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Universal model of individual and population
mobility on diverse spatial scales
Xiao-Yong Yan1, Wen-Xu Wang 2, Zi-You Gao1 & Ying-Cheng Lai3

Studies of human mobility in the past decade revealed a number of general scaling laws.

However, to reproduce the scaling behaviors quantitatively at both the individual and

population levels simultaneously remains to be an outstanding problem. Moreover, recent

evidence suggests that spatial scales have a significant effect on human mobility, raising the

need for formulating a universal model suited for human mobility at different levels and

spatial scales. Here we develop a general model by combining memory effect and population-

induced competition to enable accurate prediction of human mobility based on population

distribution only. A variety of individual and collective mobility patterns such as scaling

behaviors and trajectory motifs are accurately predicted for different countries and cities of

diverse spatial scales. Our model establishes a universal underlying mechanism capable of

explaining a variety of human mobility behaviors, and has significant applications for

understanding many dynamical processes associated with human mobility.
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Human movements typically occur in spatial regions/
domains, such as countries or cities, which can have vastly
different scales. For example, in China or the United

States, the size of the region can be on the order of millions of
square kilometers, while in small countries such as Belgium, the
domain size is only about 10 km. (Here we regard international
travel as atypical and exclude it from our consideration.)
Comparing Belgium with China or the United States, the differ-
ence in the spatial scale in terms of areas is at least two orders of
magnitude. Typical examples of human movements at both the
individual and population levels in countries of diverse size are
shown in Fig. 1. Overall, for human mobility, there are large
scales exemplified by countries such as China and the United
States, and small scales as represented by small countries or big
cities in a large country.

A remarkable discovery in complexity science in the past
decade is that human mobility obeys certain universal scaling
laws1–20. It was recently revealed16, however, that human
mobility at small spatial scales tends to exhibit different
scaling behaviors. Existing models of human mobility are tailored
at understanding and characterizing scaling laws either at large
(e.g., big country) or small (e.g., city) scales—we lack a universal
model capable of quantifying human movements across all spatial
scales. Another deficiency of existing models is that they can
explain human mobility patterns either at the individual or at the
population level, but not both. The purpose of this paper is to
develop a model to fill this gap in our knowledge about human
mobility.

To understand the dynamics of human movements and to
uncover scaling laws underlying human mobility are of funda-
mental importance as they are relevant to problems such as

disease control, social stability, congestion alleviation, informa-
tion propagation, and e-commerce21–28. Data-based modeling
research on human mobility started about a decade ago1, where
the trajectories of bank notes were traced over a reasonably long
time period. On the basis of empirical data, the study unveiled
two scaling laws on geographical scales: (1) the distribution of the
traveling distance exhibits a power-law decay, which can be
described by Lévy flights, and (2) the probability of remaining in
a small region exhibits an algebraically long tail with an expo-
nential cutoff, which is characteristic of a superdiffusive behavior.
Existence of universal patterns in the statistical description of
human movements was hinted at through an analysis of the
mobile phone data6, and the issue of predictability of human
movement patterns was also addressed16,29. The correlation
between human movements in the cyberspace and in the physical
space has also been studied through big data analysis15,20. Quite
recently, a scaling law connecting human mobility and social
interaction (communication) patterns was uncovered30.

From a modeling perspective, the classic gravity model31

represented perhaps the earliest attempt to mathematically
understand the mobility flow between two locations. For human
mobility on large spatial scales, e.g., as revealed by the trajectories
of bank notes, a two-parameter continuous-time random
walk model was derived to explain, at a detailed and quantitative
level, the empirically observed scaling laws1. A statistical, self-
consistent microscopic mobility model2 and a macroscopic
model, the so-called radiation model3–5 that takes into account
local mobility decisions, were developed. Inspired by these
models, a variety of alternative mechanisms aiming at under-
standing and characterizing the empirical scaling laws obtained
from data have been conceived6–20. Most classic gravity-based
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Fig. 1 Real-world examples of individual trajectories and collective movements. a Four examples of an individual trajectory from an empirical data set from
mainland China and the corresponding collective movements. b–d Collective movements embedded in the data sets from the continental United States,
Cote d’Ivoire, and Belgium. Here the color bar represents the amount of mobility flux among locations per unit time, where a brighter (darker) line indicates
a stronger (weaker) flux. Note that the spatial scales associated with these data sets are drastically different

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01892-8

2 NATURE COMMUNICATIONS | 8: �1639� |DOI: 10.1038/s41467-017-01892-8 |www.nature.com/naturecommunications



macroscopic models are static in the sense that they assume
certain mobility decisions so that the transition matrix between
spatial locations can be constructed through the corresponding
distances and population distribution. While the models
can explain the scaling laws to a certain degree, the detailed
dynamical features associated with human movements at the
individual level are often lost, which are important to understand
issues such as the spreading speed and range of diseases.
The existing microscopic models2,8,15,20,32–34 can capture the
individual movements and the associated scaling laws, but the
mutual interactions among the individuals at the population level
were largely ignored.

In this paper, we aim to articulate a human mobility model
capable of predicting statistical and scaling behaviors on all
spatial scales at both the individual and population levels. To
accomplish this goal, it is necessary to identify the general
mechanisms underlying human movements independent of the
spatial scale. An essential element upon which any human
mobility modeling is built is the transition probability for an
individual to move from one location to another at any time,
from which all kinds of scaling laws can be derived. There are
two basic elements that we exploit to construct the transition
probability. First, locations are differentiated according to their
relative attractiveness, so human movements tend to be biased
toward the more attractive locations. This can be modeled by
assigning each location a fixed amount of attractiveness. The
second element is the memory effect, by which individuals tend to
move preferentially to previously visited locations. At a quanti-
tative level, the memory effect can be taken into account by
assigning previously visited locations with a relatively high
amount of attractiveness. As a result, in our model a location
contains two kinds of attractiveness: one simply determined by
the population at the location, which is analogous to that in the
radiation model3 or the population-weighted opportunities
model16, and another determined by the memory effect. For any
location, the transition probability for an individual to move into

it is proportional to its total attractiveness. More specifically,
before making a movement, an individual evaluates the attrac-
tiveness of all the available destinations and then moves to a
specific destination according to the transition probability. With
the transition probability so determined, our model contains a
single parameter, which can be determined from each set of
empirical data. After the parameter is fixed, our model can
simultaneously generate a number of key scaling laws at both the
individual and population level, as well as the trajectory motifs,
which are in good agreement with empirical results from data
associated with arbitrarily spatial scales.

Results
Model. Typical examples of trajectories of human movements
at the individual and population levels are shown in Fig. 1.
Our aim is to develop a model that can capture the statistical
features and predict the scaling laws associated with trajectories
at both the individual and population levels, regardless of the
spatial scale. A key quantity is the transition probability. In the
recent population-weighted opportunities model16, the transition
probability to a destination is proportional to its attractiveness.
This probabilistic rule determines the movement of any indivi-
dual but for only one time step. In order to quantify the statistical
behaviors and the scaling laws, sufficiently long trajectories of a
large number of individuals are needed.

An important characteristic of human movement, which
distinguishes its dynamics from the diffusion dynamics of
physical particles, is the memory effect2,20,33. In particular,
individuals tend to frequently return to previously visited
locations. There are different approaches to taking memory
effect into account. For example, in the exploration and
preferential return (EPR) model2, it was assumed that the
probability for an individual to visit a new location is p∝ S−γ,
where S is the total number of locations that the individual has
already visited and γ> 0 is a model parameter. The probability for
the individual to visit a previous location is thus 1 − p. The
algebraic dependence of p on S indicates that the more locations
that an individual has visited, the smaller the probability would be
for him/her to explore any new location. That is, there is a strong
preference for an individual to move among locations that have
been visited previously. The model also assumes2 that the
probability for an individual to move to a previously visited
location is proportional to the frequency at which it has been
visited. This model can successfully reproduce the visiting
frequency distribution of the locations obtained from empirical
data, as well as the rate of increase in the number of locations.
A subsequent model33 emphasizing the importance of the
memory effect assumes that the probability distribution of the
return time interval, P(τ), is known. An individual chooses a value
of τ from the distribution to determine the location that he/she
wishes to return to. While this model can reproduce the
empirically obtained rate of increase of new locations, the choice
of P(τ) is mostly heuristic.

The basic idea underlying the development of our model is that
the attractiveness of a location for an individual is determined by
both the memory of the individual and the population at the
location. Let A be a quantity measuring the effect of memory on
the attractiveness of a location to an individual. It is reasonable to
assume that a more attractive location can in general impose
greater impression on the visitors, resulting in stronger memory
and, consequently, enhancing the probability for the individual to
visit the location in the future. That is, the attractiveness of a
location will be reinforced by good memory and vice versa.

To characterize A in a quantitative manner, we rely on
empirical evidence of human travel, in which the frequencies of
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Fig. 2 Model illustration. A typical trajectory visiting the five locations
denoted by letters a − e with different colors is indicated at the bottom:
a → b → c → a → …. The size of the circles that contain a letter indicates
the relative attractiveness of the corresponding location as characterized by
the index rj, where r1 is the most attractive location, r2 is the second most
attractive one, and so on. The dashed circle centered at location c indicates
that the travelers moves from c to a, whose radius is the distance between
c and a, and the total population within the dashed circle is Wca. The model
contains a single parameter, λ, which can be determined from each set of
empirical data
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individual visit to different locations are distributed according to
the Zipf’s law6. It is thus reasonable to assume that A is
distributed in a similar manner. That is, the Zipf’s law stipulates
that visitors rank the locations visited such that the probability to
visit a location is inversely proportional to its rank. For example,
the probability of visiting the most frequently visited location is
A1= λ/1 and the probability of visiting the second most
frequently visited location is A2= λ/2, and so on, where λ is a
constant. Due to an aging effect, the most frequently visited
location is often the “oldest” one. We can thus replace the rank of
a location by the order with which it is visited. These
considerations lead to the following formula to quantify the
memory effect:

Aj ¼ 1þ λ
rj
; ð1Þ

where λ is a parameter characterizing the strength of the memory
effect and the index rj denotes that location j is the rth newly
visited location associated with the movement trajectory. The
unity in the formula represents the initial attractiveness of
location j that has not been visited, i.e., if a location has not been
visited, its A value is always unity.

Following the classic gravity model, we assume that the
attractiveness of a location is proportional to its population. Let B
be a quantity characterizing the population-induced effect on the
attractiveness of a location, and let mi be the population of
location i and N be the total number of locations that can possibly
be toured by all the individuals. As illustrated in Fig. 2, the
attractiveness Bij for a visitor to travel from location i to
destination j is

Bij ¼
mj

Wji
; ð2Þ

whereWji is the total population in the circular region centered at
j, the radius of which is the distance between locations j and i.
Note that Bij reflects the competition for opportunities among
different locations. For instance, if a traveler at location i wishes
to visit a potential destination j, more populations between i and j
imply more fierce competitions for limited opportunities at those
locations, leading to a lower probability of being offered some
opportunity. It is thus reasonable to assume that the attractive-
ness Bij of destination j for a visitor from location i is inversely
proportional to the population between i and j, as quantified by
formula (2).

The transition probability pij of traveling from location i to j is
then proportional to both Aj and Bij, which can be written as

pij /
mj

Wji
1þ λ

rj

! "
: ð3Þ

We see that the model contains a single adjustable parameter, the
memory strength λ, that can be determined from empirical data.
For any location i, we place a number of travelers. Each traveler is

assigned a number L, the total number of movement steps, which
can be obtained from an actual distribution from empirical data.
A traveler thus executes a trajectory of length L and, at each step,
he/she moves to a destination according to the transition
probability pij.

Model prediction and validation. Our model, as illustrated in
Fig. 2, is capable of predicting the statistical behaviors of human
mobility at both the individual and population levels, regardless
of the spatial scale. At the individual level, we focus on the fol-
lowing quantities: (I1) the total number of locations visited by
time t, (I2) return time distribution to any location, (I3) dis-
tribution of frequency of visits to a location, and (I4) emergence of
traveling motifs and their probability of occurrence in a long tra-
jectory. At the population level, we seek to predict: (P1) distribu-
tion of the travel distance of collective movement and (P2)
distribution of the number of traveling steps between two locations.

To validate the model predictions, we employ four empirical
data sets, as illustrated in Fig. 1. They are: (DS1) record of user
check-ins at Sina Weibo in mainland China (Fig. 1a), (DS2)
check-in record of the site Foursquare35 for users in the
continental United States (Fig. 1b), (DS3) communication record
of mobile phone users in the whole country of Cote d’Ivoire36

(Fig. 1c), and (DS4) check-in record of the site Gowalla37 in
Belgium (Fig. 1d). Each data set contains spatial and temporal
information about continuous user mobility, from which data of
movements among various locations (e.g., cities) can be extracted
(Methods). The single free parameter λ can be determined from
data (Methods). We obtain λ= 35, 32, 50, and 25 for data sets
DS1–DS4, respectively. A heuristic observation is that λ assumes a
relatively smaller value for a better developed country (Methods).
An explanation is that, in general, in a country with a higher gross
domestic product (GDP), individuals can afford more travel,
leading to more visited locations and a higher probability of
exploring new places. In contrast, in a country with a lower GDP,
it is more difficult for people to travel frequently and they tend to
stay in their home cities and familiar places. That is, a higher
GDP induces a weaker memory effect and a higher probability of
visiting new locations, as reflected by the smaller values of the
memory strength λ in well developed countries.

Since the data sets contain no information about the
individuals’ cities of residence, for each individual, we assign
the city that he/she signs in with the highest frequency as his/her
home city and use it as the initial location in the model. From the
data, we calculate the distribution P(L) of the total number of
times of movement and choose L accordingly, which is effectively
the trajectory length for each individual. It is worth noting that an
effective way to test our mobility model is to use the same
distribution of the trajectory length as that from the empirical
data. We also study analytically the impact of trajectory length on
the statistical properties of mobility at both the population and
individual levels, with the finding that, for a sufficient number of
moving steps, simulation results are in good agreement with the

Table 1 Description of empirical data sets

Country Data type Number of cities Population Total traveling steps λ GDP per capita ($)

China (mainland) Sina Weibo check-ins 340 1,571,056 4,976,255 35 8141
US (lower 48 states) Foursquare check-ins 125 32,040 194,730 32 56,084
Cote d’Ivoire Mobile phone CDR 237 229,335 8,747,801 50 1325
Belgium Gowalla check-ins 43 1352 21,156 25 40,529

Information of data sets DS1–DS4 and the values of their memory parameter λ are shown
The four data sets correspond to four countries with different spatial scales, and the features of the four countries from the data sets include the number of cities, population, total traveling steps, and GDP
per capita. Here, the GDP data is obtained from http://www.imf.org. An individual traveling from one city to another represents one travel step. The number of total traveling steps is the sum of all recorded
individual steps
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analytical prediction. This indicates that the trajectory length has
little effect on the mobility patterns in the long time regime. For
the empirical data (Table 1), the total numbers of steps are much
larger than those on the population records, so the mobility
patterns produced by our model are stable and robust.

Figure 3a–d show, for the data sets DS1–DS4, respectively, the
model-predicted algebraic increase with t in the total number of
locations visited by time t (green), together with the correspond-
ing results calculated directly from the data (orange). We obtain
an excellent agreement between model prediction and the
empirical result. The algebraically increasing behavior, as opposed
to an exponential growth in the number of cities visited in certain
time, is a natural consequence of the memory effect, which is a
key ingredient in our model. Figure 3e–h show the predicted and
actual return time distributions for the data sets DS1–DS4,
respectively, which are algebraic. There is again an excellent
agreement between the model prediction and the empirical result.
The algebraic decay in the return time distribution can also be
attributed to the memory effect. Thus, both the algebraically
increasing behavior in Fig. 3a–d and the algebraically decaying
behavior in Fig. 3e–h are manifestations of the same memory
effect. Figure 3i–l show, for the data sets DS1–DS4, respectively,
the model-predicted and empirical frequency distributions of

visits to all locations, which agree with each other reasonably well
and follow approximately the Zipf’s law. The emergence of the
Zipf-like scaling behavior is indicative of the heterogeneity in the
location attractiveness, an assumption of our model. The results
in Fig. 3a–l validate our model with respect to the statistical
behaviors of individual trajectories.

A characteristic of human mobility is the emergence of motifs
associated with movement trajectories38, which are referred to as
certain simple and fixed patterns of visit that occur repeatedly in a
long trajectory. For an individual initially at his/her home
location (the one visited with the highest frequency), a motif is
defined as a successive sequence of locations visited with the
last location being the initial one. From the empirical data, we
identify nine distinct motifs (shown at the top in Fig. 4) and
calculate the frequencies of their occurrences from the entire data
set. With parameter λ extracted from the data, our model can
generate long trajectories from which the possible motifs and
their frequencies of occurrence can be determined. Remarkably,
our model yields exactly the same set of motifs with frequencies
that agree with the empirical results reasonably well, as shown in
Fig. 4. Due to the significance of travel motifs in determining the
microscopic mobile patterns of travelers, the agreement provides
further validation of our model at the individual level.
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Our model also has strong predictive power for human
movements at the population level on all spatial scales. As shown
in Fig. 5, the predicted behaviors of P(d) and P(T), the
distributions of the travel distance and of the number of traveling
steps between two locations, agree well with the statistical results
from the empirical data. In particular, Fig. 5a–d show, for the data
sets DS1–DS4, respectively, that P(d) decays exponentially.
Figure 5e–h reveal that P(T) exhibits a robust algebraic scaling
for all four data sets. Figure 5i–l demonstrate that the model-
predicted and real values of T are nearly statistically indis-
tinguishable (albeit with fluctuations). Our model is then
universally applicable to characterizing human movements across
vast different spatial scales at the population level.

Theoretical analysis. In our model, the fixed amount of attrac-
tiveness of a location is calculated based on its population. Since
the population distribution is typically highly heterogeneous
without a closed mathematical form, it is not feasible to treat our
model exactly. To gain analytic insights, we consider a simplified
model obtained by imposing the approximation that the popu-
lation is uniformly distributed among the locations, and focus on
analytically predicting the individual trajectories and the collec-
tive mobility pattern with a special emphasis on the role of the
memory effect. Although the simplified model deviates from real
scenarios, the analytical predictions enable a good understanding
of the real mobility patterns at both the individual and population
levels.

In the simplified model, an individual travels among N
locations. At each time step, the probability to move to a
destination is proportional to its attractiveness. At t= 0, the initial
attractiveness is identical (unity) for all locations. During the
travel, the attractiveness of the rth first visited location is updated
to 1 + λN/r, where λ> 0 is a parameter. The model describes
essentially a random-walk process with time varying location
attractiveness, with parameter λ characterizing the memory
strength of (or preference to) locations previously visited. For λ
= 0, the model is reduced to an unbiased random walk. For λ
=∞, the walker can travel between only the first two locations.
The total number S(t) of locations visited by time t can be used to
characterize how fast the underlying mobile process takes place.

For a uniform random walk, S(t) increases with t linearly: S(t)∝ t.
For the EPR model2, S(t) increases with t but in a sublinear
fashion: S(t)∝ tβ with 0< β< 1. For our random walk model with
memory, S(t) can be obtained analytically (Supplementary
Note 1), as shown in Fig. 6a. We see that, as the memory
strength parameter λ is increased, the overall rate of increase in S
(t) becomes smaller. In addition, for a fixed value of λ, the time
derivative of S(t) tends to increase with time, which is consistent
with the result from real data (c.f., Figs. 1a and 3 in ref. 2).

Another characteristic quantity is fr, the distribution of the
frequency of visit to location r. For an unbiased random walk, fr is
uniformly distributed. For the EPR model2, fr decays algebraically:
fr∝ r−α, where α> 0 is a constant. For our model, we analytically
obtain (Supplementary Note 1)

fr /
λS
r
þ 1% λ: ð4Þ

For λ= 0, Eq. (4) reduces to a uniform distribution. For λ= 1, we
recover the Zipf’s law for fr. Figure 6b shows the analytic and
simulation results of fr for a number of λ values, where the curves
represent the theoretical prediction. We see that, for λ> 1, there is
an apparent deviation from the Zipf’s law, as signified by the
emergence of an exponential cutoff toward the tail end of fr. The
physical meaning is that, as the memory effect is intensified, a
walker tends to travel among only a few locations.

The return time distribution P(τ) is defined as the probability
for a walker to return to one of the previously visited locations
after τ steps, which is also a reflection of the memory effect. In
our model, P(τ) contains two different algebraic terms but with
the same exponent −1 (Supplementary Note 1). As λ is increased,
P(τ) tends to a single algebraic distribution with essentially zero
values near the tail, indicating an extremely low probability for
the walker to return to a previous location after many time steps.
Figure 6c shows the analytic and simulation results of P(τ) from
our model. The agreement is reasonable, and the deviation of the
analytic from the simulation result in the large τ region is due to
the finite time used in the simulation.

Finally, we remark on an appealing feature of our model.
Consider the probability for the walker to choose a new location
at the next time step. Analysis of our model leads to
(Supplementary Note 1)

Pnew ¼ 1
1þ λðln Sþ CÞ

: ð5Þ

Thus, in our model, Pnew decreases with S, which occurs naturally
as a consequence of a basic and intuitive assumption, namely the
memory effect.

A further simplification of the model by assuming that each
individual can move one step only renders analytically predictable
collective mobility patterns at the population level. In particular,
we place m individuals at each location and exploit the previously
discovered39, common fractal feature in the spatial distribution
of locations in the real world: Wji / dDij , where D is the fractal
dimension. Equation (3) can be formulated as (Supplementary
Note 2)

Tij ¼ mipij /
mimj

dDij
; ð6Þ

where Tij is the total number of traveling steps from i to j for the
whole population. Equation (6) is a standard gravity model with a
power-law distance function. Since Eq. (6) indicates that the
number of traveling steps T between two locations of distance d is
T(d)∝ d−D, the travel distance distribution is given by the same
form: P(d)∝ d−D, as validated by Fig. 6d for four typical fractal
domains. The number of location pairs with distance ≤ d in a
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Fig. 4 Frequency of occurrence of motifs associated with movement
trajectories. From the four empirical data sets, nine distinct motifs
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highest motif, for example, is <0.001. Considering the nine motifs thus
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fractal domain is N(d)∝ dD. Thus, the number of traveling steps
T obeys a power-law distribution (Supplementary Note 2):

PðTÞ / T%2: ð7Þ

It is worth noting that the algebraic exponent −2 is universal,
regardless of the fractal dimension D of the location distribution
in the simplified model, as shown in the insert of Fig. 6d.
However, in the real world, the heterogeneous nature of the
population distribution at different locations can cause a
deviation of the exponent from −2. As shown in Fig. 5e–h, the
fit of the empirical data demonstrates that their algebraic
exponents range from −1.33 to −1.56 (see Supplementary Note 2
for a detailed explanation of the effect of heterogeneous
population distribution on the algebraic exponent). Nonetheless,
the power-law distribution predicted by our simplified model is
robust, which captures the essential features of the collective
mobility patterns in the real world.

In the development of our human mobility model, Zipf’s law is
naturally included as an essential component. However, the Zipf’s
law is closely related to diminishing exploration. To elucidate the
interplay between the two, we articulate an extended individual
mobility model based on the generalized Zipf’s law. This is guided

by the previous evidence that there are situations where
individuals tend to choose locations to travel into by following
the generalized Zipf’s law40. Specifically, we assume f ∝ r−ζ, where
the exponent ζ> 1 is an adjustable parameter. For the extended
model, we analytically obtain Pnew= ρS−γ, where γ= ζ − 1. We see
that the formula of Pnew is a direct manifestation of the basic
assumptions in the EPR model2. This suggests that the general-
ized Zipf’s law and the power-law relation between Pnew and S
have a mutually causal relationship, and the individual mobility
models based on the former and latter are equivalent to each
other. For the extended model, we also derive the return time
distribution P(τ) for sufficiently large values of S. A detailed
description of the extended model, the analysis, and results are
presented in Supplementary Note 1.

Discussion
The past decade has witnessed a great deal of efforts into unco-
vering and understanding the general dynamical behaviors
of human mobility. A variety of real data sets have been analyzed,
leading to a spectrum of mathematical models being devised
to explain the phenomena revealed by data. While universal
scaling laws have been unveiled, it turns out that spatial scale has
a significant effect on the dynamics. In particular, human
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mobility at large (e.g., big countries) and small (e.g., small
countries or big cities, see Supplementary Note 4 for a city
example) scales tends to exhibit distinct scaling behaviors. The
representative existing models are suitable to describe human
mobility on either large or small scales at either the individual or
population level, motivating us to articulate a model that can
describe the statistical and scaling behaviors of human behaviors
at all spatial scales as well as at both the individual and population
levels.

There are two essential ingredients in our model construction:
memory and population-induced competition effects. Both effects
jointly determine the attractiveness of a location (see Supple-
mentary Note 5 for results and a detailed discussion). On the
basis of the attractiveness of locations, we obtain the key quantity
in microscopic model of human mobility: the transition prob-
ability for an individual to move from one location to another.
Our unifying model contains a single adjustable parameter: the
strength of the memory effect, and enables us to make predictions
about the scaling laws associated with the key statistical behaviors
of human mobility at both the individual and population levels,
regardless of the spatial scales. The relevant quantities include
the total number of locations visited within certain time, the
frequency distribution of visits to different locations, and the
distribution of time interval of successive visits to any location.
Our model also allows us to identify a few kinds of distinct motifs
embedded in typical trajectories. All these results have been
verified using empirical data from countries having drastically
different spatial scales.

Modeling and predicting mobility patterns and scaling laws at
both the individual and population levels are a fundamental
problem for exploring many dynamical processes associated with
human mobility. A typical example is disease propagation in the
society. As discussed in ref. 41, in the metapopulation model, both
the population level mobility, e.g., travel flux among subpopula-
tions, and the individual level mobility, e.g., transition probability
of individuals, are necessary to model the contagion dynamics
and predict disease spreading in the society. The empirical
mobilities may be obtained by directly measuring the travel flux
among locations and the travel trajectories of all individuals in a
certain time interval. However, to accomplish this task, vast
amounts of private data, such as the data of cell phones with GPS
function in specific locations, are required, making the task
impractical. Our universal model, because it is based solely on the
population distribution, provides an alternative approach to
unraveling the important mobility patterns with reasonable
accuracy. Likewise, our model may find potential use in

alleviating congestion in urban areas, which is closely related to
human mobility behaviors.

Methods
Empirical data sets and processing method. The four data sets DS1–DS4 are
from mainland China (Supplementary Data 1 and 2), the contiguous United States,
Cote d’Ivoire, and Belgium, respectively. Sets DS1, DS2, and DS4 are the check-in
records of social networks35,37 in their respective countries, which contain the time
and locations of user check-ins. Set DS3 is a mobile phone call detail record36

that collects the time and positions of users making phone calls or sending text
messages in a 5-month period, where the spatial locations are determined within
counties. In this case, the central city of each county is taken as the location of the
individual. Since we focus on movements among cities, all the positions within a
city are regarded as the same with an identical city label. Table 1 lists the detailed
information about each data set, from which a complete trajectory of each user
moving among different cities can be obtained for the entire time duration of the
data record. The results of statistical analysis of individual trajectories are shown in
Fig. 3, while those at the population level are presented in Fig. 5.

Parameter estimation. In our model, the single free parameter is λ, the strength of
memory effect, which affects directly the rate of increase in the number S(t) of
locations visited in certain time. For a given empirical data set, the function S(t) can
then be used to estimate λ. To accomplish this, we define the following objective
function:

EðλÞ ¼
XLmax

t¼1

SrealðtÞ % Sðt; λÞj j
SrealðtÞ

; ð8Þ

where Lmax is the maximum time step, Sreal(t) is obtained from the actual data set,
and S(t, λ) is calculated through the model with parameter λ. The objective function
can be minimized to yield an estimated value of λ in the model. We also use the
quantities P(τ) and fr to estimate λ in addition to that based on S(t), and find little
difference in the prediction accuracy for both the individual and population
mobility patterns.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information file, or
from the authors upon reasonable request.
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SUPPLEMENTARY INFORMATION

Supplementary Figures

Supplementary Figure 1 | The first 4 iterations in the generation of a 2D Cantor

dust.

Supplementary Figure 2 | The first 4 iterations of the Vicsek fractal.

Supplementary Figure 3 | The first 4 iterations of the Sierpinski triangle.
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Supplementary Figure 4 | The first 4 iterations of the hexaflake.

Supplementary Figure 5 | Foursquare users check-ins and mobility data in New

York city. (a) Check-in times distribution. The zones are U.S. 2010 census blocks. (b)

Traveling steps between locations.
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Supplementary Figure 8 | Collective mobility patterns predicted by the memory-

free model.
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Supplementary Figure 9 | Individual mobility patterns predicted by the memory-

free model.
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competition-free model.
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Supplementary Table

Supplementary Table 1 | Comparison of models prediction accuracy. SSI is the

Sørensen similarity index between real observations of collective travel flow and model results.

RMSE is the root-mean-square error of predicted S(t). OM, MF, and CF stand for the

original model, the memory-free model, and the competition-free model, respectively.

Country SSI-OM SSI-MF SSI-CF RMSE-OM RMSE-MF RMSE-CF

China 0.7126 0.6759 0.5394 1.3556 24.8674 1.6098

US 0.7013 0.7225 0.5156 1.8376 29.3604 4.7381

Cote d’Ivoire 0.7136 0.6914 0.5333 0.6738 16.7012 0.6926

Belgium 0.6936 0.7739 0.5481 0.7141 9.2657 0.8308
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Supplementary Notes

Supplementary Note 1: Analysis of individual mobility

patterns

1.1 Individual mobility model based on Zipf’s law

We consider a simplified version of our human mobility model, which is obtained by

imposing the approximations that the population is uniformly distributed among all available

locations and the effects of population induced competition are negligible. The simplified

model is effectively a random walk with memory in a finite space, in which the transition

probability pij of an individual traveling form location i to j is

pij ∝ 1 +
λ

rj
, (1)

where λ is the memory strength parameter and rj denotes that j is the rth newly visited

location for the individual. Insofar as λ is much larger than unity, the transition probability

approaches that given by the basic Zipf’s law: pij ∝ λ−1 + r−1
j ≈ r−1

j .

We first consider the function S(t), the number of locations that an individual has visited

in time t. The probability of choosing a new city at the next time step is

Pnew =
N − S

N +
∑S

r=1 λN/r
, (2)

where N is the total number of cities and r signifies that the corresponding location is the

rth newly visited city. Treating S as continuous, for S ≪ N , we have

Pnew ≈ 1

1 + λ
∫ S

1
dr
r

=
1

1 + λ(lnS + C)
, (3)

where C is the Euler’s constant and C ≈ 0.577. We thus get

dS

dt
= Pnew =

1

1 + λ(lnS + C)
, (4)

which gives

t = (1 + λC)S + λS(lnS − 1)− A. (5)
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Since S(t = 0) = 1, we obtain A = 1+ λC − λ. Substituting this relation into Eq. (5) yields

t = AS + λS lnS − A, (6)

which determines the function S(t) implicitly. For λ = 0 (i.e., no memory effect), we have

S = t+1. For λ = 1/(2−C), we have λ = A, so Eq. (6) can be written as t = λ[S+S ln(S)−1].

Using the approximation ln(S) ≈ S − 1, we get

S ∼
√

(2− C)t+ 1, (7)

indicating that S increases sublinearly with t.

We next derive the frequency distribution fr of visited locations. Since S(t) distinct

locations have been visited by time t, the probability for an individual to choose an already

visited location is

Pold = 1− Pnew =
S +

∑S
r=1 λN/r

N +
∑S

r=1 λN/r
. (8)

Among all the S(t) old locations, the probability of visiting the rth location, i.e., the rate of

increase of gr, the number of times that the location has been visited, is

dgr
dt

= Pold
1 + λN/r

S +
∑S

r=1 λN/r
=

1 + λN/r

N +
∑S

r=1 λN/r
≈ λ

r[1 + λ(lnS + C)]
. (9)

From Eq. (6), we have dt = [A+ λ(lnS + 1)]dS, which when being substituted into Eq. (9)

yields
dgr
dS

=
λ

r
. (10)

We thus obtain

gr = λS/r +B. (11)

For S = 1, we have r = 1 and gr = 1, so the constant B in Eq. (11) is given by B = 1 − λ.

Since fr is proportional to gr, we have

fr ∝ λS/r + B. (12)

We finally analyze the return time distribution, P (τ), the probability that a traveler returns

to a previously visited location after τ steps. In our model, for the rth first visited location,

Pr(τ) is the joint probability of the following three probabilities: (1) qr, the probability of

visiting the location at the present, (2) (1− qr)τ−1, the probability that the rth location will
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not be visited in the remaining τ − 1 time steps, and (3) qr, the probability that the location

is visited exactly at time τ . We have

Pr(τ) = q2r(1− qr)
τ−1. (13)

From Eq. (9), the probability that the rth location is visited at each time step is given by

qr =
H

r
, (14)

where H = λ/[1 + λ(lnS + C)]. Substituting Eq. (14) into Eq. (13), we get

Pr(τ) =
H2

r2

(
1− H

r

)τ−1

. (15)

For all the already visited locations, the return time distribution is given by

P (τ) =

∫ S

1

Pr(τ)dr =

∫ S

1

H2

r2

(
1− H

r

)τ−1

dr =
H

τ

[(
1− H

S

)τ

− (1−H)τ
]
, (16)

which is approximately a mixture of two algebraic terms of the identical exponent −1.

1.2 Individual mobility model based on the generalized Zipf’s law

The above simplified model assumes that individuals visit locations with the probability

given by the basic Zipf’s law. However, there are situations where individuals choose their

visiting locations by following the generalized Zipf’s law [1]: f ∝ 1/rζ (ζ > 1). We are thus led

to incorporate the generalized Zipf’s law into our model to gain a better understanding of the

real mobility behavior at the individual level. A straightforward way to generalize our basic

model is to modify the transition probability from pij ∝ 1 + λ/rj to pij ∝ 1 + λ/rζj , where ζ

is an adjustable parameter. To be able to derive analytical results on the individual mobility

patterns, we further simplify the transition probability to be pij ∝ 1/rζ . In addition, to

obtain theoretical results associated with the generalized Zipf’s law, it is necessary to exploit

the exploration and preferential return (EPR) model proposed by Song et al. [2]. In the

EPR model, an individual has two choices when he/she chooses a location: (1) exploration

- the individual moves to a new location with the probability Pnew = ρS−γ, where S is the

total number of visited locations with ρ and γ being parameters; (2) preferential return -

the individual returns to a previously visited location with the probability 1−Pnew, and the
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probability to visit an old location is proportional to the number of travels to this location.

The EPR model can lead analytically to the generalized Zipf’s law from the relation Pnew =

ρS−γ. As an inverse process of the EPR model, the basic assumption of our model is the

generalized Zipf’s law, and we aim at analytically deriving the relationship between Pnew and

S. Our generalized model can be constructed, as follows.

There are two options for an individual at each step: (1) travel to a new location with the

probability Pnew that decreases with the increase of S and approaches 0 for large values of S;

(2) returns to an old location with the probability 1− Pnew, and the probability of selecting

the i-th old location is proportional to the number gi of travels to location i. We assume

that the visiting frequency fr to the rth visited location follows the generalized Zipf’s law

fr ∝ r−ζ , (17)

where ζ > 1 is an adjustable parameter. The frequency fi of visiting the location i can be

calculated by the number of visits to all the locations:

fi =
gi
t
, (18)

where t is the total number of travel steps (time steps), which is equal to the total number

of visits to all locations t =
∑S

i=1 gi. When a location i was first visited, we have

gi(ti) = 1, (19)

where ti is the time at which location i was discovered. For a large value of S, the probability

Pnew approaches 0, so the rate of increase in the number of visits to the i-th location is

approximately given by
dgi
dt

=
gi
t
, (20)

for which the solution is

gi = Cit, (21)

where Ci is an arbitrary constant. Combining Eqs. (19) and (21), we have

gi(ti) = Citi = 1, (22)

and

Ci =
1

ti
. (23)
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Inserting Eq. (23) into Eq. (21), we obtain

gi =
t

ti
. (24)

Combining Eqs. (17), (18) and (24), we get

tr ∝ rζ , (25)

where tr denotes the travel time during which location r was first visited.

For a trajectory with t jumps and S distinct locations, we can rank all visited locations

r = 1, 2, ..., S in the order of the discovery time tr. We then have

S(tr) = r. (26)

Combining Eqs. (25) and (26), we obtain

S(tr) ∝ t
1
ζ
r , (27)

or

S(t) ∝ t
1
ζ , (28)

which gives the scaling relation between time t and the visited location number S(t). Note

that S(t) ∝ t
1
ζ is the solution of

dS

dt
∝ S1−ζ . (29)

Since the increase rate of S equals the probability of visiting the new location, i.e.,

Pnew =
dS

dt
, (30)

we obtain

Pnew = ρS−(ζ−1), (31)

where ρ is a parameter and can be determined from empirical data [2]. These results demon-

strate that, according to the assumption that the visiting frequency follows the generalized

Zipf’s law, our generalized model can give rise to a power-law relationship between Pnew and

S. If we denote ζ = 1 + γ, Eq. (31) becomes

Pnew = ρS−γ, (32)

which is exactly the same as the basic assumption - the relationship between Pnew and S in

the EPR model [2]. This analytical result indicates that the generalized Zipf’s law and the
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power-law relation between Pnew and S have a mutually causal relationship, so the model for

individual mobility based on the former is equivalent to that based on the latter.

We also derive the return time distribution P (τ). For a sufficiently large value of S, the

probability that the rth location is visited at each time step is

qr ∝ fr ∝
1

rζ
(33)

or

qr =
L

rζ
, (34)

where L is a constant and
∑S

1 L/r
ζ = 1. Combining Eqs. (13), (15) and (34), we can

formulate the probability that an individual returns to the rth visited location after τ steps

as

Pr(τ) =
L2

r2ζ

(
1− L

rζ

)τ−1

. (35)

For ζ ≈ 1, we have Pr(τ) ≈ L2

r2 (1−
L
r )

τ−1, so

P (τ) =

∫ S

1

Pr(τ)dr ≈
L

τ

[(
1− L

S

)τ

− (1− L)τ
]
. (36)

For ζ ≫ 1, P (τ) cannot be solved analytically but numerical solutions can be readily ob-

tained.

Supplementary Note 2: Analysis of collective mobility

patterns

2.1 Uniform population distribution

To derive the mobility patterns at the population level, we simplify the model further by

assuming that each individual move only one step. In this case, the individual memory effect

can be neglected, so the transition probability pij of population traveling form location i to

j is

pij ∝
mj

Wji
. (37)
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If there are m individuals at each location and all locations are uniformly distributed in a

2-D domain, we have Wji = ρπd2ij, where ρ is the population density. In addition, using

Tij = mipij, we can rewrite Eq. (37) as

Tij ∝
mimj

d2ij
, (38)

which is the gravity model with a square distance function. In the real world, the spatial

distribution of cities in a region often exhibits fractal properties [3]: Wji ∝ dDij , where D is

the fractal dimension. We thus have

Tij ∝
mimj

dDij
, (39)

which is the gravity model with an algebraic distance function.

Since the populations at different locations are assumed to be equal, Eq. (39) can be

simplified as

T (d) ∝ d−D, (40)

which is the number T of traveling steps between two locations of distance d apart. We then

obtain the travel distance distribution as

P (d) ∝ d−D, (41)

which is an algebraic distribution with exponent −D. In the real world the fractal dimension

D ranges from 1 to 2 [3]. Indeed a previous work [4] demonstrated that the empirical scaling

exponents from some real travel distance distributions are consistent with the value of the

fractal dimension.

From Eq. (40), we obtain the distance between two locations as a function of T as

d(T ) ∝ T− 1
D . (42)

Moreover, the number of location pairs N(d) with distance ≤ d in a fractal space is

N(d) ∝ Q(y ≤ d) ∝ dD, (43)

where Q(y ≤ d) is the fraction of location pairs with distance ≤ d in the fractal space. The

quantity Q(y ≤ d) is larger than or equal to the fraction of location pairs with traveling

steps T (d), for the reason that the distance d is a decreasing function of T , as indicated by

Eq. (40). We thus have

P (x ≥ T ) = Q[y ≤ d(T )]. (44)
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Combining Eqs. (42), (43) and (44), we obtain the distribution of T as

P (T ) ∝ dd(T )D

dT
∝ d(T−D

D )

dT
∝ T−2, (45)

which is an algebraic distribution with exponent −2 - a universal value independent of the

fractal dimension D of the domain.

2.2 Heterogeneous population distribution

In the real world, population distributions among cities can be highly heterogeneous,

which has a significant effect on the distribution of T . To treat the heterogeneity analytically,

we consider a simple scenario in which the travelers are only allowed to travel from the central

city c to other cities. The central city has the largest population mc, and the population mj

of another city decreases from mc algebraically as a function of the distance dcj to the central

city:

mj ∝ d−ξ
cj , (46)

with ξ > 0. Combining Eqs. (37) and (46), we obtain

Tcj ∝
mcmj

Wjc
∝

mcd
−ξ
cij

m̄dDcj
∝ d−D−ξ

cj , (47)

where m̄ is the average population of the cities. Analogously, Eqs. (43), (44) and (47) lead

to

P (T ) ∝ d(T− D
D+ξ )

dT
∝ T−1− D

D+ξ , (48)

where the scaling exponent ranges from -1 to -2, covering most empirically observed exponent

values in the real-world travel flow distributions [see Fig. 5(e-h) in the main text].

Supplementary Note 3: Simulation setup of mobility be-

haviors in a fractal domain

To validate our analytical results, we simulate our simplified model in four typical fractal

domains: 2D Cantor dust, Vicsek fractal, Sierpinski triangle, and hexaflake. The results are
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shown in Fig. 6(d) in the main text. Here we describe the four fractal sets and the simulation

setup.

3.1 2D Cantor dust

The Cantor dust [5] is a 2D version of the Cantor set. It is obtained by starting with a

basic unit square, scaling its size by 1/3, then placing four scaled copies at the four corners,

respectively. Recursively applying the procedure ad infinitum, we generate a 2D Cantor set,

as shown in Supplementary Fig. 1. Let Nn be the number of black boxes and Ln be the

length of a side of a box after the nth iteration. The fractal dimension of the Cantor set is

D = − lim
n→∞

lnNn

lnLn
= − ln 4n

ln 3−n
=

ln 4

ln 3
≈ 1.262. (49)

3.2 Vicsek fractal

The Vicsek fractal [6], also known as the box fractal, can be constructed using a procedure

similar to that for the 2D Cantor dust. In particular, the basic unit square is decomposed

into nine smaller squares in a 3-by-3 grid. The four squares at the corners and the middle

square are kept, while the other squares are removed. The process is repeated recursively for

each of the five remaining subsquares. The Vicsek fractal is the set obtained at the limit of

this procedure, as shown in Supplementary Fig. 2. Its fractal dimension is

D = − lim
n→∞

lnNn

lnLn
= − ln 5n

ln 3−n
=

ln 5

ln 3
≈ 1.465. (50)

3.3 Sierpinski triangle

The Sierpinski triangle [7], or Sierpinski gasket, is obtained by starting from an equilateral

triangle of unit side length (in fact any triangle can be used), subdividing it into four smaller

congruent equilateral triangles, and removing the central one. This procedure is repeated ad

infinitum, generating the Sierpinski triangle fractal, as shown in Supplementary Fig. 3. Its

fractal dimension is

D = − lim
n→∞

lnNn

lnLn
= − ln 3n

ln 2−n
=

ln 3

ln 2
≈ 1.585. (51)
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3.4 Hexaflake

Hexaflake [8] is a fractal constructed starting from a hexagon, which is replaced by a flake

of smaller hexagons such that a scaled hexagon is placed at each vertex and at the center.

This procedure is repeated recursively to generate the hexaflake, as shown in Supplementary

Fig. 4, with its fractal dimension given by

D = − lim
n→∞

lnNn

lnLn
= − ln 7n

ln 3−n
=

ln 7

ln 3
≈ 1.771. (52)

3.5 Simulation setup

We iterate the construction procedure for each of the four fractal geometries and set the

central position of the shapes in each fractal set (black blocks in Supplementary Fig. 1-4) to be

the location coordinates. To avoid an idealized fractal domain and better mimic empirically

observed fractal features in the real world, we add a small random offset to the coordinates of

each location. The iterations are 5, 4, 6, 3 for the 2D Cantor dust, Vicsek fractal, Sierpinski

triangle and hexaflake, respectively, and the numbers of existent shapes (locations) are 1024,

625, 729 and 343, respectively.

We set population m at each location and use Eq. (37) to calculate the number of trav-

eling steps Tij between any location pairs. We use min(T ) to rescale all T , i.e., we let the

minimum number of traveling steps be one, and finally obtain the travel flow distribution

P (T ). Similarly, we can obtain the rescaled travel distance distribution P (d), as shown in

Fig. 6(d) in the main text.

Supplementary Note 4: Model validation with empirical

mobility data at the city scale

In the main text we have demonstrated that our model is universally applicable to coun-

tries with diverse spatial scales. Here we show that the model can also characterize individual

and population mobility patterns at the city scale accurately.
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We use the foursquare check-ins data set [9] in New York city as the proxy data of human

mobility for model validation. The data set contains 42035 individuals, in which 23520 have

travels among different locations (here the locations are defined as the 2010 census blocks [10],

see Supplementary Fig. 5), and the total number of traveling steps is 113279.

For this data set, we first estimate the memory strength parameter and obtain λ ≈ 8.0.

We then simulate our model using this parameter value and compare the results with those

from the real mobility data, as shown in Supplementary Figs. 6 and 7. We see that both

the individual and collective mobility patterns in New York city can be predicted, suggesting

that our model is capable of characterizing human mobility patterns at small (intra-city)

spatial scales.

Supplementary Note 5: Comparison with alternative

models

Our mobility model contains two essential ingredients: individual memory and population

induced competition effects. They jointly determine the attractiveness of a location, as well

as the transition probability for an individual to move from one location to another. Here

we consider two alternative models, a memory-free model and a competition-free model, to

show that the two ingredients are indispensable for modeling human mobility patterns.

5.1 Memory-free model

To construct a memory-free model, we modify Eq. (3) in the main text by writing the

transition probability pij of traveling from location i to j as

pij ∝
mj

Wji
. (53)

The model prediction results are shown in Supplementary Figs. 8, 9 and 10. We see that,

while the memory-free model can reproduce the collective mobility patterns to certain extent,

it fails to capture the individual movement patterns.
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To offer a better comparison of the results obtained from different models, we use two

indices to measure the model prediction accuracy. The first is the Sørensen similarity index

(SSI) [11], which is a statistical tool to identify the similarity between two samples. Here we

use SSI to quantify the degree of similarity between real observations of collective travel flow

between locations and model prediction results. The SSI is defined as

SSI ≡ 1

N2

N∑

i

N∑

j

2min(T
′
ij, Tij)

T
′
ij + Tij

, (54)

where T
′
ij is the model predicted traveling steps from location i to j and Tij is the observed

number. Apparently, if each T
′
ij is equal to Tij the index should be unity, whereas if all T

′
ijs

are far from the real values, the index should be close to 0.

The second index is the root-mean-square error (RMSE) [12], which is a frequently used

quantity to measure the differences between the model predicted and actually observed val-

ues. We use RMSE to measure the prediction errors of the models in the total number

of locations S(t) visited within time t, which is an important characteristic of individual

movement patterns. The RMSE of S(t) is defined as

RMSE =

√∑Lmax

t=1 [Sreal(t)− S(t)]2

Lmax
, (55)

where Sreal(t) is obtained from the actual data set, S(t) is calculated from the model, and

Lmax is the maximum time step.

We calculate the SSI between observed and predicted travel flow and RMSE of the predict-

ed S(t) for the original model and memory-free model, and list the results in Supplementary

Table 1. These results suggest that the memory effect mainly affects the individual movement

patterns but has a little effect on the collective mobility patterns.

5.2 Competition-free model

The competition-free model is a memory-based mobility model without any population

induced competition effect. In this model, the transition probability pij of traveling from

location i to j is

pij ∝ mj(1 +
λ

rj
), (56)
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meaning that individuals only consider the inherent attractiveness of locations and their own

preferences induced by memory when selecting travel destinations.

Supplementary Figs. 11, 12, 13 and Supplementary Table 1 show the prediction results

from the competition-free model. We see that, in contrast to the memory-free model, the

competition-free model can reasonably reproduce the individual mobility patterns, but the

accuracy of predicting collective movement patterns is poor. These results further demon-

strate that both the memory effect and population induced competition effect are essential

for modeling and predicting human mobility patterns simultaneously at the individual and

population levels.
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