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A procedure is developed to probe the changes in the functional interac-
tions among neurons in primary motor cortex of the monkey brain during
adaptation. A monkey is trained to learn a new skill, moving its arm to
reach a target under the influence of external perturbations. The spike
trains of multiple neurons in the primary motor cortex are recorded si-
multaneously. We utilize the methodology of directed transfer function,
derived from a class of linear stochastic models, to quantify the causal
interactions between the neurons. We find that the coupling between the
motor neurons tends to increase during the adaptation but return to the
original level after the adaptation. Furthermore, there is evidence that
adaptation tends to affect the topology of the neural network, despite the
approximate conservation of the average coupling strength in the network
before and after the adaptation.

1 Introduction

Learning and adaptation are two of the most fundamental issues in cognitive
science. Among the many existing studies on neural mechanisms for learn-
ing and adaptation, motor learning is of primary interest due to the relative
ease in accessibility to behavioral data from controlled experimental stud-
ies. A wealth of evidence suggests that motor learning involves many areas
of the brain such as the cerebellum and the basal ganglia (Pearson, 2000; Ito,
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2000), the motor cortex (Sanes & Donoghue, 2000; Li, Padoa-Schioppa, &
Bizzi, 2001), the sensory cortex, and other association areas (Muller, Metha,
Krauskopf, & Lennie, 1999). In this letter, we focus on the primary motor
cortex (M1), which is believed to be responsible for voluntary movements.
Recent studies on human and nonhuman primates (Recanzone, Schreiner,
& Merzenich, 1993; Florence & Kaas, 1995; Karni et al., 1995, Nudo, Mil-
liken, Jenkins, & Merzenich, 1996) demonstrate that M1 is plastic, implying
the dynamic and adaptive nature of this area. At the neural level, a recent
work (Li et al., 2001) shows that the preferred direction of individual neu-
ron could change in response to motor learning. Because neurons in M1 are
apparently connected in a sophisticated manner, it is reasonable to hypoth-
esize that neural interactions are responsible for learning and organizing
specific movements. Yet to our knowledge, little has been done to explore
the interactions among neurons in M1 and how they change in order to
learn a specific type of movement and to adapt to it. The aim of this article
is to characterize, quantitatively, interactions among M1 neurons and how
they change in response to movement perturbations in a series of controlled
experiments with monkeys.

Traditionally, linear nonparametric methods based on correlation mea-
surements and spectral-coherence analysis are popular for probing the neu-
ronal interactions (Gochin, Miller, Gross, & Gerstein, 1991, Duckrow &
Spercer, 1992; Bressler, Coppola, & Nakamura, 1993). These methods deal
with a pair of recordings, from two different neurons, over a relatively long
time period. Consequently, they are not capable of distinguishing between
directand indirect interactions and yielding information about the direction
of the interaction. In addition, it is difficult to overcome the influence of non-
stationarity that is always present in neural recordings. Linear parametric
methods, such as multivariate autoregressive (MVAR) modeling (Whittle,
1963; Gersch, 1970; Ding, Bressler, Yang, & Liang, 2000), on the other hand,
can overcome these shortcomings. The MVAR and directed transfer function
(DTF) methods that we will use have proved to be powerful for analyzing
multichannel neural recordings (Kaminski & Blinowska, 1991; Sameshima
& Baccala, 1999; Freiwald et al., 1999; Ding et al., 2000; Kaminski, Ding,
Truccolo, & Bressler, 2001).

Our analysis is based on constructing MVAR models from recordings of
a group of neurons in M1 during learning and adaptation and computing
the energy of the associated DTFs in the time domain. The neural recordings
used in our analysis are typically short and sparse spike trains. It is necessary
to preprocess the data so that the MVAR model can effectively approximate
the process that generates the spike trains. We propose a method to achieve
this by converting the spike trains into continuous-time signals of the in-
stantaneous spiking rate. Then, by measuring the average coupling strength
based on the concept of Granger causality (Granger, 1969) and DTFs, we are
able to assess the changes in neural interactions in a quantitative manner.
Our main findings are: (1) learning and adaptation typically result in sig-
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nificant temporal changes in the interactions among neurons in both the
direction and the strength of the coupling, (2) the average coupling strength
over the network of neurons appears to increase during the adaptation but
return to the original level after adaptation, and (3) the connecting architec-
ture of the network is typically altered after adaptation.

Neural activities in the brain are undoubtedly nonlinear. Naturally, one
might thus ask why we choose to focus on linear methods to address the
learning and adaptation problem in M1. As for linear methods, nonlinear
methods can also be classified as nonparametric and parametric. A popu-
lar class of nonparametric method is nonlinear time-series analysis based
on the time-delay embedding techniques (Takens, 1981; Sauer, Yorke, &
Casdagli, 1991, 1997; Sauer, 1994, 1995; Castro & Sauer, 1997), which can
yield meaningful information for dynamical systems of low dimensional-
ity (Sauer et al., 1997) and for relatively noiseless data over a long time
span. However, for the task that we face, all these assumptions are violated.
Parametric methods, on the other hand, utilize nonlinear models such as ar-
tificial neural networks and fuzzy logic schemes to identify the underlying
nonlinear system and estimate the interactions between neurons, which are
promising but largely empirical and generally more difficult to deal with
than linear methods. Our philosophy is that given a set of neural data, which
are typically noisy and short, the linear method should be considered first,
at least for the purpose of gaining insights. Often such an exploration can
lead to meaningful results. Indeed, as we will demonstrate in this article, by
carefully preprocessing the input data and selecting model parameters, the
MVAR/DTF approach can yield alarge amount of information that can help
us better understand the functional changes in neural interactions during
learning and adaptation.

2 Material and Methods

2.1 Behavioral Experiments and Data Collection. The Institutional An-
imal Care and Use Committee at Arizona State University approved the
behavioral paradigm, surgical procedures, and general animal care. The
guidelines suggested by the Association for Assessment and Accreditation
of Laboratory Animal Care and the Society for Neuroscience were followed.

The experimental subject is a rhesus monkey trained to perform be-
havioral movements in a three-dimensional space, similar to the standard
center-out tasks in motor cortical studies (Georgopoulos, Kalaska, Caminiti,
& Massy, 1982; Schwartz, Kettner, & Georgopoulos, 1988; Georgopoulos,
Kettner, & Schwartz, 1988). In our experiment, eight targets with lights and
push buttons are located at the vertices of a 13 cm cube as shown in Fig-
ure 1A (He, Weber, & Cai, 2002). In the center of the cube is an additional
target. Each trial begins with the illumination of the central target (center
on). The monkey is trained to push and hold the button on the central target
until a randomly selected target at a vertex is illuminated, at which time
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the monkey is supposed to reach out to the new target. A successful trial
requires that the monkey reach the vertex target and push the button in
time less than 600 ms and hold it at least 100 ms. The coordinates of hand
trajectories were recorded by using a 3D optoelectronic motion analysis sys-
tem (Optotrak System, Northern Digital). To test the monkey’s abilities to
learn and to adapt, perturbations at the behavioral level are applied to dis-
turb the monkey’s already well-trained reaching-out movement. To apply
the perturbation, the monkey’s wrist was attached to a pneumatic cylinder
through a string. A brief (75 ms) pulling force, produced by the pneumatic
cylinder, is delivered through the string after the hand moved about 2 cm
from the center target. The approximate direction of the pulling force for
each target is shown in Figure 1A.

To assess the neural behavior in M1, two 16-channel arrays of microelec-
trodes are chronically implanted in the precentral arm area. Extracellular
potentials are recorded on a 96-channel Multi-channel Acquisition Proces-
sor (MAP, Plexon, Inc., Dallas, TX). The MAP can isolate up to four units
on a single electrode by using waveform discrimination. Spike times from
all active channels are recorded along with behavioral event times (e.g., the
center-release time), which allow us to separate the behavioral task periods.
The waveform samples (800 us clip) of action potentials were also recorded
throughout the experiment to verify the stability of the neural recordings
across multiple days. Further details are given in Weber (2001) and He,
Weber, and Cai (2002).

Before the surgery, the monkey was trained to be able to perform unper-
turbed trials successfully, without the string attached. Then electrodes were
implanted. After a one-week period of postsurgical recovery, the monkey
was attached to the string during all experiments, no matter whether the
perturbation was applied. The experiments began with four-week unper-
turbed trials. The average trajectory on the last day of unperturbed trials is
shown in Figure 1B (the trajectory with 0). From day 1 on, the perturbation
force began to be applied. At the beginning, the perturbation force tended
to significantly displace the monkey’s arm motion from its normal, unper-
turbed trajectory. After about one week, the monkey is able to compensate
for the perturbation in a fairly predictable way (He et al., 2002), which can
be seen by comparing the trajectories on days 1 and 8 in Figure 1B.

2.2 MVAR Model and Its Validity. Our analysis is based on MVAR
modeling. Suppose the multichannel time series X(n) = [x1(n), x2(n), ...,
xp(n)]" are generated from a stochastic system or a deterministic system
of high dimensionality under the influence of strong noise, where # is the
discrete time. The current state is determined by the linear combination of
K previous states and uncorrelated white noise N(n) = [n1(n), na(n), ...,
np(n)]7 if the time span between the previous and current states is not too
large (otherwise, they may become uncorrelated). In MVAR modeling, X (1)
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Figure 1: (A) Targets and perturbation force field in front of the monkey. The
eight targets are located at the vertices of a 13 cm cube. (B-C) The hand trajec-
tories toward target 4 (top left). The digits indicate the experiment date (e.g., 1
indicates the first day of perturbed trials). Each trajectory shown here is aver-
aged over all the trials during one day. The thick curves correspond to perturbed
trials, and the thin curves correspond to unperturbed trials. (D-I) The changes
of firing rates from six neurons (set 1) in M1 across the adaptation days. The
firing rates are averaged over trials on target 4 during the period from target-on
to center-release.

is written as

K
X(m) =Y A - X(n—1) +N(n), (2.1)
=1

where A(l)’s (I = 1, ..., K) are MxM coefficient matrices, the noisy vec-
tor N(n) characterizes the modeling error, and K is the model order. The
Akaike’s final prediction error (FPE) criterion (Akaike, 1974) can be used to
determine the optimal model order.

Equation 2.1 is a linear model, and, hence, it can represent linear, stochas-
tic systems for suitable choice of K. While the underlying dynamical system
generating the observed neural activities is undoubtedly nonlinear (Free-
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man, 1985, 1987; Freeman & Skarda, 1985), its dimensionality may be so
high that effectively, it cannot be distinguished from a linear stochastic pro-
cess (Lai, Osorio, Harrison, & Frei, 2002). Our central hypothesis is then
that the neural dynamics of the brain can be described practically by linear
stochastic models such as equation 2.1.

Stationarity of the stochastic process is another issue of concern. Notice
that the MVAR model defined by equation 2.1 is time invariant, which re-
quires that the time series X(n) be stationary, with each channel of X(n)
stationary and all channels jointly stationary. However, in our experiment,
during the reaching-out movement, the monkey’s brain performs a cogni-
tive task; thus, the state of the brain may change rapidly in time, which re-
sults in changes in the firing rate and firing pattern of the neurons and likely
changes in the functional interactions between neurons as well. In reality,
neural recordings are thus nonstationary. While the stationarity of record-
ing from individual channel may be improved by subtracting its mean and
dividing by the standard deviation for each point in the time series, com-
putationally it is hard to improve the joint stationarity. Nonetheless, if the
interactions among neurons are approximately invariant or slowly varying
over a short time period on which the analysis is focused, the neural inter-
actions can be assumed to be approximately time invariant. For this reason,
in what follows, we focus only on the short time period from target-on to
center-release (300 ms on average). Investigation on another period, from
center-release to target-hit, yields similar results.

2.3 Dealing with Short, Sparse Spike Trains. For nonstationary,
continuous-time signals, it is necessary to preprocess the data to reduce the
influence of nonstationarity, such as dividing the data into a set of short but
relatively stationary segments or removing the time-varying average from
the data. In situations where only short time series are available, MVAR
modeling requires an ensemble of such data sets to yield a stable MVAR
model. Our neural recordings are even worse than merely being short be-
cause they are not continuous-time signals but spike trains, which can be
regarded as being from a point process. That is, the recorded information is
a set of ordered times at which spikes occur, as follows:

to<ti<bhr<--- <ty <---

In order to apply a multivariate time-series analysis, it is necessary to
convert the sequence of times into a continuous-time waveform (Brillinger,
1978). A standard technique is to construct

x(t) =Y 8(t—ty) (2.2)

and then pass x(t) through a low-pass filter or to convolve x(¢) with a ker-
nel function to remove high-frequency components (Sameshima & Baccala,
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1999; Kaminski et al., 2001), generating a continuous-time signal more suit-
able for MVAR modeling and also capable of capturing the phase informa-
tion of the spike train. With appropriate adjustments of parameters (e.g., the
cutoff frequency of low-pass filter), such preprocessing can be quite useful
if the spike train contains a large number of spikes and the recordings are
relatively stationary. If the spikes are sparse, the cutoff frequency of the low-
pass filter has to be very low, resulting in the response delay of the low-pass
filter comparable to the duration of the spike train. In this situation, part
of the phase information of the spike train will be lost in the output signal,
and great effort is needed to compensate the distorted phase information.

The neural data from our experiments are only a sparse set of spikes;
the number is typically so small that the standard preprocessing method
becomes unsuitable. Here we propose a general method of preprocessing
short, sparse spike trains so that MVAR modeling can be applied. We note
that for multichannel spike trains, the relative phase, or the relative timing
of spikes among different channels, is the only information from which neu-
ral interactions may be extracted. Our basic idea is to convert a spike train
into continuous-time signals of instantaneous firing rate, which should pre-
serve the phase information. As such, the rate profile and the original spike
train code the same temporal firing behavior of the neuron. Consider, for
example, integrate-and-fire neurons. If the firing threshold is known, the in-
stantaneous firing rate can be converted into the spike train, and vice versa,
without loss of information. Our procedure to construct a continuous-time
rate function from a spike train consists of three steps, as illustrated in Fig-
ures 2A through 2C. Fluctuations of the resulting instantaneous firing rate
reflect the irregularity in the occurrences of spikes, so a coherence measure
between two instantaneous firing-rate signals can yield information about
the interactions between the two neurons. The temporal property of the rate
signal obtained this way lies somewhere between those of the mean rate and
the original spike train, with §T as the parameter for adjusting the relative
weights of the two.

We investigate the influence of the value of §T on the modeling error by
utilizing a neural network model with a known network structure (see sec-
tion 3). We find, empirically, that varying 8T, insofar as it is smaller than the
mean interspike interval T, will generally not affect the result. Experiments
under situations with different firing rates suggest that choosing §T to be a
fraction of T (say, T/4) is properin the sense that the estimate of the network
structure is correct.

2.4 Directed Transfer Function and Coupling Strength Measurement.
Since the instantaneous rate profile can be regarded as a continuous-time
signal, multivariate time-series analysis techniques can be applied readily.
Performing a Fourier transform of equation 2.1 yields

X(f) = A7 (f) - N(f) = H(f) - N(f). (2.3)
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Figure 2: Construction of a continuous-time rate signal from a spike train. (A)
The original spike train. The averaged firing rate during each interspike interval
(e.g., 71) is taken to be the inverse of the interval (e.g., 1/7;). (B) Forming a time
series with sampling period 8T, where f(n = i) is the area of shaded region in
(A). (C) The resulting continuous-time rate signal, after low-pass filtering (FIR
with cutoff frequency equal to 0.2 of Nyquist frequency).

The DTF from the ith channel to the jth channel is defined as (Kaminski &
Blinowska, 1991)

\Hji())I?
Yot Him ()P

From a numerical example shown in Figures 3D and 3E, we see that a
convenient quantity to characterize the direct interactions among neurons
is

DTF(f)ji = (2.4)

Cji = fo DTF;i(f) df, (2.5)

which is the total area under the transfer function and can be regarded as
being proportional to the “energy” transfer, or the direct coupling strength,
from neuron i to neuron j. Equivalently, one can make use of the coefficient
matrices A(l) in the time domain to compute the direct coupling strength
(Kaminski et al., 2001), as follows:

PP A%
EDI A% 7

where 0 < Cj; < 1.

Gi= (2.6)
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Figure 3: A numerical network model of five interacting Hodgkin-Huxley neu-
rons. (see section 3 for details). There are five neurons—one isolated and four
connected with coupling strength k—driven by five independent external stim-
uli I;’s. A typical set of action potentials from five neurons with k = 2 is shown
in C. The mutual interactions among neurons 2 and 3 are explicitly reflected by
the values of the DTFs in D and E. The estimated coupling architecture of the
network with significant interactions is shown in B, where 100 trials with k = 2
and the significance level @ = 0.05 are used. The arrows indicate the directions
of coupling, and the thickness of lines signifies the relative coupling strength.
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The above definition of the coupling strength C;; is meaningful only in
the statistical sense, since Aj; in equation 2.6 is estimated from the input
data. To test whether the computed values of the coupling strengths are
statistically significant, it is necessary to conduct a null-hypothesis test.
In this regard, the method of surrogate data (Theiler, Eubank, Longtin,
Galdrikian, & Farmer, 1992; Kamiriski et al., 2001) is convenient. For a set
of given time series, its surrogate is generated by randomly shuffling the
sampling points of each channel independently so that any functional inter-
actions among them are destroyed while the energy of the original signals
is maintained. Then the distribution of the coupling strength measurement,
F(x) = Probability(C > x), can be empirically obtained by using a large
number of independently shuffled surrogate data sets. For a given signifi-
cance level o (= 0.05 used in this study), the causal influence from channel
i to j is said to be significant if F(Cj;) < a. One of the advantages of multi-
variate modeling over pairwise time-series analysis is that a more accurate
estimate on causal interaction can be made by taking the influence of other
channels into account. Consider a situation where two neurons are driven
by a commonneuron. In this case, a pairwise method may suggest that there
is an interaction between the two driven neurons since they are correlated.
However, as we will show in section 3, if an MVAR model is fitted into
the measurements of all three neurons, direct interaction between the two
driven neurons may not pass the significance test, and correct estimation
of the connection structure of this three-neuron network can be made. It
should be noted that multivariate analysis cannot distinguish between di-
rect or indirect interaction as with pairwise methods if the common input is
not included in the MVAR model. Nevertheless, multivariate methods are
preferred if multichannel measurements are available.

3 Results

To gain confidence on the applicability of our procedure to realistic neural
recordings, we first study a small artificial neural network consisting of five
interacting, Hodgkin-Huxley-type neurons, as shown in Figure 3.

3.1 Benchmark Testing Using a Model Network of Hodgkin-Huxley-
Type Neurons. In this network, each neuron is modeled by the following
set of ordinary differential equations (Wilson, 1999):

WV (17,81 + 47,58V + 33.8V2)(V — 0.48) (3.1)

a
—26R(V 4 0.95) + I — kgV

AR 1
— = —[-R+12 7 ) .38)?
— 5.6[ R+1.29V +0.79 + 3.3(V + 0.38)2],
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af 1

. = - T ~2 )
r fsyn[ f+5gn(Vye +0.2)]
dg 1

i fsyn( g+ 1),

where Sgn(x) is the sign function, V is the membrane potential, R is the re-
covery variable, and f is an intermediate variable for the synaptic potential
. The first two equations characterize the dynamics of the membrane po-
tential, which are a simplified version of the Hodgkin-Huxley equations for
mammalian cortical neurons, and I is the sum of external stimuli, exclud-
ing the one from the presynaptic neuron. Independent bandpass random
noise is used to mimic external stimuli for different neurons. The last two
equations govern the dynamics of the synaptic potential. All synapses in
the network have the same coupling strength k and time constant z,,, =
2 ms. Briefly, the membrane potential V. of presynaptic neuron is cou-
pled to postsynaptic neuron, V, through an excitatory synapse with time
constant 7gy.

Figure 3C shows the action potentials from the five neurons with k = 2
during one trial. On average, each neuron fires about 16 to 30 spikes during
this short period. We utilize our procedure based on the instantaneous fir-
ing rate to convert the spike trains into continuous-time signals. The same
procedure is performed for 100 independent trials. In order to improve the
stationarity, the ensemble mean over 100 trials is subtracted, and the data set
is divided by the standard deviation. A MVAR model is fit to the resulting
data. The FPE criterion gives the optimal model order of eight. Utilizing the
procedure in equation 2.6, we obtain the coupling-strength matrix C. Simi-
larly, we can obtain coupling strength matrix C° from a surrogate data set.
For the null hypothesis test, we repeat this process many times and obtain
the empirical distribution of coupling strength measurement C].S;. for each
connection.

The final estimation of the network coupling architecture is shown in
Figure 3B. As expected, neuron 5 is isolated from the rest of the network;
neurons 1 and 2 are bidirectionally coupled; and there is no direct interaction
between neurons 3 and 4, which are driven by neuron 2. The simulation
indicates the presence of a small amount of coupling from neurons 4 to 2,
which contradicts the network configuration. This small amount of energy
“leakage” is induced by the error of modeling and may increase as the
real coupling strength increases. However, considering the fact that this
energy leakage occupies only a very small portion of the total coupling
energy (less than 5% in this example), we regard the result as agreeing with
the original network architecture reasonably well. Figures 4A through 4H
show how the coupling strength measure C;; of each connection changes
as the actual coupling strength k is increased from 1 to 4. The estimated
coupling strength apparently reflects these changes. We also see that the
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Figure 4: (A-H) Estimated coupling strength of individual connections versus
the actual coupling strength k. (I) Coupling strength level averaged over the
entire network, XC, versus the assumed coupling k.

estimated coupling strengths do not grow linearly with the true coupling
strength, and the growth rates for different connections are different. This
is due to the fact that the underling system, equation 3.1, is nonlinear. A
measurement on the output of the system may have a very complicated
nonlinear functional relation with system parameters. Nevertheless, since
the function of the coupling strength measurement versus k, C = f(k), has
a monotonic behavior, the changes of C can actually reflect the changes
of true coupling strength k. Thus, when we investigate the changes of k
from data, we will focus on the changes of C without attempting to find
the function f. While C;; gives the strength of individual connections, the
summation of Cj;, %C, gives the estimation of the coupling-strength level
of the whole network. Figure 41 shows that X C increases with k, indicating
that our procedure can detect the change in neural interactions correctly.

3.2 Analysis of Neural Recordings from M1 During Adaptation. In
our experiments with monkey, the session each day typically lasts for about
2 hours; around 80 trials were performed for each target. During the experi-
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ments, the same population of active neurons (about 30 to 50) was recorded
simultaneously. A total of 44 M1 neurons were considered for this study. For
each trial, we analyze the neuronal activity during the period from target-on
to center-release. The typical patterns of changes in firing rates are shown
in Figures 1D through 1I, which were obtained from the responses toward
target 4. It also appears that the changing patterns on different targets are
similar for the same neuron during the adaptation. Among the 44 neurons,
the firing rates of about 36%(16/44) of neurons were found to be fairly con-
stant during preadaptation days, while the ones of the others were not.
During the adaptation, the firing rates of about 18%(8/44) of neurons were
found to have increased; 30%(14/44) increased first and then dropped back;
11%(5/44) decreased; 11%(5/44) decreased, increased, and then dropped
back; and 27%(12/44) did not show any clear trend.

We are interested in how neural interactions evolve during adaptation.
Among the 44 neurons, some appear to be relatively more active (e.g., firing
more than 20 spikes in one trial). For statistical reliability, we select 17 active
neurons and group them into three sets for the purpose of cross validation.
The first set consists of six neurons, which fire actively throughout the ex-
perimental period. The changes of their firing rates are shown in Figures 1D
through 1I. The second set consists of eight neurons (four are also in the
first set), which also fire actively through the experiments of all days. The
third set varies on different days and consists of eight neurons, which fire
most actively on each day. For each set on each day, the recorded spike
trains are first preprocessed. The resulting data are then used to construct
an MVAR model, and the coupling matrices are computed. Null hypothesis
tests are performed to find statistically significant connections, based on the
empirical distributions obtained from the surrogate data.

Figures 5A through 5C show the changes of interactions between the
neurons in the first set during the preadaptation days. It is not surprising to
see that the connection structure between these neurons appears not quite
stationary, since the monkey’s hand trajectories and the activities of single
neurons were not stationary either in the preadaptation days, as shown in
Figure 1. Despite the presence of these nonstationarities, consistency can
still be observed (e.g., the forward connection from neuron 6 to 5). During
the adaptation, as shown in Figures 5D through 5H, consistent connections
clearly appeared (e.g., the one between neurons 3 and 5). It is also evident
from Figures 5A through 5H that the directions of neural interactions tend
to change during the adaptation, and the coupling strength of neural inter-
actions can fluctuate as well. These observations provide direct evidence
that adaptation is accompanied by synaptic modification, which may occur
rather quickly.

A question is whether the synaptic modification during adaptation tends
to modify the connecting architecture of the neural network, established
during the learning process in unperturbed trials, only slightly or to change
the architecture totally (i.e., reorganization of the interaction paths). Fig-
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Figure 5: Results obtained from a set of six neurons on trials with target 4.
(A-H) Estimated network structure on different days. The thickness of lines
signifies the relative coupling strength. (I) All possible connections between
these six neurons by superposing the results from 14 days. Their strengths are
ignored.

ures 5A through 5H show the architectures of the six-neuron network on
different days during adaptation for target 4. We see that on the timescale
of days, adaptation tends to change the interacting architecture within the
network in a substantial manner, suggesting that the internal network of
neurons in M1 is very flexible. It is thus likely that the strategy employed
by the brain for adaptation in response to external perturbations is to re-
organize the neural network. If there exist extensive physical connections
(synapses) among neurons in M1, reorganization can be achieved by chang-
ing the existing synaptic connections rather than growing new synapses. It
has been shown that this reorganization can have a very rapid time course
(within a few hours) (Jacobs & Donoghue, 1991). As shown in Figure 5I,
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Figure 6: Estimated coupling strength level across adaptation days. Results are
obtained from 17 neurons.

over the period of interest (less than three weeks), direct or indirect connec-
tions can be established among almost any two neurons. Studies on different
targets and different neuron sets also support the above findings.

The overall changes of interaction level among these 17 neurons are
shown in Figure 6, estimated by averaging the results from the above three
sets. The general observations are the following;:
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o The estimated level of neural interaction strength still changes without
showing any clear trend (increasing or decreasing) during the last three
days of the four-week training on unperturbed trials with string attached.
This fluctuation may simply come from the uncertainty of the coupling
strength estimation. However, considering the consistency presenting in
Figures 5A through 5H and the continuity presenting in Figure 6 during
adaptation (e.g., Figure 6G after day 9), we believe that this fluctuation
does not come from the estimate uncertainty, but it reflects the changes
of real interaction levels. The observations of hand trajectory and firing
rate of single neuron also support this argument. As shown in Figure 1,
the trajectories and firing rates on days —4, —3, and 0 are considerably
different. One possible reason is that without the guidance of external force,
the reaching-out movements were relatively random (or “noisy”) due to the
nature of the neuronal firing and muscle contraction, even after a relatively
long period of training. However, after being exposed to the external force,
it developed a guided trajectory to compensate the perturbation, which can
be seen from the changes of trajectories on days 1, 8, and 15 in Figure 1B.

e A significantincrease on interaction level appears at the beginning of the
second adaptation week after a two-day break. This observation indicates
that the process of memorization plays an important role during learning
and adaptation.

o After another week’s adaptation, the overall coupling level returns to
the same level as before the adaptation. Although the details of changes
on interaction levels are different for different targets, the restoration of the
coupling strengths after adaptation appears to be the rule governing the
change in neural interactions during adaptation.

Learning and adaptation in general may involve many neurons in M1
and in other regions of the brain as well. Since the neurons from which spike
trains are recorded are randomly selected, the 17 active neurons utilized in
our analysis may constitute a reasonably representative set of the entire
population of the involved neurons in M1.

4 Discussion

In this study, we presented an algorithm based on MVAR models and DTFs
to probe the functional interactions among neurons by using multichannel
neural recordings (spike trains). In order to make the algorithm applicable
for situations where the spike trains are short and sparse, a procedure is
proposed to preprocess the data by converting the spike trains into instan-
taneous firing rates. A statistical test based on surrogate data is used to eval-
uate the significance of the coupling strength measurements. The behavior
of this algorithm was examined by using both simulated data and actual
neural recordings. Our study on the simulated network of Hodgkin-Huxley
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neurons shows that despite minor errors in estimations, the algorithm is ca-
pable of yielding the strengths of functional interactions among neurons
and the sensitivity to the changes of these interaction strengths. These indi-
cate that our algorithm may be a useful tool to characterize the interaction
among neurons, which is important for investigating how the brain learns
and adapts.

We analyzed spike trains generated by neurons in M1 from a monkey
during reaching-out movements in controlled experiments. Although the
results presented here are only preliminary, the analysis based on our algo-
rithm provides evidence that the process of learning and adaptation tends to
cause changes in the neural network in two ways. First, during the learning
and adaptation, the synaptic strengths (or the coupling strengths) among
neurons change, and thus new dynamics takes over in the network of neu-
rons. At the beginning of adaptation, the interactions among neurons tend
tobe strengthened. One possible result of stronger coupling strength among
the neurons in a network is faster response for the whole network to input
stimulus. The expense, however, is more energy consumption due to the
increased coupling and thus the increased metabolic activity of the brain.
After adaptation, the coupling strengths among neurons return to the orig-
inal level, which means less energy consumption for performing the task.
Second, the connecting architecture of the neural network tends to change
significantly as a result of learning and adaptation. Perhaps, to achieve
fast response, changing the architecture may be better than increasing the
coupling strength. It is possible that this learning process never stops, and
overtraining can always change the interactions among neurons. Our study
also indicates that both good performance and energy efficiency are the
goals of the adaptation. While the goal of good performance was enforced
by food reward to the monkey, the goal of energy efficiency is achieved by
the nature of the learning mechanism of the brain.
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