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Abstract

This paper addresses the issue of creating a lattice model suitable for design purposes and capable of quantitative esti-
mates of the mechanical properties of a disordered microstructure. The lack of resemblance between idealized lattice mod-
els and real materials has limited these models to the realm of qualitative analysis. Two procedures based on the same
methodology are presented in the two-dimensional case to achieve the rigorous mapping of the geometrical and the elastic
properties of a disordered polycrystalline microstructure into a spring lattice. The theory is validated against finite elements
models and literature data of NiAl. The statistical analysis of 900 models provided the effective Young’s modulus and Pois-
son ratio as function of the lattice size. The lattice models that were created have in average the same Young’s modulus of
the real microstructure. However, the Poisson’s ratio could not be matched in the two-dimensional case. The spring con-
stants of the lattices from this technique follow a Gaussian distribution, which intrinsically reflects the mechanical and geo-
metrical disorder of the microscale. The detailed knowledge of the microstructure and the Voronoi tessellation necessary to
implement this technique are supplied by modern laboratory equipments and software. As an illustrative example of lattice
application, damage simulations of several biaxial loading schemes are briefly reported to show the effectiveness of discrete
models towards elastic anisotropy induced by damage and damage localization.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Discrete lattice models have been used over the
past two decades for the study of heterogeneous
materials. Hansen et al. (1989), Sahimi (2000), Kra-
jcinovic and Basista (1991), Krajcinovic and Vujos-
evic (1998), Mastilovic and Krajcinovic (1999),
Krajcinovic and Rinaldi (2005), Krajcinovic and
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Rinaldi (2005), Delaplace et al. (1996), He and
Thorpe (1985) and others have shown that statisti-
cal lattice models offer a convenient framework for
the study of the damage process associated to
microcracks formation and growth. The usage of
the statistics to account for the disorder of the
microstructure is one distinctive feature of such
statistical models. The representation of microstruc-
ture as a discrete structure rather than a continuum
matrix is another characteristic.

Many engineering materials, such as metals or
ceramics, have a polycrystalline heterogeneous
.
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structure made of grains with various crystallo-
graphic orientations, shapes, compositions and
defects. Traditional continuum models of microme-
chanics adopt homogenization techniques to con-
vert a disordered material into an equivalent
continuum model on the macroscale. However, that
approach is valid if the heterogeneous microstruc-
ture is statistically homogeneous, i.e. the effective
properties of all ‘‘relevant random fields do not
depend on position in space’’ (Kreher and Pompe,
1989). This assumption, reasonable in the pristine
state, is not realistic in presence of cooperative phe-
nomena between existing defects and/or micro-
cracks. On the other side, discrete lattice models
seem applicable also when the microstructure is
not statistically homogeneous.

Lattice models have usually been used to gain only
a qualitative understanding about the damage pro-
cess. This was certainly the case for fuse lattices, per-
colation lattices or electrical networks in Hansen and
Roux (2000) and Gouyet (1996). Also the mechanical
networks referenced above are highly idealized mod-
els. A mechanical lattice model typically consists of
sites, which represent grains, connected to nearest
neighbors by either springs, trusses or beam ele-
ments. The position of the sites, their coordination
number z and the properties of the elements, such
as the stiffness and/or the strength, are regarded as
random variables sampled from independent (and
somewhat arbitrary) distributions, without reference
to specific materials or real experimental data. The
mechanical disorder is generally considered decou-
pled from morphological/geometrical disorder
(Krajcinovic and Rinaldi, 2005), partially for the
sake of simplicity and partially because more
detailed information about the microstructure is
required to establish a possible correlation.

Recent advances and spread of experimental tech-
niques, such as ‘‘Orientation Imaging Microscopy’’
(OIM), started making detailed knowledge of micro-
structures economical and routinely available. OIM,
which is a derivative of scanning electron micros-
copy (SEM), produces an approximate ‘‘picture’’
of a microstructure including (but not limited to)
number of grains, geometry, mutual correlations,
orientation of material axes (crystallography), sec-
ond phases, defects, slip planes and cleavage planes.
The increasing availability of experimental data at a
detailed level raises the non-trivial problem of trans-
ferring the random properties of the microstructure
to a lattice model. The procedures proposed by
Monette and Anderson (1994), He and Thorpe
(1985) and Garcia-Molina et al. (1988) are either
based on mean-field theory or limited to isotropic
materials, which are not easily applicable to disor-
dered polycrystalline materials. Without a general
discretization procedure to assign the lattice param-
eters, the wealth of high-quality experimental data is
just a sterile prerequisite for the leap of lattice mod-
els from abstract mathematical schemes to practical
engineering tool, capable of quantitative estimates.

This paper presents two procedures for con-
structing a spring network from ‘‘detailed knowl-
edge’’ of the microstructure. The proposed
methodology establishes the connection between
the sampling distribution of spring stiffnesses and
the morphology, geometry and mechanical proper-
ties of the microstructure. The results show that
such distribution emerges naturally and does not
need to be arbitrarily assigned a priori. Our dis-
course is limited to two-dimensional (2D) lattice
models but the same ideas apply to the three-dimen-
sional case. The ceramics NiAl is selected for the
comparison between the literature data and the
effective properties predicted from the models.

2. Scales and statistical models

The determination of material properties is scale-
dependent and is related to the response of the
material to applied stimuli and actions. Three scales
are defined in this paper: the macroscale, the micro-
scale and the grainscale.

The macroscale is the typical scale of engineering
design and is the scale where the smallest observable
element can be approximated as a continuum ele-
ment, completely filled of homogeneous matter.
The characteristic dimension of a specimen on the
macroscopic level is denoted by L. At this level
the microdefects are not observable and the material
behavior is described in terms of effective properties
which are representative of the underlying micro-
structure in an average sense. Macrocracks,
notches, dents, perforations and shear bands among
others belong to the class of defects observable on
this scale. The stress–strain constitutive relations
for a linear elastic solid are

�rij ¼ �Cijkl�ekl; ð1Þ
where f�rij;�eklg are the second-order tensors of the
average stresses and average strains, respectively
and �Cijkl is the fourth-order effective stiffness tensor
with indices i, j,k, l = 1..3. The bar sign indicates
that they are effective quantities.



Fig. 1. Voronoi/Delaunay graphs of the microstructure.
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The microscale is the scale where the random
heterogeneous geometry of a unit volume of the
material is observable (Krajcinovic, 1996). The
characteristic length is the resolution length l with
l� L. Details smaller than l are not captured by
the model and a field at lower scale can be defined
only by interpolation. Grain-boundaries, inclusions
and voids are examples of microscale imperfections
naturally present in the material. The size of the
smallest grain-boundary is a convenient choice for l.

The grainscale is an auxiliary scale, properly
selected and finer than the microscale, where
‘‘desired’’ properties of a grain are measurable.
The choice of the resolution length of the grainscale
lG is problem dependent and lG 6 l. The introduc-
tion of this scale is necessary when one is interested
in some properties of phenomena related to a grain,
such as single-crystal plasticity and inter-granular
cleavage, and the selected microscale is not sharp
enough. The size lG could be chosen anywhere
between the length of the lattice parameter of the
underlying Bravais lattice (atomic scale) and the
micro-resolution length l. In this paper it is assumed
that l P lG� 1 Å (Angstrom), i.e. the grain sizes
are several orders of magnitude greater than the
atomic scale to discard dislocations and quantum
effects in the lattice model.

A microstructure is approximated on the micro-
scale by the Delaunay triangular lattice, which is
the topological dual representation of a Voronoi
froth and is related to it by a Legendre transforma-
tion (Okabe et al., 1999; Zallen, 1983). The usage of
approximate Voronoi froths in modeling the micro-
structure is becoming a common practice as proven
by the many available commercial software pack-
ages that will fit a Voronoi tessellation to experi-
mental data (in 2D or 3D obtained by serial
sectioning), such as MIMICS, SURFDRIVER,
AMIRA. Many papers are available where Voronoi
tessellation are used to model real microstructures,
such as Espinosa and Zavatteri (2003). Noticeably,
while a Voronoi tessellation associated to a given
clouds of Delaunay points is unique, there might
be none or multiple Delaunay ensemble representa-
tive of one microstructure. For example, real grains
are not regular polyhedrons (polygons in 2D) and
do not always have convex shapes (concavities can-
not be convex directly with the classic Voronoi con-
struction made of convex tiles only). More
advanced and complex tessellation techniques are
available to overcome some of these issues. How-
ever, pursuing an exact representation of a real
microstructure is not our intention here and might
not be the best strategy either. Alternatively, it
could be more fruitful to focus on the major statis-
tics of a given microstructure (e.g. distributions of
grain size and grain orientation, two-point or higher
order correlation functions, etc.) to create Voronoi
tessellations that are representative of such statis-
tics. Different types of tessellations and their con-
struction to achieve the ‘‘best’’ approximation
represent an interest topic of future research.

By assuming that the Voronoi tessellation in
Fig. 1 (full line) is a faithful reproduction of a real
microstructure, the Delaunay network (dashed line)
is the lattice model that we wish to characterize
based on the geometrical and mechanical properties
of the Voronoi polygons. The average size of the
Voronoi polygons is the resolution length l of the
microscale while the overall size of the lattice L cor-
responds to the macroscale. The link between any
two nodes of the Delaunay lattice is a linear spring
orthogonal to the dual grain-boundary representing
the cohesive force between two adjacent grains. The
springs are connected by hinges at the nodes, in a
truss-like fashion, and no transversal load is applied
along the span. In this scheme, external moments
cannot be applied directly on the grains (nodes),
which have just two translational degrees of free-
dom (DOF) in 2D. Beam elements, like for example
in Schlangen and Van Mier (1991), could be used to
transfer nodal moments at the cost of an extra rota-
tional DOF for all the grains.

The DOF of the lattice are associated to the Del-
aunay points, which are fewer than the Voronoi
points. Since the grains are reduced to point parti-
cles, the Delaunay lattice does not convey explicit
information about the geometry but about the
mechanical properties and the topology of the mate-
rial on the microscale. As shown in Fig. 2, only the
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macroscale and the microscale are defined in the lat-
tice model. The grainscale is typical of the Voronoi
representation, where each grain is a polygon and its
area, geometry and number of sides (the grain-
boundaries) are measurable. The Voronoi represen-
tation provides a crucial connection between the
real microstructure and the lattice model. For the
sake of comparison, a full finite element (FE) model
of the microstructure based on the Voronoi tessella-
tion is also analyzed here simultaneously to the
lattice.
3. Creating a mechanically equivalent lattice

3.1. General idea: coupling the geometry and the

mechanical properties

Figs. 2 and 3 depict the Voronoi polygon associ-
ated to a generic grain ‘‘O’’ with coordination num-
ber z = 6. Because the Voronoi edge is bisector of
the corresponding Delaunay link, the six half-
springs {OAI,OBI,OCI,ODI,OEI,OFI} rest associ-
ated to grain O. It is postulated that each spring
in the lattice is the series of two half-springs. From
elementary mechanics the stiffness of any spring AB

(Fig. 2) is

1

KAB
¼ 1

KAB0
þ 1

KBA0
ð2Þ

or KAB ¼ KAB0KBA0=ðKAB0 þ KBA0 Þ. The problem of
determining KAB is now reduced to estimating the
contributions of the grains A and B to the AB

spring.
Fig. 2. Microscale and grainscale. The points {A,B,C,D,E,F,G} are gl
marks the midpoints of the springs is observable on the smaller scale b
Polycrystalline materials are approximated as
continuum media on the macroscale only in their
pristine condition, but eventually the model breaks
down when localization phenomena, such as dam-
age localization, occur. However, if each single
grain can be treated as a continuum solid, the tech-
niques of linear elasticity are applicable on the
grainscale. To our purposes the grainscale is large
enough for the smallest grain to be modeled as a
continuum homogeneous linear elastic solid. The
mechanical properties of the crystal are described
by the fourth-order stiffness tensor CM

ijkl ði; j; k; l ¼
1::3Þ or by the 6 · 6 stiffness matrix CM in Voigt’s
notation (Appendix A). A series of further assump-
tions is made in the remainder of the paper:

1. the grain is a linear homogeneous 2D elastic solid
and deformations are small;

2. the stiffness matrix CM and the orientation of the
material axes are known for all grains;

3. the material symmetry groups satisfy the condi-
tions for 2D problems; i.e. the components of
CM comply with the requirement provided in
Ting (1996) for plane strain and plane stress
problems of anisotropic solids:

C14 ¼ C15 ¼ C24 ¼ C25 ¼ C46 ¼ C56 ¼ 0 ð3Þ

4. the grains are convex polygons;
5. the grain is partitioned in z counter-clockwise

oriented triangles {O12,O23,O34,O45,O56,O61}
as shown in Fig. 3.

Without loss of generality and in compliance
with Assumption 3, the more restrictive case of
obal DOF of the lattice whereas the set {B 0,C 0,D 0,E0,F 0,G 0} that
ut hidden on the microscale.



Fig. 3. Partition of the Voronoi polygon associated to grain ‘‘O’’ with z = 6 into triangular elements (CST). The material axes are at h
degrees from the global frame of reference. The grain-elements has 7 nodes and is made of the 6 triangular elements.
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orthotropic materials, with CM expressed in the
local frame of reference a–b–c, is considered for sim-
plicity. Orthotropic materials require the specifica-
tion of nine elastic constants and encompass
rhombic, orthorhombic, cubic, and isotropic mate-
rials as special cases. Many engineering ceramics,
such as MgO, NiAl and Ni3Al have cubic symmetry
and are specified by three elastic constants only. For
the 2D case CM is a 4 · 4 matrix and is conveniently
expressed in the material axes a–b–c, where c is the
out of plane axis (Jones, 1975). The representation
of the stiffness matrix CG

M in global x–y coordinates
is obtained from the matrix transformation:

CG
M ¼ QðhÞCMQTðhÞ; ð4Þ

where Q(h) is a 4 · 4 matrix and depends only on
the orientation of the material axes a–b around c

(Appendix A). With this premise, two procedures
are presented next. In the first one, named Lattice
1 (L1), the spring stiffnesses are computed from or-
dinary triangular finite elements. In the second one,
named Lattice 2 (L2), the concept of ‘‘grain ele-
ment’’ is exploited.

3.2. Procedure L1: using the triangular elements

By assigning proper BCs at the grain-boundaries,
a well-posed elastic problem can be formulated in a
variational form for each grain. The potential
energy of an elastic grain of volume VG is defined
as

P ¼ U � W ; ð5Þ

where

U ¼
Z

V G

eT½ĈG
Me�dV ð6Þ

is the strain energy and

W ¼
Z

V G

b � u dV þ
Z
@V G

ŝ � u da ð7Þ

is the ‘‘work potential’’ associated with the body
forces b and the boundary tractions ŝ. The unknown
displacement field u is found from the ‘‘principle of
minimum potential energy’’ by minimizing the po-
tential energy P (Gurtin, 1975). In (6) e = [exx, eyy,
cxy]T is the 3 · 1 strain vector and ĈG

M is a 3 · 3 re-
duced stiffness matrix derived from the 4 · 4 matrix
CG

M in (4). ĈG
M depends on the problem type and for

the plane stress case, it is

ĈG
M ¼

cM;G
11 � ðc

M;G
13
Þ2

cM;G
33

cM;G
12 � cM;G

13
cM;G

23

cM;G
33

0

cM;G
22 � ðc

M;G
23
Þ2

cM;G
33

0

symm cM;G
44

����������

����������
; ð8Þ
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while for the plane strain problem it is

ĈG
M ¼

cM;G
11 cM;G

12 0

cM;G
22 0

symm cM;G
44

�������

�������
: ð9Þ

An approximate ‘‘kinematically admissible’’ dis-
placement field (satisfying the essential BCs on the
displacement) can be obtained via the finite element
method (FE) in the isoparametric formulation
(Fung and Tong, 2001). The above mentioned z
adjacent triangles of Fig. 3 provide an intrinsic mesh
for the grain and are labeled like i . The approxi-
mate strain vector for each element is

ê ¼ Bde; ð10Þ

where B(x,y) is a matrix of polynomials dependent
on the choice of the shape functions and de is the
element vector of unknown nodal displacements.
The size of B and de are 3 · 2p and 2p · 1 respec-
tively, with ‘‘p’’ being the number of nodes in the tri-
angle. For simplicity, linear shape functions are
used in this study, i.e. the triangles are C0-linear tri-
angular elements with p = 3, better known as con-
stant strain triangle (CST) (Fung and Tong, 2001).
The z Voronoi points and the Delaunay center point
are the FE nodes associated to the grain with the
labeling scheme in Fig. 3 (circled labels). With such
discretized model of the grain has 2(z + 1) degrees
of freedom and the ‘‘approximate’’ strain energy
function upon substituting e with ê becomes

U ¼
Xz

i¼1

1

2
dT

e Kede

� �
i

¼ 1

2
dTKGEd ð11Þ

with the subscript ‘‘e’’ indicating quantities defined
at the element level as opposed to the system level.
The sum over the z CST elements refers to the
assembly procedure, with each Ke augmented to
Fig. 4. Equivalence between CST a
2(z + 1) · 2(z + 1) before summing. The vector
de = [u0,v0,u1,v1,u2,v2]T is the 6 · 1 element vector
of nodal displacements, Ke is the 6 · 6 element stiff-
ness matrix and d = [u0,v0,u1,v1..uz,vz]

T is the
2(z + 1) system vector of nodal displacements of
the selected grain. KGE is the 2(z + 1) · 2(z + 1) sys-
tem (grain) stiffness matrix after the assembly. The
element stiffness matrix Ke of each element is com-
puted from

Ke ¼
Z

V G

BTĈG
MBdV ; ð12Þ
which in general requires numerical integration. For
the CST triangular elements B is a 3 · 6 constant
matrix and Ke ¼ tABTĈG

MB, with t being the thick-
ness of the grain (taken as unit here) and A the area
of the triangle. The assumption of counter-clock-
wise orientation of the z triangles {O12,O23,O34,
O45,O56,O61} guarantees that Ke is positive defi-
nite (with proper applied boundary conditions)
and that the A is a positive area. The Voronoi points
are arranged into a topological database of CSTs
where the vertices O–A–B of the triangle OAB sat-
isfy ðOA� OBÞ �~z > 0.

The stiffness of the half-springs {OAI,OBI,
OCI,ODI,OEI,OFI} can be estimated from the stiff-
ness matrix Ke of the corresponding CST elements
{O12,O23,O34,O45,O56,O61} in Fig. 3. If a unit
displacement is imparted along OA to nodes 1 and
2 of the CST in Fig. 4 while node O is fixed, one
can solve

Fe ¼ Kede; ð13Þ
where Fe is the vector of the nodal forces of the
CST. As the displacements of all 3 nodes are as-
signed, Eq. (13) is simply
nd corresponding half-spring.
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F 0
x

F 0
y

F 1
x

F 1
y

F 2
x

F 2
y

������������������

������������������

¼ Ke

0

0

cosðwÞ

sinðwÞ

cosðwÞ

sinðwÞ

�����������������

�����������������

; ð14Þ

where all elements in Fe are unknown. Conse-
quently, F 0

ex¼ðke
13þ ke

15ÞcosðwÞþðke
14þ ke

16ÞsinðwÞ
and F 0

ey ¼ðke
23þ ke

25ÞcosðwÞþðke
24þ ke

26ÞsinðwÞ. By
imposing the ‘‘equivalence of force components’’
at node O between the CST and the half-spring
under unit axial virtual displacement, the compo-
nent along OA of the reaction in O, F0

e , equals the
axial force FOA in the half-spring OAI, which for
the unit elongation equals numerically the stiffness
of the half-spring KOA

F OAðDk ¼ 1Þ ¼ F0
e �

OA
jOAj ¼ KOA ð15Þ

with Dk being the elongation of the half-spring. It
can be shown that (15) is well-posed because it sat-
isfies the equivalence of the strain energy between
the CST and the half-spring for the given deforma-
tion (Appendix B). Given CM and the orientation
of the material axes for all grains, the calculations
can be repeated for all CST to compute the stiff-
ness of all the springs in the lattice via Eqs. (2)
and (15).
1 Experimental measures from OIM for example do not
routinely produce a Voronoi tessellation.
3.3. Refined procedure L2: using the grain element

The concepts of the previous section can be
developed from a different point of view to derive
an alternative procedure. In (12), KGE is the
2(z + 1) · 2(z + 1) stiffness matrix of the system
(where the system consists of the linear elastic grain
in Fig. 3). KGE can be interpreted as the element
stiffness matrix of the ‘‘grain element’’ (GE) defined
by the z + 1 nodes {O, 1,2,3,4,5,6}. The computa-
tion of KGE is easily done by assembling the 6 · 6
stiffness matrices, KðpÞe ðp ¼ 1::zÞ, of the z CST ele-
ments (Fung and Tong, 2001). According to the
labels in Fig. 3, if O is taken as node 0 and is listed
as first node for all triangles, the displacement vec-
tor of the GE is d = [u0,v0,u1,v1,u2,v2,u3,v3,u4,
v4,u5,v5,u6,v6]T and the stiffness matrix KGE has
the following structure
KGE ð14�14Þ ¼

x x x x x x x x x x x x x x

x x x x x x x x x x x x x

x x x x 0 0 0 0 0 0 x x

x x x 0 0 0 0 0 0 x x

x x x x 0 0 0 0 0 0

x x x 0 0 0 0 0 0

x x x x 0 0 0 0

x x x 0 0 0 0

x x x x 0 0

x x x 0 0

x x x x

x x x

x x

symm x

����������������������������������

����������������������������������

u0

v0

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

;

where ‘‘x’’ is a placeholder for non-zero terms. As
an important remark, the GE does not have its
own shape functions and the displacement field is
interpolated from the nodal displacements in a
piecewise fashion from the set of shape functions
of the CST in each of the z regions. The main
advantages of this construction are:

1. no need to formulate a new set of z shape func-
tions and no need to identify a ‘‘parent element’’
with un-distorted shape and variable number of
sides to carry out the Gaussian integration of
Eq. (12) (Fung and Tong, 2001);

2. usage of higher-order triangular elements (qua-
dratic or higher order) to obtain continuity of
the strain field and increase the accuracy over
the grain domain;

3. the formulation is not limited to convex polygon
and concavities can be dealt with by redefining
the CSTs partition.

The Voronoi tessellation is an intrinsic mesh of
the polycrystalline microstructure and each grain
is an element. The GE renders this option straight-
forward at the same computational cost of a ran-
dom mesh containing an equal number of CST
elements. The FE model has many more DOF and
requires much more memory for both storage and
calculations. Anyway, the FE option becomes very
attractive when only a non-Voronoi tessellation of
the microstructure is available.1 In this case there
is no Delaunay lattice but the GE can still be
defined by selecting an inner point for each grain.
The choice could be arbitrary or based on some
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optimization criterion, like the minimization of the
distortion of the CSTs elements of the grain.

For our purposes, the GE is be used to obtain a
second different estimate for the stiffness of the
springs in the Delaunay network. Eq. (15) discards
the fact that the edges O1 and O2 of triangle 1 in
Fig. 3 are shared by the adjacent triangles 2 and
6 and, hence, are constrained and not free. To
account for such continuity, we can solve FGE =
KGEdGE rather than Fe = Kede when a unit virtual
displacement is applied along OA to nodes 1 and
2 while all the other nodes of the GE are locked
in place. The reaction in O, F0

GE, differs from F0
e and

F OAðDk ¼ 1Þ ¼ F0
GE �

OA
jOAj ¼ KOA ð16Þ

provides a new estimate for KOA in alternative to the
one from (15). Fig. 5 pictures the two scenarios.

3.4. Considerations

The Voronoi tessellation is very important for
the procedures L1 and L2. Relevant and non-trivial
issues such as the existence or the construction of
the best Voronoi approximation of a microstructure
from experimental measures are not examined in
this paper.

The lattice L1 is more compliant than the lattice
L2 due to the increasing degree of constraint of the
triangular elements in the GE. Furthermore, the lat-
tice per se is expected to be more compliant than the
real microstructure or than the corresponding FE
model formed by CST elements. The cause resides
in the ‘‘solidity’’ of the grain, which is lost in the
selected discrete model where the springs are con-
nected by hinges at the end-nodes and do not inter-
Fig. 5. Comparison of procedure L1 (A) and L2 (B) for a ge
act transversely. The usage of beam elements or the
addition of transversal springs could provide an
effective way to approach this problem. In order
to obtain a lattice with comparable effective proper-
ties, the estimates of the stiffness from (2) and either
(15) or (16) must be corrected.

In the study of inelastic processes the springs are
not perfectly linear and more sophisticated micro-
constitutive relations are required. In damage
mechanics, for example, a finite tensile strength is
randomly assigned to each spring so that a rupture
occurs when the load in the spring reaches the given
threshold (Mastilovic and Krajcinovic, 1999;
Krajcinovic and Rinaldi, 2005). Unlike the spring
stiffness distribution though, the strength distribu-
tion is strongly dependent on the manufacturing
process and the presence of non-visible defects
(<l), such as glassy pockets, voids and second phase
precipitates at the grain-boundary, renders any esti-
mate of critical strains from pure geometrical con-
siderations unreliable. This paper deals solely with
the calibration of the stiffness distribution, while
the selection of any other auxiliary distributions
necessary to quench disorder in discrete statistical
models constitute a topic for future research.
4. Lattice refinement

4.1. Test strategy

A series of test cases is designed to assess the
properties of the lattices L1 and L2. Experimental
data from the NiAl intermetallic are used to cali-
brate the parameters of a lattice that has same num-
ber of grains N on each side in a variety of
situations. Tensile tests in both plane stress and
neric virtual displacement u* applied to nodes 1 and 2.
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plane strain conditions are simulated to measure the
effective Young’s modulus Eeff and Poisson’s ratio
meff (Fig. 6). The lattice results are compared against
the associated FE model (FEA) made of GE
elements.

The grain-boundaries of NiAl and other ceramics
vary in a wide range but a linear length of �100 lm
is a reasonable average (Davidge, 1979) and can be
chosen as the resolution length of the lattice. A per-
fect triangular lattice is considered for simplicity as
shown in Fig. 6. The material axes are assigned ran-
domly to each grain by sampling the angle h
between the material axis a and the global x–y axes
from a uniform distribution in [0,p] (Fig. 3). Four
lattice sizes N = [12,24,48,96] were compared to
assess the convergence of the effective parameters.
A sparse direct solver was employed for both spring
network and the FEA model because of the ‘‘spar-
sity’’ (the ratio of the non-zero entries over the total
number of elements in a matrix) of the global stiff-
ness matrix of the polycrystalline microstructure.
Table 1 reports number of grains, elements, DOF
and sparsity for the considered lattice sizes. The full
FEA model requires about three times as many
Fig. 6. Microstructure geometry and loading configuration used
for the tests.

Table 1
Prospect of model information and number of tests

N Sample
size

Grains Links DOF

FEA L

12 15 150 402 896
24 15 588 1668 3524
48 15 2328 6792 13,964
96 15 9264 27,408 55,580 1
degrees of freedom as the lattice for any given size
N.

Three choices of CM were analyzed separately.
NiAl is a brittle ceramics at room temperature and
the single crystal has a cubic symmetry in the mate-
rial frame of reference formed by the axes
a = [1,0,0] b = [0,1,0] and c = [0, 0,1]. From litera-
ture (Miracle, 1993) the 4 by 4 stiffness matrix C001

M

corresponding to such orientation is

C001
M ¼

200 133 133 0

200 133 0

200 0

symm 114

���������

���������
4�4

GPa; ð17Þ

which satisfies condition (3) for the 2D problem and
so does the transformed matrix CG

M from (4) for any
rotation h around the c-axis. Another compatible
material frame of reference selected for our simula-
tions corresponds to the axes a = [�1,1,0],
b = [0,0,1] and c = [1, 1,0], where NiAl has ortho-
tropic symmetry. The associated stiffness matrix
C110

M is

C110
M ¼

281 133 52 0

200 133 0

281 0

symm 114

���������

���������
4�4

GPa; ð18Þ

which has a lower symmetry than (17) but yet satis-
fies Eq. (3) for any arbitrary rotation around the
[1,1,0] axis. The choice of testing two different CM

matrices is not casual but is dictated by statistical
considerations. Since the grains have same CM and
same global z-axis (c-axis) but different CG

M, the
macroscopic properties Eeff and meff of polycrystal-
line NiAl deduced from the tensile test reflect the
average on the microscale of the mechanical proper-
ties in the x–y plane. The matrices CG

M sampled on
the {0, 0,1} plane and the ones sampled on the
{1,1,0} plane form two different ensembles with dif-
ferent Eeff and meff. A meaningful perspective about
Sparsity (%) Cases Tot tests

attice FEA Lattice

300 1.37 3.32 5 75 · 3
1176 0.36 0.89 5 75 · 3
4656 0.09 0.23 5 75 · 3

8,528 0.023 0.058 5 75 · 3
300 · 3 = 900
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the sampling space is gained by examining the
equivalent Young’s modulus E	 ¼ 1=SG

11, where SG

is the global compliance matrix of the grain and in-
verse of the selected ĈG

M from either (8) or (9). The
sampling space is multi-dimensional because all
the in-plane components of CG

M influence Eeff and
meff. Nevertheless, E* is highly correlated to the stiff-
ness of the grain in the test direction, which is the
most influential on Eeff. The function E*(h) reveals
what orientations offer greater stiffness and what
the approximate shape of the sampling space is.
Figs. 7 and 8 show, both in polar and Cartesian rep-
resentations, the comparison between the sampling
spaces associated to the {0,0,1} and {1,1,0} planes
for plane stress and plane strain cases, respectively.
The values of E* are consistently higher on the
{1,1,0} plane of NiAl crystal, which leads to the
expectation of higher vales of Eeff and meff when
using (18) for CM. This invites to caution in compar-
ing experimental data with numerical data from 2D
models. Only a 3D model allows a full random sam-
pling of CG

M, while 2D models always provide esti-
mates of the parameters within a subspace.

A third and last choice for CM consisted of an
ideal isotropic single crystal that was deliberately
‘‘created’’ from (17) by setting C66

M ¼ E=2ð1� mÞ, i.e.

CISO
M ¼

200 133 133 0

200 133 0

200 0

symm 33:7

���������

���������
4�4

GPa ð19Þ

with E = 94.3 GPa and m = 0.399 computed as in
(A.6). The isotropic case offers an interesting bench-
mark because a well-known mapping exists between
Fig. 7. Sampling spaces of E* for [001] and [110] in plan
an isotropic continuum solid and a perfect triangu-
lar lattice (Monette and Anderson, 1994). The esti-
mates of Eeff and meff are expected to match the
values of the single crystal due to the complete sym-
metry of (19) (rotational invariance). In summary,
five test cases are analyzed:

1. NiAl[001]: C001
M from (19) and ĈG

M in plane stress
from (8);

2. NiAl[001]: C001
M in (19) and ĈG

M in plane strain
from (9);

3. NiAl[110]: C110
M from (20) and ĈG

M in plane stress
from (8);

4. NiAl[110]: C110
M from (20) and ĈG

M in plane strain
from (9);

5. NiAl[ISO]: CISO
M from (19) and ĈG

M in plane stress
from (8).

The mean estimates hEeffi and hmeffi in each case
are obtained by averaging Eeff and meff over a statis-
tical sample of 15 random microstructures for each
size N. All replicates in the sample have same geom-
etry but differ in the distribution of material axes.
As shown in Table 1, one finite element model
(FEA) and two lattices (L1 and L2) were created
for the five test cases and for each microstructure
(for a total of 900 models).
4.2. Test results

The statistical results of the simulations are sum-
marized in Tables 2 and 3 (raw data not reported).
The former table contains the mean values hEeffi
and hmeffi while the latter contains the standard
e stress, polar diagram and Cartesian representation.



Fig. 8. Sampling spaces of E* for [001] and [110] in plane strain, polar diagram and Cartesian representation.

Table 2
Prospect of mean values of Eeff and meff

N FEA L1 L2

E (GPa) m E (GPa) m E (GPa) m

Mean values

Case 1 12 146.6 0.009 52.1 0.345 104.3 0.344
NiAI[001] 24 145.3 0.039 50.5 0.336 101.8 0.337
p-Stress 48 145.0 0.0S8 49.7 0.333 100.6 0.334

96 144.3 0.059 49.4 0.332 100.0 0.333

Case 2 12 196.0 0.294 S3.6 0.344 169.0 0.342
NiAI[001] 24 194.2 0.305 81.0 0.336 164.2 0.335
p-Strain 48 193.9 0.311 79.9 0.333 162.0 0.333

96 193.6 0.313 79.3 0.332 160.8 0.332

Case 3 12 203.4 0.238 79.8 0.336 161.1 0.336
NiAI[110] 24 202.2 0.248 77.5 0.335 156.9 0.335
p-Stress 48 201.4 0.252 76.3 0.331 154.7 0.332

96 201.0 0.254 75.7 0.331 153.5 0.331

Case 4 12 227.5 0.276 93.7 0.340 189.5 0.338
NiAI[110] 24 226.0 0.287 91.0 0.335 184.3 0.335
p-Strain 48 225.3 0.292 89.7 0.332 181.8 0.332

96 224.9 0.294 89.0 0.332 180.5 0.332

Case 5 12 95.6 0.280 39.3 0.342 79.4 0.340
NiAI[ISO] 24 94.9 0.289 38.1 0.335 77.2 0.334
p-Stress 48 94.6 0.294 37.6 0.333 76.2 0.333

36 94.4 0.297 37.3 0.332 75.6 0.332
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deviations rE and rt. Values are different from case
to case but general trends exist. Case 1 is analyzed in
detail.

Fig. 9 shows the graphs of hEeffi and rE for Case
1 as a function of N. The asymptotic convergence of
hEeffi from either FEA, L1 and L2 is fast (Fig. 9A)
and the estimates of hEeffi from each of the three
models are marginally dependent on N. The stan-
dard deviation rE, instead, exhibits a marked decay
and drops about one order of magnitude decay over
the range of N. Invariably rE� hEeffi for any N and
for any model. For example, the standard deviation
of the FEA data is less than 5% of hEeffi at N = 12
and becomes less than 0.5% for N = 96. Because of
the asymptotic convergence and the small scatter,
the estimates for N = 96 are taken as asymptotic
estimates for each case and model, i.e.
hEeffi96 ’ hEeffi1. Models for N = {48,96} contain



Table 3
Prospect of standard deviations of Eeff and meff

N FEA L1 L2

E (GPa) m E (GPa) m E (GPa) m

Standard deviations

Case 1 12 7.9898 1.71E�02 1.3027 4.82E�03 2.6174 9.09E�03
NiAI[001 24 2.9532 7.61E�03 0.5015 5.22E�03 1.0027 8.63E�03
p-Stress 48 1.1335 3.79E�03 0.1883 2.60E�03 0.3779 4.57E�03

96 0.S537 1.47E�03 0.0932 1.08E�03 0.1846 1.94E�03

Case 2 12 4.6303 2.31E�02 1.3123 7.89E�03 2.5510 5.65E�03
NiAI[001] 24 1.6851 9.39E�03 0.4997 8.28E�03 0.9771 5.31E�03
p-Strain 48 0.6550 4.12E�03 0.1865 4.16E�03 0.3739 2.76E�03

96 0.3194 1.63E�03 0.0919 1.76E�03 0.1882 1.15E�03

Case 3 12 6.2009 1.06E�02 1.3099 3.35E�03 3.7770 7.96E�03
NiAI[110] 24 2.7456 4.80E�03 0.6928 3.80E�03 2.0058 S.84E�03
p-Stress 48 0.7910 2.89E�03 0.1885 2.48E�03 0.6029 4.66E�03

96 0.3759 1.15E�03 0.1111 2.21E�03 0.4077 4.21E�03

Case 4 12 7.3583 1.31E�02 1.9068 7.48E�03 2.5843 4.28E�03
NiAI[110] 24 3.4959 5.92E�03 1.0247 6.40E�03 1.3556 3.44E�03
p-Strain 48 0.9777 3.93E�03 0.3004 4.38E�03 0.3784 2.66E�03

96 0.5746 1.58E�03 0.2014 4.15E�03 0.2249 2.25E�03

Case 5 12 0.0028 1.30E�05 0.0005 4.00E�06 0.0009 4.00E�06
NiAI[ISO] 24 0.0011 6.00E�06 0.0002 4.00E�06 0.0004 4.00E�06
p-Stress 48 0.0004 3.00E�06 0.0001 2.00E�06 0.0002 2.00E�06

96 0.0002 1.00E�06 0.0000 1.00E�06 0.0002 1.00E�06

Fig. 9. Average estimates of hEeffi and standard deviation rE as a function of N for Case 1; the asymptotic convergence of hEeffi is fast (A).
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more than 2000 grains and should indeed be isotro-
pic and homogeneous on the macroscale with good
approximation (Davidge, 1979).

As anticipated in Section 3.4, there is a large dis-
proportion amongst the estimates hEeffi from the
three models. The FEA is much stiffer than L1
and L2, whose stiffnesses are about 33% and 70%
of the FEA value, respectively. L2 is about twice
as stiff as L1, reflecting the greater rigidity of the
GE in comparison to an individual CST. The esti-
mated hEeffi from the plane strain cases are higher
than in the plane stress as expected. The values from

C110
M are considerably higher than the ones from

C001
M , demonstrating the dependence of the estimates

from 2D models on the choice of the sampling sub-
space. According to Miracle (1993), the value of
hEeffi for polycrystalline NiAl from full 3D random
sampling is 199.8 GPa, which is intermediate to the
FEA estimates from C001

M and C110
M in Table 2. The

aforementioned experimental value is close to the
FEA estimates from Case 2 (C001

M in plane strain)



Fig. 10. Average estimates of hmeffi and standard deviation rt as a function of N for Case 1; the asymptotic convergence of hmeffi is fast (A).
The data from L1 and L2 overlap.
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and Case 3 (C110
M in plane stress). In comparison to

L1 and L2, the FEA values of hEeffi are more accu-
rate and reliable. This statement is supported by
the results from the isotropic case (Case 5) where
the theoretical value of the Young’s modulus
E = 94.3 GPa used in (19) is in perfect agreement
with the FEA estimate E = 94.4 GPa.

The plots of the statistics hmeffi and rt as a function
of N for Case 1 are shown in Fig. 10. The asymptotic
convergence is still observed but is more evident in the
two lattice models, which provide almost identical
estimates. For the lattices, the Poisson ratio is mainly
a function of the topology and its value settles around
0.33 for all five cases (Table 2). The asymptotic values
of FEA are consistently lower than for the lattice and,
instead, vary considerably from case to case, from a
minimum of 0.059 (Case 1) to a maximum of 0.31
(Case 2). For Case 1 a marked mismatch is observed
between the FEA and lattice, whose asymptotic esti-
mates are 0.059 and 0.33, respectively. In the other
cases, the FEA values of Poisson ratio exceed the
more reasonable threshold of 0.25. Miracle reports
an experimental value of meff = 0.307, which is close
to the values of Cases 2 and 4 in Table 2. A crucial
information about the inaccuracy of the FEA esti-
mates for hmeffi comes again from the isotropic case,
where the numerical value 0.297 is significantly differ-
ent from the theoretical value of m = 0.399 from (21).
Larger models and higher-order triangular elements
should improve the estimate.

We summarize and conclude from above that

• the FEA estimates of hEeffi are accurate and can
be used as point of reference to quantify the mis-
match between ‘‘true’’ parameters and the esti-
mates from L1 and L2;
• the estimate hmeffi is a constant parameter for the
lattice and it is not possible to match the value
from FEA (or experiments) with these discrete
lattices;

• the estimates of hmeffi from FEA models, unlike
for hEeffi, are not accurate and seem lower
bounds of true estimates.

For Cases 1–4, mechanical disorder is introduced
in the lattice by random sampling the spring stiff-
nesses from a quenched distribution. For Case 5,
the lattices are both mechanically and geometrically
perfect. Two advantages of the discretization proce-
dures are that it is not necessary to assign the
quenched distribution a priori and that they work
flawlessly when there is no disorder like in Case 5.
Both procedures L1 and L2 capture the non-trivial
intrinsic relation between the spring constants and
the random orientation of the material axes. The
‘‘Central Limit Theorem’’ of statistics states that
the expected distribution of a random variable that
depends on a primary random variable is asymptot-
ically normal, regardless of the sampling distribu-
tion of the primary variable. Fig. 11 shows indeed
that the spring constants from L1 are normally dis-
tributed. More precisely, the bulk springs and the
boundary springs follow two distinct Gaussian dis-
tributions because the CST area of the boundary
links is half of that in the bulk and the area is
directly proportional to the CST stiffness matrix.
Similarly, procedure L2 also produces two distinct
distributions. However, for L1, a perfect correlation
holds between the mean values of the stiffness distri-
butions of the boundary links and of the bulk links,
which are 22 GN/m2 and 44 GN/m2, respectively in
Fig. 11. The dimension of ‘‘GN/m2’’ reflects the



Fig. 11. Example of typical spring stiffness distribution from L1;
the boundary springs and the bulk spring are sampled from two
distinct Gaussian distributions.

Table 4
Prospect of corrective factors

FEA L1 L2 k1 k2

E (GPa) E (GPa) E (GPa)

Case 1 144.8 49.4 100.0 2.93 1.45
Case 2 193.6 79.3 160.8 2.44 1.20
Case 3 201.0 75.7 153.5 2.66 1.31
Case 4 224.9 89.0 180.5 2.53 1.25
Case 5 94.4 37.3 75.6 2.53 1.25
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interpretation of the spring constants as stiffness per
unit thickness when the thickness is not assigned in
computing Ke. A Gaussian distribution for the stiff-
ness has been used in the past by Mastilovic for
example (Mastilovic and Krajcinovic, 1999) but this
paper provides the rationale to ‘‘calculate’’ the nat-
ural distribution based on the geometry and
mechanical property of the microstructure. Further-
more, the ‘‘Central Limit Theorem’’ guarantees the
robustness of the results even when the sampling
distribution of the material axes is not uniform. In
this paper we deal only with the case of spatially
uncorrelated orientations of the material axes and
further research is needed to examine the case when
such correlation exists.
Fig. 12. Biaxial loading schemes adop
For the isotropic Case 5, the link stiffness is not a
random variable. Monette and Anderson (1994)
derive the analytical formula k ¼

ffiffiffi
3
p

E=2 to calcu-
late it from the Young’s modulus E. This formula
returns the predicted values k1 = 32.3 GPa for L1
and k2 = 65.5 GPa for L2 for the respective asymp-
totic estimates of Young’s modulus E1 = 37.3 GPa
and E2 = 75.6 GPa. The values k̂1 ¼ 32:1 GPa and
k̂2 ¼ 64:2 GPa measured from the numerical models
are in good agreement. This provides the validation
that the stiffness distribution computed by either
procedure is consistent with the effective Young’s
modulus of the lattice.
4.3. Estimate of the correction factor

Based on the test results, the lattice models L1
and L2 can be improved to reduce the mismatch
with FEA (or experimental data if available). The
only free parameter of the triangular lattice is hEeffi,
whereas hmeffi is constant for all practical purposes.
Within the framework of linear elasticity, the macro
parameter hEeffi is linearly dependent on the spring
ted for the damage simulations.



Fig. 13. Eight failure patterns from the biaxial cases for one replicate of N = 96.
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Fig. 14. Splitting and shear bands patterns.
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constant kij and for the tensile test the following
identity holds:

U ¼ hEeffi�u2

2
¼ 1

2

XN0

ij

kiju2
ij; ð20Þ

where U is the strain energy, �u the controlled macro-
displacement and uij the elongation of ijth spring.
From (20), it is

hEeffi ¼
XN0

ij

kij

u2
ij

�u2
ð21Þ

and

hEeffðkkijÞi ¼ khEeffðkijÞi 8k 2 R; ð22Þ
which highlights the linear dependence. By assum-
ing that the FEA values are good reference esti-
mates, the lattices L1 and L2 can be calibrated on
such values by scaling all the spring constants by
an appropriate correction factor to match hEeffi.
The scaling factor k relating the target value
hEeffiNEW to the available estimate hEeffiOLD is ob-
tained from (21) and (22) as

k ¼ hEeffðkkijÞi
hEeffðkijÞi

¼ hEeffiNEW

hEeffiOLD
¼

kNEW
ij

kOLD
ij

: ð23Þ

While the result about the Poisson’s ratio is an arti-
fact of 2D lattice model (intrinsic mismatch from
reality), the correction factor k is not an artifact
but a calibration tool providing a rational way to
overcome a modeling error. In the isotropic case,
Eq. (21) specializes into k ¼

ffiffiffi
3
p

E=2 by Monette
and Anderson which immediately provides the
value k = 81.7 GPa corresponding to the FEA value
E = 94.4 GPa. Hence, by virtue of (23) and based
on the data in Table 2, lattice L1 and L2 would
match the target E value if the spring constants were
multiplied by k1 = 94.4/37.5 = 2.53 and k2 = 94.4/
75.6 = 1.25, respectively. The procedure immedi-
ately extends to the other four cases as summarized
in Table 4.

The correction factors depend on the lattice size
but k(N) � const. for large N. The corrective factors
listed in Table 4 correspond to N = 96, but the
asymptotic convergence of hEeffi allows assuming
k(N = 96) � k1.

In conclusion the steps of the discretization pro-
cedures L1 or L2 are:

1. Collection of data about the microstructure.
2. Generation a Voronoi tessellation approximating

the microstructure.
3. Application of Eq. (2) in combination with (15)
or (16) to generate the stiffness constants.

4. Computation of effective properties from a ran-
dom sample of large lattices.

5. Obtaining reference data via experiments or finite
elements.

6. Determination of corrective factor k and lattice
refinement.

More research is needed to determine which is
the best model between L1 and L2. The 2D models
discussed in this paper can be applied to systems
where all the grains tends to have the same c-axis
and the underlying assumptions are realistic, e.g.
‘‘textured’’ materials and thin polycrystalline films
deposited on a substrate. In extending the method-
ology to the 3D case, 3D Voronoi graphs are needed
and tetrahedral elements should replace the CSTs. It
should be noted at this point that the 2D case is
more challenging by a statistical and modeling
standpoint, since it constitutes a constrained prob-
lem. The condition (3) disappears in 3D and all
grain orientations are allowed in the microstructure.
It is reasonable to expect that most of results
obtained for the constrained problems in 2D would
hold for the general unconstrained 3D case.
5. Application: lattice models and multiaxial damage

As mentioned in the introduction, a lattice model
of a microstructure, derived and calibrated against
experimental data through formulations such the
ones proposed inhere, may yield quantitative results
and serve a variety of purposes in the fields of solid
mechanics, physics and reliability. For illustrative
purposes, one can examine the case of multiaxial
damage modeling, where lattice models effectively
identify different types of damage localization.
Damage simulations were carried out with methods
analogous to Krajcinovic and Rinaldi (2005) on



Fig. 15. Comparison between Cases 1 and 7 for the one lattice of N = 96.
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disordered lattices L1 for {001} NiAl for the plane
stress, i.e. using case C001

M from (19) and ĈG
M from

(8). This time, besides the stiffness distribution
obtained from the discretization procedure, the lat-
tices are endowed with additional disorder because
both strength and length of each link are random
variables sampled from arbitrarily selected uniform
and Gaussian distributions, respectively. This is a
manner to introduce three sources of disorder con-
tributing to damage localization, which is more real-
istic. For this two-dimensional pseudo-Cauchy
element with kinematic descriptors f�exx;�eyy ;�exyg the
stress–strain space is three-dimensional. Nine biax-
ial loading schemes were simulated in displacement
controlled load in Fig. 12, where compressive and
tensile loadings in x–y directions are variously
mixed in Cases 1–8 and Case 9 is pure shear. The
biaxial states in cases {3,6,7,8} were run with pro-
portional loading along x and y such that
j�exxj ¼ j�eyy j. The corresponding damage patterns at
the onset of failure for one lattice with N = 96 are
shown in Fig. 13. The red2 links are broken and
the green ones are unstable links (dandling springs
or mechanisms causing local instabilities and
removed during the computation). Case 8 is not
reported since no failure occurred for in plane
hydrostatic compression. Besides the straight cracks
expected for the tensile tests in Cases 1 and 2, other
types of localization are observed when compressive
loads are applied. Notably, mono-axial compressive
tests in Cases 4 and 5, as well as pure shear in Case
2 For interpretation of color in Fig. 13, the reader is referred to
the web version of this article.
9, produce either splitting and/or shear bands, sche-
matically reported in Fig. 14. With reference to
Fig. 13, splitting in Case 5 is characterized by mac-
rocracks aligned in the direction of the applied com-
pression, whereas shear bands are macrocracks at
an angle in Cases 4 and 9. These failure modes are
observed in compressive experiments on concrete,
for instance in Gerstle et al. (1980), but also in lat-
tice models from Krajcinovic and Vujosevic
(1998). The existence of two failure modes when
switching the compression axis between Cases 4
and 5 is intimately connected to the microstructural
topology and is due to the different role of the Pois-
son effect in the two cases. The well known effect of
lateral confinement on the ductility of the response
of a brittle solid is also captured. The comparison
of the macroscopic lattice responses in Fig. 15a
for Cases 1 and 7 demonstrate how the lateral com-
pression determines an increase in damage tolerance
in spite of similar number of broken bonds mea-
sured at the failure (Fig. 15b). Such different
stress–strain responses and localization patterns
clearly reflect the peculiar development of elastic
anisotropy induced by damage as a function of the
loading scheme. Damage induced anisotropy has
been reported by many authors (e.g. in Cordebois
and Sidorff, 1979; Christopher et al., 2003). These
results highlight the capability of lattice models to
capture aspects not easily handled by continuum
models of micromechanics. These simulations are
part of a systematic study of multiaxial damage cur-
rently being conducted. Constitutive relations, sta-
tistical characterization of the response from many
replicates, size effects and the detailed analysis of
failure modes will be object of a next paper. In the
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future it seems desirable to design and carry out an
experimental campaign to validate the damage sim-
ulations on calibrated lattice models.

6. Conclusions

The methodology enables to map the geometrical
and mechanical properties of the real heterogeneous
microstructure into a discrete spring lattice limited
to the stiffness distribution of the springs. Detailed
knowledge of the microstructure and a Voronoi tes-
sellation are prerequisites. Finite elements analysis
or experimental data may provide the reference
for final lattice calibration. The scope of these dis-
cretization procedures exceeds the traditional tech-
niques and includes material anisotropic and
disordered geometry. The limiting case of isotropic
perfect lattice from literature (Monette and Ander-
son, 1994) is recovered as a special case. The con-
cept of grain element allows the creation of an
intrinsic FE mesh that matches the microstructural
geometry and preserves the mechanical characteris-
tics of each grain.

While 2D spring networks can reproduce the
Young’s modulus of the microstructure, the results
indicate that higher dimensional or more sophisti-
cated lattices might be used to account properly
for the Poisson’s ratio even for plane stress and
plane strain problems. However, the application of
these simple 2D models seems feasible for thin tex-
tured materials.

Such lattices appear to have great potential in the
study of multiaxial damage of damage-tolerant sol-
ids since they capture seamlessly the several types of
localization mode observed in experiments and elas-
tic anisotropy induced by damage. Within a modu-
lar simulation scheme, lattices might be used in
synergy of micromechanics to exploit the strength
of each approach.
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Appendix A. Linear elasticity and Voigt notation

Within the framework of linear elasticity (Ting,
1996; Jones, 1975; Gurtin, 1975; Fung and Tong,
2001), the mechanical properties of a crystal are
described by the fourth-order stiffness tensor
Cijkl ði; j; k; l ¼ 1::3Þ. The symmetry conditions

Cijkl ¼ Cjikl; Cijkl ¼ Cijlk and

Cijkl ¼ Cklij ðA:1Þ

reduce the number of independent constants from
81 to 21 for a triclinic crystal that is fully anisotropic
(Ting, 1996; Jones, 1975; Gurtin, 1975; Fung and
Tong, 2001). The components of the stiffness tensor
are usually expressed in a local frame of reference
‘‘a–b’’ that does not coincide with the global x–y

frame of reference as in Fig. 4. The transformation
formula for Cijkl in x–y Cartesian coordinates from
the Cabcd representation in the a–b frame of refer-
ence is

Cijkl ¼ RiaRjbRkcRldCabcd; ðA:2Þ
where the Einstein’s convention of ‘‘repeated indi-
ces’’ is adopted, a,b,c,d = 1..3 and R is the rotation
matrix. In the 2D case, where only a rotation h
around the z-axis is allowed, R(h) is

RðhÞ ¼
cos h sin h 0

� sin h cos h 0

0 0 1

�������

�������
: ðA:3Þ

In Fig. 3, the angle h from x–y to a–b is positive.
The sign is negative if going from a–b to x–y, such
as in (a2).

Material symmetries lower the number of inde-
pendent elastic constants below 21. The ‘‘symmetry
group’’ g, which in includes all the orthogonal ten-
sors R that satisfy, defines the material symmetries

R½Ce�RT ¼ C½ReRT� ðA:4Þ

with e the second-order strain tensor. Then, the
grain possesses ‘‘material axes’’ (the axes of symme-
try) related to the crystallographic orientations of
the underlying Bravais lattice on the atomic scale.
Orthotropic materials do not have coupling between
shear strains (stresses) and normal strains (stresses)
and have 9 constants in 3D and 7 constants in 2D.
Rhombic, orthorhombic, cubic and isotropic mate-
rials are special cases of orthotropic materials. In
Voigt notation (Jones, 1975; Gurtin, 1975) the
fourth-order stiffness tensor Cin material axes is
represented by the 6 · 6 matrix CM. For the 2D case
a 4 · 4 matrix suffices and
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CM ¼

cM
11 cM

12 cM
13 0

cM
22 cM

23 0

cM
33 0

symm cM
66

���������

���������
4�4

¼

c1111 c1122 c1133 0

c2222 c2233 0

c3333 0

symm c1212

���������

���������
4�4

ðA:5Þ

or, more conveniently in terms of the compliance
matrix SM,

CM ¼ S�1
M ¼

1
Ea

� mab
Ea
� mac

Ea
0

1
Eb

� mbc
Eb

0

1
Ec

0

symm 1
2Gab

����������

����������

�1

4�4

; ðA:6Þ

where Ea,Eb,Ec,mab,mac,mbc,Gab are the Young’s
moduli, the Poisson’s ratios and shear Modulus
measured from experiments. The material axis ‘‘c’’
must be parallel to the global axis z for a 2D type
of problem. The matrix representation CG

M of the
stiffness tensor in global coordinates x–y is obtained
through the matrix multiplication

CG
M ¼ QðhÞCMQTðhÞ ðA:7Þ

with

QðhÞ

¼

cos2ðhÞ sin2ðhÞ 0 cosðhÞ sinðhÞ
sin2ðhÞ cos2ðhÞ 0 � cosðhÞ sinðhÞ

0 0 1 0

�2 cosðhÞ sinðhÞ 2 cosðhÞ sinðhÞ 0 cos2ðhÞ � sin2ðhÞ

���������

���������
4�4

;

ðA:8Þ

where h is the angle from x to a and is positive as
indicated in Fig. 3.
Appendix B. Energetic equivalence between CST and

half-spring

The relation (15) is equivalent to the imposition
of equal strain energy of the CST and the half-
spring in Fig. 4. From, the work of external forces
is twice the strain energy

W ¼ 2U : ðB:1Þ

Hence we need to prove W ext
CST ¼ W ext

OA0 or
U CST ¼ U OA0 . For the CST, we have du1 = du2 =
(cosw, sinw)dk = OA/jOAjdk and
W ext
CST ¼

I
C1

F1 � du1 þ
I

C2

F2 � du2

¼
Z k¼1

0

½F1 þ F2� � ðcos w; sin wÞdk

¼
Z k¼1

0

�F0 � ðcos w; sin wÞdk; ðB:2Þ

where F1, F2 are the external reactions at nodes 1
and 2 and F1 + F2 + F0 = 0. The dot product can
be expanded from (15)

W ext
CST ¼ ½�ðk13 cos wþ k14 sin wÞ cos w

� ðk15 cos wþ k16 sin wÞ sin w�: ðB:3Þ

For the OAI half-spring we have

W ext
OAI ¼

Z k¼1

0

F OAðk ¼ 1Þdk ¼
Z k¼1

0

KOA dk ¼ KOA:

ðB:4Þ

The equality of (B.3) and (B.4) follows from the po-
sition (15), i.e. KOA = [�(k13cosw + k14sinw)cosw �
(k15 cosw + k16 sinw)sinw]. Hence the thesis is
proven.
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