in Supplementary Fig. 5.
Especially, we count the numbers of infected and susceptible nodes at every discrete state
age (at the age di↵erence �⌧ = 0.001) when the system reaches a steady state, and divide
the numbers by �⌧ ⇥ N to get the simulated stationary probability density. The theoret-
ical predictions agree with the simulation results for random, scale-free, and Hamsterster
networks. The di↵erence between SIS models with type-I and type-II edge activation mech-
anisms is that the results of S̃(⌧) for the former decrease more smoothly than the latter in
the region of small ⌧ values for ↵

I

= 2, 4, indicating that newly recovered nodes in the latter
are more susceptible to infection than the ones in the former. For ↵

I

= 2, 4, the infection
rate increases with the age of the active edge. By type-II edge activation mechanism, the
ages of the active edges depend only on the infected nodes and thus may be greater than
those in type-I edge activation, resulting in some greater infection rate.
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Supplementary Figure 5. Comparison of stationary probability density distributions between simu-

lated and theoretical results. Panels in the first two rows show the results from the SIS model with

type-I activation mechanism, and those in the last two rows present the results for the model with

type-II mechanism. Panels in the first and third rows present the results of Ĩ(⌧) while those in the

second and fourth rows demonstrate the results of S̃(⌧). Panels in the three columns (from left to

right) are simulated or solved from theoretically derived evolution equations for random, scale-free

and Hamsterster networks, respectively. The solid and open symbols represent simulation and

theoretical results, respectively. Diamonds, circles, triangles, and stars, respectively, correspond to

↵
I

= 0.5, 1, 2, 4. The random and scale-free networks have size N = 104 and mean degree hki ⇡ 10,

and the Hamsterster network parameters are N = 2426 and hki ⇡ 13.7. Other parameters are

�
I

= 1, ↵
R

= 2, and �
R

= 0.5. Note that the lack of data points in the random network for ↵
I

= 4

is due to the extinction of the infected density.

SUPPLEMENTARY NOTE 7. SPECIAL CASE I: MARKOVIAN EQUIVALENCE

OF NON-MARKOVIAN SIS MODEL WITH TYPE-I EDGE ACTIVATION MECH-

ANISM

For ↵

I

= 1, the Weibull distribution reduces to an exponential distribution. In this
case, the non-Markovian SIS with type-I activation mechanism is completely equivalent to

21



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Random Network

 R=0.5

 R=1.0

 R=2.0

 R=4.0
 Markovian Simulation
 Markovian Theory

a

0.0 0.2 0.4 0.6 0.8 1.0

Scale-free Network
b

0.0 0.2 0.4 0.6 0.8 1.0

Hamsterster Network

 

 

c

Supplementary Figure 6. Comparison of stationary infected density with type-I edge activation

mechanism. Panels a-c are for results from random, scale-free, and Hamsterster networks, re-

spectively. Solid, dashed, dotted, and dot-dashed curves, respectively, represent the results for

↵
R

= 0.5, 1, 2, 4. Triangles and circles correspond to results from the Markovian process and the

analytical solution, respectively. Other parameters are ↵
I

= 1 and �
R

= 0.5.

a Markovian SIS process. We set

 

inf

() =
1

�

I

e

� 
�I
, (156)

 

rec

(⌧) =
↵

R

�

R

(
⌧

�

R

)↵R�1

e

�(

⌧
�R

)

↵R
. (157)

For ↵
R

= {0.5, 1, 2, 4} and �
R

= 0.5, we adjust the value of �
e↵

through changing �
I

, where

�

e↵

=
�

R

�(1/↵
R

)

↵

R

�

I

, (158)

and � is the gamma function. In Supplementary Figs. 6(a,b), we present results from Monte
Carlo simulations for the three types of networks. The theoretical results from the Markovian
process are obtained from a first-order mean field analysis. For all values of �

e↵

(or �
I

), there
is a good agreement between the infected density for ↵

I

= 1 with the theoretical prediction
of the Markovian model.

SUPPLEMENTARY NOTE 8. SPECIAL CASE II: NON-MARKOVIAN SPREAD-

ING ON STRONG HETEROGENEOUS NETWORKS

We test our theory on scale-free networks with a strong heterogeneous degree distribution,
where the values of the network parameters are: size 10000, power-law degree exponent 2.3,
lower cuto↵ degree being five, upper cuto↵ degree being about 100, and average degree
approximately 11.9. A network in this ensemble has a large number of hub nodes. As shown
in Supplementary Fig. 7, even in this relatively extreme case, our theory is able to predict
the simulation results. Furthermore, when the spreading has reached the steady state, the
approximate equivalence between non-Markovian and Markovian dynamics for both type-I
and type-II activation mechanisms holds.
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Supplementary Figure 7. Results on a scale-free network with strong heterogeneous degree distri-

bution. a,b Comparison of time evolution between simulated and theoretical results for type-I and

type-II activation mechanisms, respectively. The solid symbols represent the results of simulations

which are averaged over 100 realizations. The open symbols denote the results of theoretical so-

lutions. Diamonds, circles, triangles, and stars correspond to ↵
I

= 0.5, 1, 2, 4, respectively. Other

parameters are �
I

= 1, ↵
R

= 2, and �
R

= 0.5. c,d Approximate equivalence between non-

Markovian and Markovian processes with type-I and type-II activation mechanism, respectively.

Solid, dashed, dotted, and dot-dashed curves, respectively, represent the results for ↵
R

= 0.5, 1, 2, 4.

Triangles and circles correspond to results from the Markovian process and analytical solutions,

respectively. Other parameters are ↵
I

= 1 and �
R

= 0.5.

SUPPLEMENTARY NOTE 9. SPECIAL CASE III: NON-MARKOVIAN SPREAD-

ING ON NETWORKS WITH TYPE-III EDGE ACTIVATION MECHANISM

Besides the two edge activation mechanisms in the main text, other types of edge acti-
vation mechanisms exist. For example, rule #2 in Ref. [26] prescribes that the age of an
active link is solely determined by the age of the infected node [27], which is similar but not
totally identical to type-II edge activation treated in the main text. For convenience, we
call this rule as type-III edge activation mechanism.

Because of the absence of any temporal correlation on active edges in type-III activa-
tion, the evolution equations are similar to those for type-II edge activation [Supplementary
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Supplementary Figure 8. Comparison of time evolution for type-III activation mechanism. The

three panels from left to right are for random, scale-free, and Hamsterster networks, respectively.

In all panels, the solid symbols represent the results of simulations which are averaged over 100

realizations for random and scale-free networks, and over 400 realizations for the Hamsterster

network obtained from Eqs. (7-9) in the main text and Supplementary Eq. (159). The open symbols

represent the results of theoretical solutions. Diamonds, circles, triangles, and stars correspond to

↵
I

= 0.5, 1, 2, 4, respectively. The random and scale-free networks have size N = 104 and mean

degree hki ⇡ 10, and the Hamsterster network has N = 2426 and hki ⇡ 13.7. The inset in panel a

shows the extinction process with ↵
I

= 4. Other parameters are �
I

= 1, ↵
R

= 2, and �
R

= 0.5.
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Supplementary Figure 9. Demonstration of equivalence with type-III edge activation mechanism.

Comparison of stationary infected density between non-Markovian and Markovian processes. a-c

Results from random, scale-free, and Hamsterster networks, respectively. Solid, dashed, dotted,

and dot-dashed curves, respectively, represent the results for ↵
I

= 0.5, 1, 2, 4. Triangles and circles

represent simulation results from the Markovian process and the corresponding analytical solutions,

respectively. Other parameters are ↵
R

= 2 and �
R

= 0.5.

Eqs. (58) - (62)]. The only di↵erence between these two activation mechanisms is the prob-
ability density function �

i j

(⌧ ; t) in Supplementary Eq. (62). For type-III, �
i j

(⌧ ; t) can
be written as

�
i j

(⌧ ; t) =

Z
t

0

!

inf

(⌧ 0)I
i

(⌧ 0, t)d⌧ 0. (159)
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Supplementary Figure 10. An illustration of the growth of infection rate with type-III edge acti-

vation mechanism. The values of the relevant parameters are ↵
I

= 4.0 and �
I

= 1.0, where the

infection rate of an active age grows rapidly with time. a At t
0

= 0, node i is infected, and the

active age is zero, so the infection rate is !
inf

(0) = 0. b At t
1

= 1, the active edge transmits disease

and node j moves into the infected state, but the age of the active edge from node i to node j

remains unchanged. In this case, the infection rate is !
inf

(1) = 4. c At time t
2

= 2, node j has

recovered but node i is still in the infected state. The age of the active age is two. In this case, the

infection rate is relatively large: !
inf

(2) = 32. As a result, node i will make node j infected again

in a short time.

Equations (63)-(68) suggest an equivalence between SIS dynamics with type-II activation
and Markovian SIS dynamics, the e↵ective infection rate can be obtained as

�

e↵

⌘
Z

+1

0

⌘(⌧) 
rec

(⌧)d⌧ . (160)

We can then conclude that SIS dynamics with type-III activation is equivalent to Markovian
SIS dynamics with the e↵ective infection rate given by

�

e↵

⌘
Z

+1

0

!

inf

(⌧) 
rec

(⌧)d⌧ . (161)

To verify the above analysis, we simulate the dynamical processes and compare results
with theoretical predictions. Supplementary Fig. 8 shows the time evolution of the infected
density of the entire network for three di↵erent types of networks. We see that the mean-
field predictions agree well with those of non-Markovian type of SIS spreading dynamics.
We also find that a smaller value of ↵

I

results in a larger scale outbreak on the networks,
which is consistent with the cases of type-I and type-II edge activation mechanisms.
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We further test the equivalence between non-Markovian and Markovian spreading process
with type-III activation mechanism. Representative results are shown in Supplementary
Fig. 9. It can be seen that, regardless of the network structure, the stationary infected
density for ↵

I

= 0.5, 1.0, 2.0 agrees well with results from the simulation of Markovian process
and from the analytical solution of the Markovian dynamics from Eq. (24) or Eq. (27) in
the main text. However, the curve for ↵

I

= 4 deviates markedly from the case of Markovian
dynamics. To explain this phenomenon, we note that the infection rate is

!

inf

() =
↵

I

�

I

(


�

I

)↵I�1

, (162)

while the infection times follow a Weibullean distribution:

 

inf

() =
↵

I

�

I

(


�

I

)↵I�1

e

�(


�I

)

↵I
. (163)

For ↵
I

> 1, !
inf

() increases with . A greater value of ↵
I

results in faster growth of !
inf

()
with . Since the age of an active edge cannot be zero after it transmits the disease, the
value of the infection rate !

inf

() will keep increasing until the corresponding infected node
recovers. Supplementary Fig. 10 shows an example of how the infection rate of an active
edge increases sharply with . The persistent enhancement e↵ect of infection rate with time
makes it harder for the mean-field theory to capture the dynamical correlation on the active
edge, generating deviations between the simulation result for ↵

I

= 4 from the mean-field
prediction.
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