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Abstract. There has been ample experimental evidence that a variety of
biological systems use the mechanism of stochastic resonance for tasks such
as prey capture and sensory information processing. Traditional quantities for
the characterization of stochastic resonance, such as the signal-to-noise ratio,
possess a low noise sensitivity in the sense that they vary slowly about the
optimal noise level. To tune to this level for improved system performance in
a noisy environment, a high sensitivity to noise is required. Here we show that,
when the resonance is understood as a manifestation of phase synchronization,
the average synchronization time between the input and the output signal has
an extremely high sensitivity in that it exhibits a cusp-like behavior about
the optimal noise level. We use a class of biological oscillators to demonstrate
this phenomenon, and provide a theoretical analysis to establish its generality.
Whether a biological system actually takes advantage of phase synchronization
and the cusp-like behavior to tune to optimal noise level presents an interesting
issue of further theoretical and experimental research.

1. Introduction. One of the remarkable nonlinear phenomena in biological sys-
tems is stochastic resonance (SR), which can roughly be characterized as the opti-
mization of certain system performance by noise. Early theoretical evidence sug-
gests that noise is essential for the transmission of sensory information, possibly
through the mechanism of SR [1, 2]. There is also speculation that internal noise of
a biological oscillator may play a constructive role in information transfer through
SR [3]. So far, there have been experimental demonstrations of SR in a variety
of biological systems [4, 5, 6, 7, 8, 9, 10], including the interesting discovery that
SR enhances the electrosensory information available to paddlefish for prey capture
[10]. There has even been a psychophysical experiment demonstrating that SR
can be used as a measuring tool to characterize the ability of the human brain to
interpret visual patterns immersed in noise [11].

SR was introduced in 1981 [12, 13] as a plausible mechanism to account for the
periodic occurrence of global glaciation (ice ages). It has stimulated a large amount
of research, has been identified in a variety of natural and engineering systems, and
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has continued to be an interesting topic in nonlinear science [14, 15]. Given a
nonlinear system, its response to a weak signal is generally influenced by noise but,
when SR occurs, noise can enhance the response. For periodic signals, a signal-
to-noise ratio (SNR) can be defined in terms of the dominant spectral peak in the
frequency domain and can thus characterize the resonance in a natural way [16].
For an aperiodic signal, there may be no well-defined peaks in the Fourier spectrum.
In this case, the correlation between the input and the output signal [17, 18, 19],
entropies, and other quantities derived from the information theory [20, 21, 22,
23, 24, 25] can be used for characterization, where SR means the optimization of
such a measure by noise. There are also nonlinear systems, in particular excitable
systems, for which the performance optimization can occur in a range of the noise
level. This is referred to as aperiodic stochastic resonance (ASR) [17, 18, 19].

A general feature associated with existing measures for characterization of SR
is that either they vary slowly with noise about the optimal value, exhibiting a
“bell-shape” behavior as typically seen in the SNR, or they are insensitive to noise
variation (e.g., the correlation measure in the case of ASR [17, 18, 19]). Because of
the ubiquity of SR in biological systems [4, 5, 6, 7, 8, 9, 10], a natural question is
how a biological oscillator tunes to the optimal noise level to realize SR. For this
purpose a measure that is highly sensitive to noise variation is desired. There are
also potential technological applications where one might be interested in such a
noise-sensitive measure. An example is to develop a device to assess the working
environment based on the principle of SR [26, 27, 28, 29]. Specifically, for various
types of measuring devices in a noisy environment, it is desirable to have the signal
spectral peak as pronounced as possible with respect to the broad, noisy back-
ground. The principle of SR can naturally be used to detect the optimal noise level
(or the optimal working condition). Andó and Graziani recognized that the SNR
is in general not suitable for this purpose, as it does not allow for online tuning of
the noise variance because of its insensitivity to noise variation about the optimal
level. In a series of papers [26, 27, 28, 29], they developed mathematical models
utilizing feed-forward estimation theory and tested experimental devices based on
the Schmitt trigger to overcome the difficulty.

In this paper, we present a measure of SR that has an extremely high sensitivity
in the sense that, as a function of the noise amplitude, it exhibits a cusp-like behav-
ior about the optimal noise level. In particular, recently it has been shown that SR
can be understood as a manifestation of phase synchronization between the input
and the output signal. The relationship between SR and phase synchronization
has been demonstrated in noisy bistable systems [30, 31, 32, 33, 34, 35, 36, 37]
and in excitable systems with periodic [38, 39] and with aperiodic signals [40]. To
see how SR can be studied through phase synchronization, imagine an input signal
xin(t) that oscillates in time. A phase variable φin(t) can be defined where one
cycle of oscillation in xin(t) corresponds to an increase of 2π in φin(t). A similar
phase variable φout(t) can be defined for the output signal xout(t). There is phase
synchronization [41] if the phase difference satisfies ∆φ(t) ≡ |φout(t)−φin(t)| ≤ 2π
for all t [42]. In the presence of noise or due to the lack of coupling, phase synchro-
nization can occur only in finite time intervals. That is, ∆φ(t) can remain bounded
within 2π for a finite amount of time before a phase slip, typically 2π, occurs. Given
a noise amplitude D, one can then measure the average time τ(D) for phase syn-
chronization. The principal result of this paper is that, as the optimal noise level
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associated with SR is approached, this time increases so rapidly that mathemati-
cally, its behavior can be described as cusp-like. There is thus an extremely high
sensitivity of τ(D) to noise variation, making it appealing for biological systems to
achieve optimal-noise tuning or in device applications for detecting and realizing
optimal working conditions 1.

We emphasize that, while many quantities have been proposed to characterize
SR [14, 15], all of them exhibit a bell-shape type of variation about the resonance
and, hence, they are unsuitable for the type of applications mentioned above. In
this sense, the average phase-synchronization time stands out as a measure that is
characteristically different from the existing ones. A brief account of the cusp-like
behavior of this time and a physical theory was published recently [44]. The pur-
pose of this paper is to extend this phenomenon to biological oscillators and provide
more extensive theoretical and numerical support. In particular, we shall use one
of the paradigmatic models for biological oscillators, the FitzHugh-Nagumo (FHN)
system, and provide numerical evidence for the cusp-like behavior in the average
phase-synchronization time (Sec. 2). To explain the numerical finding (Sec. 3), we
shall use the theoretical approach in references [17, 18, 19] in the study of ASR to
reduce the system of FHN oscillators to a minimal model (Sec. 3.1): the double-well
potential system that has been a paradigm to address many fundamental issues in
SR. Using this idealized model with a simple periodic input signal, we can analyze
the dynamics of phase synchronization by examining the stochastic transitions be-
tween the potential wells, leading to analytic formulas for τ(D) (Sec. 3.2). Near
the optimal noise level, τ(D) exhibits a cusp-like maximum with distinct values
of derivative depending on whether the optimal level is approached from below or
above. Although the specifics of τ(D) depend on the details of the system and
the input signal, our analysis and further numerical evidence using the double-well
potential model (Sec. 4) suggest that the cusp-like behavior be general.

2. Array of FitzHugh-Nagumo oscillators. We consider the following array
of FitzHugh-Nagumo (FHN) oscillators [45, 46], a paradigmatic model for studying
SR in biological oscillators:

εẋi = xi(xi − 1/2)(1− xi)− yi + S(t) + DJη(t), (1)
ẏi = xi − yi − b + Dξi(t), i = 1, . . . , N,

where ε ¿ 1, 0 < b < 1/2 are parameters, and S(t) is the input signal. To be
as general as possible, we assume that the input signal is noisy: the term DJη(t)
in equation (1) thus models this external noise term. The term Dξi(t) simulates
an adjustable noise source, suggesting that this is a type of internal noise source
used by the biological oscillator for tuning to optimal noise level. In equation (1),
η(t) and ξi(t) (i = 1, . . . , N) are independent Gaussian random processes of zero
mean and unit variance: 〈η(t)η(t′)〉 = δ(t − t′) and 〈ξi(t)ξi(t′)〉 = δ(t − t′). The
output from an FHN oscillator is typically a spike train. It is convenient to use the
instantaneous firing rate, which is the number of spikes per unit time, to represent
a smooth output signal for comparing with the input signal. For an array of FHN
oscillators, the ensemble average firing rate can be used.

1Note that here we use the term “cusp-like” merely to indicate a high sensitivity to noise. It
is not rigorous in the sense that our physical theory only predicts a fast rising and a fast falling
behavior in the average synchronization time when the noise level approaches the optimal value
from below and above, respectively.
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Figure 1. (a) Noisy sinusoidal input signal S(t)+0.0015η(t). (b-
d) Output spike trains x(t) from a single FHN oscillator for internal
noise amplitude D = 0 (b), 0.025 (c), and 0.075 (d), respectively.
A reasonably good match between S(t) and the firing pattern is
achieved for moderate noise level (c). (e-h) The corresponding set
of plots for rectangular input signal.

We present a series of numerical plots leading to the cusp-like behavior in the
average synchronization time. We fix the following set of parameters in the FHN
equation: ε = 0.005 and b = 0.15 (so that each FHN oscillator is subthreshold). To
illustrate, we use two types of periodic input signals: (1) sinusoidal signal S(t) =
Asin(ω0t) and (2) rectangular signal S(t) described by S(t) = A and −A for 0 ≤
t < T0/2 and for T0/2 ≤ t < T0, respectively, with the period given by T0 = 2π/ω0.
In our simulations we choose (arbitrarily) A = 0.045 and ω0 = 0.15. The stochastic
differential-equation system is numerically solved by using a standard second-order
routine [47]. Figures 1 (a-d) show, for the sinusoidal signal, the noisy input signal
S(t) + 0.0015η(t) and the output spike trains x(t) for a single FHN oscillator for
D = 0, 0.025, and 0.075, respectively. We see that without the internal noise (Fig.
1(b)), the output instantaneous firing rate rE(t) is low and it cannot represent
the input signal S(t). For strong noise (Fig. 1(d)), the firing rate is high but its
temporal variation does not match that of S(t), either. A reasonably good match
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Figure 2. For an array of 100 FHN oscillators, match between
the noisy sinusoidal input signal (a) and the average firing rate (b)
for D = 0.025. Similar match occurs for the rectangular signal, as
in (c) and (d).
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Figure 3. Time evolutions of the phase difference between the
input signal and the output average firing rate from a system of
N FHN oscillators: (a) N = 3 for sinusoidal input signal and
D = 0.06, 0.055, 0.025, 0.015, and 0.01 (from top down), (b) N = 4
for periodic rectangular input signal and D = 0.085, 0.07, 0.04,
0.025, and 0.02 (from top down).

between rE(t) and S(t) is apparently achieved for moderate noise (Fig. 1(c)), where
the firing behavior is significantly stronger in time intervals where the input signal is
near its maxima. Similar behaviors occur for the rectangular input signal, as shown
in a corresponding set of plots in figures 1 (e-h). For an array of FHN oscillators,
for some appropriate noise level, there can be a nearly perfect match in the wave
forms between the input signal and the average firing rate of the oscillators, as
shown in figures 2(a-d), where the number of oscillators is N = 100.

The phase variables associated with the noisy input signal S(t)+DJη(t) and the
average output firing rate rE(t) can be calculated by using the standard Hilbert
transform method. Figure 3(a) shows the evolutions of the phase difference for
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Figure 4. Cusp-like behavior in the average phase-
synchronization time about the optimal noise level: (a) for
N = 3 and sinusoidal input signal, and (b) for N = 4 and periodic
rectangular input signal. The synchronization times are expressed
in units of the periods of the respective input signals.

five values of the internal noise amplitude: D = 0.06, 0.055, 0.025, 0.015, and 0.01
(from top down), where the number of FHN oscillators is N = 3 and the input
is the sinusoidal signal. In the time interval used, no 2π phase slips occur when
the noise is near the optimal level Dopt ≈ 0.025 (the middle trace). Such phase
slips occur and become relatively more frequent as D is away from Dopt. Similar
behavior is observed for the rectangular input signal, as shown in figure 3(b). The
corresponding behaviors of the average synchronization time versus D are shown in
figure 4(a) and 4(b), respectively, where we observe an apparent cusp-like feature
near the optimal noise level.

3. Theory.

3.1. Reduction of FHN model to double-well potential system. Heuris-
tically, the dynamics of a single FHN oscillator can be reduced to the motion of
a classical mechanical particle in a double-well potential system [17, 18, 19]. For
pedagogical purposes, we outline the major steps in the reduction process. Using
the change of variables, x → x + 1/2 and y → y − b + 1/2, we can convert the
dynamical equations for a single FHN oscillator to

εẋ = −x(x2 − 1/4)− y + A + S(t) + DJη(t),
ẏ = x− y + Dξ(t), (2)

where A ≡ b− 1/2. For ε ¿ 1, the time rate of change of x(t) is much greater than
that of y(t) and, hence, x(t) and y(t) can be regarded as a fast and a slow variable,
respectively. Using the approximation

ẏ ≈ 0 or y(t) ≈ xf (t) + Dξ(t),
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where xf (t) is a solution of the FHN system in the presence of signal S(t) but in
the absence of noise, we can simplify the x-equation as

εẋ = −x(x2 − 1
4
)− xf (t) + A + S(t) + D′ζ(t), (3)

where D′ζ(t) ≡ DJη(t)−Dξ(t) represents the combined noise and D′ =
√

D2
J + D2

is its amplitude. We have

εẋ = −∂U(x, t)/∂x + D′ζ(t), (4)

where the time-dependent potential function is given by

U(x, t) = x4/4− x2/8 + [xf (t)−A− S(t)]x, (5)

which is a tilted double-well potential. The solution of the single FHN equations
can then be interpreted as describing the motion of a heavily damped particle
in the potential, with time-dependent slope of tilting. A firing event in a single
FHN oscillator is equivalent to a crossing of the particle through the barrier. The
ensemble-averaged firing rate 〈r(t)〉 is determined by the Kramers formula [48, 49].
Using perturbative analyses for xf (t) and to find the locations of the local minima
of the potential well as well as the maximum of the barrier, one can obtain the
following ensemble-averaged firing rate [17, 18, 19]:

〈r(t)〉 ∼ exp {−2
3

√
3[B3 − 3B2S(t)]ε/D′}, (6)

where B is a constant which is the “distance” of the system’s excitation level to
the threshold [17, 18, 19].

For the array of FHN oscillators in equation (1), the mean firing rate is the same
as the ensemble-averaged firing rate of a single FHN oscillator. Fluctuations of the
firing rate are determined by noise of the following form: DJη(t)+(D/N)

∑N
i=1 ξi(t),

which can be written as D′′ζ ′(t), where D′′ =
√

D2
J + D2/N and ζ ′(t) is also

a Gaussian random signal of zero mean and unit variance. Taking into account
random fluctuations in the ensemble-averaged firing rate, we have

rE(t) = 〈r(t)〉+ σ(D′′)κ(t), (7)

where σ(D′′) is positive and proportional to D′′, and κ(t) is a Gaussian random
signal.

3.2. Theoretical formulas of τ(D) for the double-well potential system.
We now consider particle motion in an idealized double-well potential in the pres-
ence of external driving and noise, subject to strong damping. The Langevin equa-
tion can be written as

dx/dt = −dU(x)/dx + F (t) +
√

2Dξ(t), (8)

where
U(x) = −x2/2 + x4/4, (9)

is the potential function, D is the noise amplitude, and ξ(t) is the white noise term
that satisfies 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′). The potential has two wells, one
at xl = −1 and another at xr = 1, and a barrier at x = 0. To make analysis feasible,
we consider the case where the external driving F (t) is a periodically rectangular
signal of period T0 = 1,

F (t) = { −F0 for 0 ≤ t < 1/2
F0 for 1/2 ≤ t < 1.

(10)
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Figure 5. (Color online) Tilted double-well potential as a result
of external forcing.

Letting
V (x, t) = U(x)− F (t)x (11)

be the effective potential, the Langevin equation becomes

dx/dt = −∂V (x, t)/∂x +
√

2Dξ(t). (12)

The tilted potential V (x, t) can assume one of two forms in the first and second half
of a period, as shown schematically in figure 5. Due to the external forcing, the
two wells become asymmetric with respect to each other. At a given time, one of
the wells is deep and another is shallow, and they switch periodically in time with
period T0. It is thus natural to assign a phase variable φ(t) for a particle in a well:
φ(t) = 0 if the particle is in the well at xr and φ(t) = π if it is in the well at xl. Due
to noise, a particle initially in one well can overcome the potential barrier to go to
another well, vice versa. The rate of this transition (the probability of transition
per unit time) is determined by the Kramers formula [48, 49]:

R ∼ exp (−Eb/D), (13)

where Eb is the barrier height. Let Ed and Es be the barrier heights when the
particle is in the deep and shallow well, respectively, where Ed > Es. The rates of
transition from the deep to the shallow well and the opposite are Rd ∼ exp (−Ed/D)
and Rs ∼ exp (−Es/D), respectively. For different noise strength, the response of
the particle to the external forcing, as measured by the transitions between the two
wells, determines the extent of phase synchronization between the input and the
output.

Imagine that for some noise strength, in one period of time the probability of
transition from the shallow to the deep well is appreciable but that of the opposite
transition is negligible. Assume initially a particle is in the right well. During the
first half-period the particle moves to the deep well, generating a π phase change. In
the second half-period, the deep well becomes shallow and vice versa, and hence the
particle moves to the right well again, as shown in figure 5. There is then another π
phase change in the second half-period. The total phase change in one period is then
2π, which matches exactly the phase change associated with the external forcing
(input signal). That is, the phase of the particle can be locked with respect to that
of the input signal, giving rise to perfect phase synchronization. Because of noise,
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Figure 6. (color online) For D < Dopt, transition from the shal-
low to the deep well can occur but the opposite is unlikely.

such a perfect synchronization cannot be achieved indefinitely. Let Dopt be the
noise amplitude for which the average synchronization time reaches a maximum
value τmax À 1. Let Ψ2π(D) be the probability for a 2π change in one driving
period. We have

Ψ2π(Dopt) ≈ 1/τmax ≡ δ. (14)

Consider first the case D < Dopt. In the extreme case where D ≈ 0, the Kramers
rates are essentially zero so that a particle initially in one potential well will remain
there for a long time. Due to the 2π phase change in the input signal in one period,
there will be a corresponding 2π change in the phase difference ∆φ between the
input and the output signal. We have Ψ2π(0) ≈ 1. As D is increased from zero, it
becomes possible for a particle in the shallow well to move to the deep well so that
Rs will increase, but if D is small, we expect Rd to remain negligible because of the
higher potential barrier, as shown in figure 6. This will reduce Ψ2π(D) from unity.
The amount of reduction is given by the Kramers rate Rs. The probability for 2π
phase change is thus (1 − C0Rs), where C0 is a constant that can be determined
by the condition Ψ2π(Dopt) ≈ δ. We obtain

Ψ<
2π(D) = 1− (1− δ) exp (Es/Dopt) exp (−Es/D). (15)

The average phase synchronization time for D < Dopt is given by τ<(D) ≈ 1/Ψ<
2π(D).

We have

dτ<(D)/dD|D→D−
opt
≈ (1− δ)Es

δ2D2
opt

(16)

and
dτ<(D)/dD|D→D−

opt
→∞, for ε → 0.
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Figure 7. (Color online) For D > Dopt, transition from the deep
to the shallow well is possible but if this happens, there is a high
probability that the particle will move back to the deep well in
relatively short time.

For small value of δ, we thus expect to observe that τ<(D) increases rapidly as
D → Dopt from below.

For D > Dopt, it is possible for a particle in the deep well to overcome the high
potential barrier to move to the shallow well. Thus both transition rates become
important. Because of the large noise, in one driving period a particle in the deep
well can jump to the shallow well and then moves rapidly to the deep well again
because of the relatively low potential barrier for this transition (Rs ≈ 1). This
process induces a 2π phase difference between the particle and the input signal.
For larger noise, multiple transitions in one driving period are possible so that the
phase difference would increase continuously with time and, as a practical matter,
no phase synchronization can be observed. Since our interest is in the average
synchronization time, only the noise range in which a single transition can possibly
occur in one driving period is relevant. We thus have

Ψ>
2π(D) ≈ C1 exp (−Ed/D) exp (−Es/D), (17)

where the constant C1 is given by

C1 = δ exp [(Ed + Es)/Dopt].

The average phase synchronization time for D > Dopt is given by τ>(D) ≈ 1/Ψ>
2π(D).

Taking the derivative we obtain

dτ>(D)/dD|D→D+
opt
≈ −Ed + Es

εD2
opt

. (18)
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Again we observe that

|dτ>(D)/dD|D→D+
opt
→∞ for ε → 0.

Equations (16) and (18) thus indicate a cusp-like behavior in τ(D) about Dopt.
Moreover, we have

dτ<(D)/dD|D→D−
opt
6= |dτ>(D)/dD|D→D+

opt
. (19)

For small value of δ, for D → D−
opt, the rise of τ<(D) can be pronounced than

that of τ>(D) for D → D+
opt. In general, we expect to see an asymmetric behavior

in τ(D) near Dopt. Note also that equation (17) implies that for D > Dopt, the
average time τ>(D) obeys the following scaling law with the noise amplitude:

τ>(D) ∼ exp [(Ed + Es)/D]. (20)

We emphasize that equations (16) and (18) indicate a fast rising and a fast
falling behavior in the average synchronization time only for noise amplitude below
and above the optimal value, respectively. Our argument is not applicable when
the noise amplitude is in the infinitesimal vicinity of the optimal value. Thus, our
heuristic theory cannot predict whether there is a cusp behavior in the mathematical
sense of discontinuity in the derivative. A recent analytic expression [50, 51] for the
instantaneous phase-diffusion coefficient in a periodically driven system suggests,
however, a smooth behavior in the phase-synchronization time about the optimal
noise level. In particular, the diffusion coefficient shows a sharp but smooth peak at
the optimal noise level. Since the average phase-synchronization time can be related
to the inverse of the diffusion coefficient [52], it is reasonable that the behavior of
this time also be smooth.

4. Numerical results with the double-well system. Here we present numeri-
cal support for the cusp-like behavior in the double-well system with both periodic
rectangular and sinusoidal driving.

4.1. Periodic rectangular driving. By examining the average synchronization
time, the optimal noise amplitude is determined to be Dopt ≈ 0.033. Figures 8
(a-c) show, for driving amplitude F0 = 0.18, the output signal x(t) with respect to
the input for three values of the noise amplitude. For D = 0.02 < Dopt (a), there
are infrequent mismatches between the phases. For D = 0.033 ≈ Dopt, we observe
almost a perfect phase match between the input and the output signal in the time
interval displayed. For D = 0.1 > Dopt, phase mismatches occur quite often. These
suggest that noise of amplitude D near Dopt results in a maximal degree of phase
synchronization between the input and the output signal.

Figure 9 shows, for the same driving amplitude, evolutions of the phase difference
between the input and the output signal. Here the phase variable associated with
the output is defined to be

φout(t) = tan−1 x̃(t)
x(t)

,

where x̄(t) is the Hilbert transform of x(t):

x̃(t) = P.V.

[
1
π

∫ ∞

−∞

x(t′)
t− t′

dt′
]

,

and P.V. stands for the Cauchy principal value for integral. The five traces shown
from top down correspond to D = 0.041, D = 0.038, D = 0.033 ≈ Dopt, D = 0.028,
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Figure 8. (Color online) For the double-well potential system un-
der periodic rectangular driving of amplitude F0 = 0.18, the output
signal x(t) in relation to the input driving for three values of the
noise amplitude: (a) D = 0.02 < Dopt, (b) D = 0.033 ≈ Dopt, and
(c) D = 0.1 > Dopt.
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Figure 9. (Color online) For the double-well potential system un-
der periodic rectangular driving of amplitude F0 = 0.18, evolutions
of the phase difference between the input and the output for five
different values of the noise amplitude.
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Figure 10. (Color online) For the double-well potential system
under periodic rectangular driving, (a) cusp-like behavior in the
dependence of the average phase-synchronization time on noise
amplitude, (b) asymmetric behavior of this dependence about the
optimal noise amplitude.

and D = 0.025, respectively. Within the time considered (600 driving periods),
we observe 2π phase slips for all noise levels except for D = 0.033, indicating
that relatively long phase synchronization has been achieved and, hence, this is
approximately the optimal noise amplitude, which has been observed to yield a
maximum in the SNR. In this sense the measure of average phase-synchronization
time is consistent with the traditional measures for characterizing SR. As D deviates
away from Dopt, 2π phase slips occur more often.

To verify the cusp-like behavior in the average phase-synchronization time τ , we
choose a number of values of the noise amplitude about Dopt. For each value, we
use 20 realizations of the stochastic system to calculate the average value of the
time between successive 2π phase slips. The result is shown in figure 10 (a), where
we see that τ exhibits apparently a cusp-like behavior about the optimal noise
amplitude Dopt. As the noise amplitude is increased from zero and approaches
the optimal value, there are four orders of magnitude of increase in the average
phase-synchronization time, indicating an extremely high sensitivity to noise as
compared with the traditional measures. The asymmetric behavior in τ about
Dopt, as predicted by our theoretical analysis, is shown in figure 10 (b), which is
a blowup of part of figure 10 (a) near Dopt. Support for the predicted scaling law
(20) for D > Dopt is shown in figure 11.

4.2. Sinusoidal driving. We have obtained similar results when the input driving
is a smooth sinusoidal signal A sin t. In particular, figures 12 (a-c) show, for A =
0.225, the output signal x(t) in relation to the input for three values of the noise
amplitude: (a) D = 0.0175 < Dopt, (b) D = 0.031 ≈ Dopt, and (c) D = 0.075 >
Dopt. We see nearly perfect phase match between the input and the output signal
for D ≈ Dopt (panel (b)). Figure 13 shows the evolutions of the phase difference
between the input and the output signal for five different values of noise level. The
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Figure 11. (Color online) For the double-well potential system
under periodic rectangular driving, evidence for the scaling law
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Figure 12. (Color online) For the double-well potential system
under sinusoidal driving of amplitude A = 0.225, the output signal
x(t) in relation to the input driving for three values of the noise
amplitude: (a) D = 0.0175 < Dopt, (b) D = 0.031 ≈ Dopt, and (c)
D = 0.075 > Dopt.
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Figure 13. (Color online) For the double-well potential system
under sinusoidal driving of amplitude A = 0.225, evolutions of
the phase difference between the input and output for D = 0.04,
D = 0.035, D = 0.031 ≈ Dopt, D = 0.025, and D = 0.0225 (top to
bottom).
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Figure 14. (Color online) For the double-well potential system
under sinusoidal driving, cusp-like behavior in the dependence of
the average phase-synchronization time on noise amplitude.
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Figure 15. (Color online) For the double-well potential system
under sinusoidal driving, cusp-like behavior in the dependence of
the average phase-synchronization time on the frequency of the
external driving signal (bona-fide stochastic resonance).

nearly horizontal trace without large steps correspond to the case of D ≈ Dopt. The
cusp-like behavior in the average phase-synchronization time is shown in figure 14.

The cusp-like behavior in the average phase-synchronization time can also occur
with respect to variation in the frequency of the external signal, the so-called bona-
fide stochastic-resonance phenomenon [53, 54, 55]. To demonstrate this, we fix
D = 0.031 ≈ Dopt and calculate the average synchronization time τ as a function of
the frequency of the input signal. The result is shown in figure 15, where τ exhibits
a similar cusp-like behavior as in figures 10 and 14. Thus, the synchronization time
is sensitive not only to noise variation, but also to other parameters such as the
frequency of the driving signal. This may be interesting from the standpoint of
frequency tuning in biological systems or in device applications.

5. Discussion. Characterization of SR by using the phase-synchronization time
may be of fundamental interest because this represents an alternative way to study
SR. This approach can also be practically useful because the synchronization time
depends on the noise level much more sensitively than the traditional measures such
as the SNR. This may provide insights into the mechanism for biological systems
to tune noise to achieve optimal performance through SR. In terms of technological
applications, suppose an instrument is to be built based on the phenomenon of SR.
Using this time measure can be more advantageous because of the higher precision
it can potentially offer. In this paper, we have presented numerical evidence for the
high noise sensitivity in a paradigmatic model of biological oscillators. To be able
to obtain analytic understanding, we have used the standard double-well potential
model with a periodic input signal. The dynamics of phase synchronization is then
analyzed based on the transitions between the potential wells, with the help of the
Kramers formula. Our principal finding is that, near the optimal noise level, the
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function τ(D) exhibits a cusp-like maximum with distinct values of derivative de-
pending on whether the optimal level is approached from below or above. Although
the specifics of τ(D) depend on the details of the system and the input signal, our
analysis and numerical computations indicate that the cusp-like behavior is general.
While our analysis is heuristic, a more rigorous treatment may be possible using a
recently proposed two-state, discrete phase model for SR [36, 37]. Although there
is a huge body of literature on SR, to our knowledge, the cusp-like behavior in the
synchronization time has not been noticed previously.

Our approach to understanding stochastic resonance may also be useful for the
phenomenon of resonant activation [56, 57, 58, 59] where, for a particle in a potential
well with a time-varying barrier, in the presence of noise the average crossing time,
which is the average of times required to diffuse over each of barriers, can exhibit a
minimum as a parameter controlling the barrier height varies. In previous works,
the reported resonance peak is typically broad [56, 57, 58, 59]. Our results here
imply that if resonant activation is treated using phase synchronization, it is possible
that the average synchronization time can exhibit a cusp-like, sharp maximum. A
possible setting to establish this is to assume that the barrier height is controlled
by a time-varying signal (e.g., chaotic) for which a phase variable can be defined.
The relative phase difference between the particle and this signal, and consequently
phase synchronization, can then be investigated as in this paper.
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[27] B. Andó and S. Graziani, Noise tuning in stochastic systems. Int. J. Electron. 87 (2000)
659-666.
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