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Tipping Point

Google: the point at which a series of Merriam-Webster: the critical point

small changes or incidents becomes in a situation, process, or system

significant enough to cause a larger, beyond which a significant and often

more important change. unstoppable effect or change takes
place
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Tipping point: Prediction &
Control?
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(Generally increases with human population size)

Barnosky, Anthony D., et al. Nature 486, 52-58 (2012).
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Plant-pollinator network with complex
mutualistic interactions
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ECOLOGY LETTERS

Ecology Letters, (2014) 17: 350-359 doi: 10.1111/ele.12236
LETTER The sudden collapse of pollinator communities
Abstract
J. Jelle Lever,"?* Egbert H. van Declines in pollinator populations may harm biodiversity and agricultural productivity. Little
Nes,’ Marten Scheffer," and attention has, however, been paid to the systemic response of mutualistic communities to global
Jordi Bascompte? environmental change. Using a modelling approach and merging network theory with theory on

critical transitions, we show that the scale and nature of critical transitions is likely to be influ-
enced by the architecture of mutualistic networks. Specifically, we show that pollinator popula-
tions may collapse suddenly once drivers of pollinator decline reach a critical point. A high
connectance and/or nestedness of the mutualistic network increases the capacity of pollinator pop-
ulations to persist under harsh conditions. However, once a tipping point is reached, pollinator
populations collapse simultancously. Recovering from this single community-wide collapse
requires a relatively large improvement of conditions. These findings may have large implications
for our view on the sustainability of pollinator communities and the services they provide.

Keywords
Critical transitions, hysteresis, mutualistic networks, nestedness, pollinator decline.
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Cause of perturbation: global

warming caused climate change,

excessive use of pesticides leading

to death of pollinators, loss of Node loss
habitats due to pollution, etc. @ g

Perturbation Types

Bipartite mutualistic network
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Network A: Data from
Hicking, Norfold, UK - 61
Pollinators, 17 plants, and 146
mutualistic interactions [L.
Dicks, S. Corbet, and R.
Pywell, “Compartmentalization
in plant-insect flower visitor
web,” J. Anim. Ecol. 71, 32-43
(2002)]

Network B: Data from
Hestehaven, Denmark — 42
pollinators, 8 plants, and 79
mutualistic connections [A. C.
Montero, “The ecology of
three pollinator network,”
Master thesis, Aarhus
University, Denmark (2005)]

Data from 59 such networks are currently available: http://www.web-of-life.es
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% Nonlinear Network of Mutualistic Interactions () A2#ELT

S

dr, <P) Eﬁ(P)P"' Jl +u

dt "

=1 1+h 5 )A .
" Ey, . Holling type-II
dynamics
A)
dA & Ey’ Y
di_A’ a? - k, —E[J’EJ.A)AJ+ + Uy,
! - 1+ hz yop,

Y. =&, Yo , O =t=1 (r =0: structure has no effect; 7 = 1: structure is important)
17 ij (k )t

g, =1 if plant/pollinator i and pollinator/plant j are connected; O otherwise;

P., A, — Abundance of ith plant and ith pollinator;
S,,S, — numbers of plants and pollinators;

Py ,(A)

o, ’,a;”’ — intrinsic growth rates of ith plant and ith pollinator;

B> B; — intraspecific and interspecific competition strength (5; >> (,);

Uy, u, — immigration of plants and pollinators;

Yo — strength of mutualistic interaction; } Possible control

K, — pollinator decay rate - bifurcation parameter parameters

* Lever, Nes, Scheffer, and Bascompte, ‘“The sudden collapse of pollinator communities,” Ecol. Lett.
17, 350-359 (2014)

* Rohr, Saavedra, and Bascompte, “On the structural stability of mutualistic systems,” Science 345,
1253497 (2014).

* J.-J. Jiang, Z.-G. Huang, T. P. Seager, W. Lin, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting
tipping points in mutualistic networks through dimension reduction,” PNAS (Plus), in press
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% Derivation of 2D @) ReRELE

Dynamical System (1)

Sa
P)
dP, & E’/"f =
Plants — = h al” =Y B P+ —L + Up,
! J= 1+ hz YA
y J
J=1 2
Pollinators N\
dA \ 2"
=4, M-k =Y BPA + iy
- (A)
J=1 1+hEyij P,
j=1
4
Step 1: Step 2: Step 3:
a”P =aP, BL>> BN, B >> B v —e, ];C/Ol
aPA =aA & )
I — Y BAA ~BAT = BAY 7 ]
= — EnyPMJ =D le,A = rok A,
SP Jj=1 J=1 th
P p P~ BYP* = BP?
2/3" = Bl =Py wp _ N Yo, P =7,k P
Jj=1 EV ._Ekt =Yoka, Lo
J=1 A
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Dynamical System (2)
Plants I o
; yO P, 4
L=qP, — BP: + A po+u,,
dt o Pty hyoky Ay Hr
. | K- P
Pollinators dA, _ A, -BAL —KA, + YoKa, for_a tu,
dt L+ hy,k,' P,
Averaging - Method 1: Averaging - Method 2:

Sa
Eyok}%_l E Vokzlajt Eyok;,.—t ) kP,. E Voki\,_.t ) kA,.
Foy=g— (ra)=— (vp) =" - ()=
1 i Yk, Yk,

i=1 i=1 i=1 i=1

Effective, two-dimensional dynamical system:

dP, Ye)A,
ﬁ=apeﬁ_ﬁpe‘j25‘+ <P> L P, +u,

‘ <|: dt 1+ h{yp) A,

dAeﬁ‘ _ _ 2 <VA>Peﬁ
" = aAeﬁ /))Aeﬁ K'Aeﬁ + - h<)/A>Peﬁc Aeﬁ +u

J.-]J. Jiang, Z.-G. Huang, W. Lin, T. Seager, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting tipping points
in mutualistic networks through dimension reduction,” PNAS (Plus), in press.
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% Universality of 2D Model

Pollinators Plants
(a) (b)

(Vp) {(7p)

Red surface: stable steady states of pollinator from effective system

Green surface: stable steady states of plants from effective system

Blue dots: corresponding stable steady states from 59 available
real-world networks
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Average Abundance Predicted by
Effective Dynamical System

Pollinators Plants

(b)
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Predicting network tipping point
from effective dynamical system

(a) (b)

Red — from
original system
Blue — from
effective system
with unweighted
average — not
good agreement

Symbols -
individual
realizations
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% Predicting network tipping point
from effective dynamical system

(a) (b)
Network 3 - .
A 25 ’
ol s ) 2
D15 5 i @15 Red, Green —
from original
05 system
0 Blue — from
3 | ‘ ‘ ‘ ‘ effective system
with unweighted
average
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Example of successful prediction of a tipping
point (many realizations)
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Tipping Point Prediction

Red — pollinator
abundance from
original system;
Green — plant
abundance from
(d) original system
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1 0O 02 04 06 08 1
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* Both weighted and unweighted averaging methods give good results.
* Realistic mutualistic networks are far from random — weighted
averages are necessary!



Control Method 1: Maintaining the
Abundance of a Single Pollinator

Network A b) Network B
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Control Method 2: Setting Decay

Parameter = 0 for a Single Pollinator

Network A

Network B
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Hysteresis
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% Hysteresis Loop and Benetit of Control

Without control With control

Abundance

Tipping point Delayed tipping point

Recovery point

Environmental fitness

 ———

* Once the tipping point is reached, one must pay a higher price to bring the
system back.

* Control can effectively remove the hysteresis, greatly facilitating system
recovery from the tipping point.



f%.-bﬁkfé)’\'?

¥/ SHAANXI NORMAL UNIVERSITY

Controllability Ranking of Pollinators

Network B (controlling pollinators 2, 3, 5, and 8)
(b) (c)
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M, . — weighted matrix of original bipartite network

m — # of pollinators, n— # of plants
M, =M -M" - Projection matrix of pollinators
V — component of eigenvector associated with the largest eigenvalue of M,
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% Benefit of Control: Enabling Species Recovery = ™™
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* Blue — without control * Red — with control
1. Collapse abruptly and simultaneously 1. Collapse not as abrupt

2. Unable to recover 2. Able to recover
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Measured
[WMMWW] Network [WMWWMMM] Time Series »

[WWWWW] Full network
MM’NWMWWW topology +
[WMW\WWW] dynamical

equations

«  W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, PRL 106, 154101 (2011).

« W.-X. Wang, Y.-C. Lai, C. Grebogi, and J.-P. Ye, “Network reconstruction based on
evolutionary game data,” PrX 1, 021021, 1-7 (2011).

e Z.-S. Shen, W.-X. Wang, Y. Fan, Z.-R. Di, and Y.-C. Lai, “Reconstructing propagation
networks with natural diversity and identifying hidden source,” Nature Communications S,
4323 (2014).

 R.-Q. Su, W.-X. Wang, X. Wang, and Y.-C. Lai, “Data-based reconstruction of complex

geospatial networks, nodal positioning and detection of hidden nodes,” Royal Society Open
Science 3, 150577 (2016).

W.-X. Wang, Y.-C. Lai, and C. Grebogi, “Data based identification and prediction of
nonlinear and complex dynamical systems,” Physics Reports 644, 1-76 (2016).

Crisis
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Basic Idea (1)
Dynamical system: dx/dt = F(x), x € R”

Goal: to determine F(x) from measured time series x(t)!

Power-series expansion of jth component of vector field F(x)

[F(X)] _22 E(a )1112 1 X X2 lm

[,=0 [,=0
— kth component of x; Highest-order power: n
(a i, - coetficients to be estimated from time series

- (14+n)" coefficients altogether
If F(x) contains only a few power-series terms, most of the

coefficients will be zero.
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% Basic Idea (2) &) Ao fry

Concrete example: m = 3 (phase-space dimension): (X,y,z)
n = 3 (highest order in power-series expansion)

total (1 +n)” = (1+3)’ = 64 unknown coefficients

[F(x)], = (al)O,O’OXOyOZO+ (al)l,o,oxlyozo+ e (211)3,3,3)(3y3z3

[ (@)000 |

- a
Coefficient vector a,= @ -64x1

\ (@))333 )

Measurement vector g(t) = [x(t)"y(t)z(t)’, x(1)'y()’z(t)°, ... , x(1) y(t)’z(t)’]
1 x 64

So [F(X(t))]l = g(t) *a
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Basic Idea (3)

Suppose x(t) is available at times t t,.t,,....t;, (11 vector data points)

i_f(tl) =[F(x(t,)], =g(t,))*a,

%(tz) =[F(x(t,))], =g(t,)*a,

%(tlo) =[F(x(t,,)], =g(t,,)*a,

Derivative vector dX =

We finally have dX =Gea,

[ (@dx/dot,) )
(dx/do)(t, )

| (@odnt,) |

10x1

or

; Measurement matrix G =

XmOxl = G10x64 * (31)64x1

RN\ -
kﬁzbﬁf%‘g|q7ﬁ:x'?
LN \ SHAANXI NORMAL UNIVERSITY

( g(t,) \
g(t,)

\ g(t,) )

10x64
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Basic 1dea (4)

dX =Gea, or dX o = Gioees ® (A gan

Reminder: a, is the coefficient vector for the first dynamical variable x.

To obtain [F(x)],, we expand

[F(x)], =(a, )0,0’0X0y020+ (a, )1’0’0X1yozo+ ..+ (a, )3’3,3X3y3Z3
with a,, the coefficient vector for the second dynamical variable y. We have
dY =G-ea, or  dYp,; =G *(2))6ua

where
[ (dy/diyt,)

oy | @rdoe)

| @y/doc,)

Note: measurement matrix G is the same.

10x1

Similar expressions can be obtained for all components of the velocity field.
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ook at
dX =Gea

Note that a, 1s sparse

Compressive Sensing (1)

Or XmOxl = G10x64 ° (a1)64x1

- Compressive sensing!

~

Yy P X
Data/Image compression: M x 1t i '::{;:: J\Sfp a>r<sel
® : Random projection (not full rank) ﬂ - - signal
X - sparse vector to be recovered M x N no{gero

\K<M<<N

entries/

Goal of compressive sensing: Find a vector X with minimum number of

entries subject to the constraint y = @ x



% Compressive Sensing (2)

Find a vector x with minimum number of entries

subject to the constraint y =®®x: [ —norm

Why [ —norm? - Simple example in three dimensions

H

H

§
S

(a) (b) ()

E. Candes, J. Romberg, and T. Tao, IEEE Trans. Information Theory 52, 489 (2006),
Comm. Pure. Appl. Math. 59, 1207 (2006);

D. Donoho, IEEE Trans. Information Theory 52, 1289 (2006));

Special review: IEEE Signal Process. Mag. 24, 2008



ho ik fe k¥
SHAANXI NORMAL UNIVERSITY

Point (2)

ipping

Predicting T

1S

ion analys

1 bifurcat

: Performing numerica

Step 2

1.3 1.4

1.2

1.1

Boundary
isis

=
@)
 —
©
C —
e £
£ 2
= 5 E
o & &

X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, PRL 106, 154101 (2011).

W.
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% Take Home Message

1. An effective two-dimensional model to predict tipping point
in mutualistic networks

J.-J. Jiang, Z.-G. Huang, W. Lin, T. Seager, C. Grebogi, A. Hastings, and Y.-C. Lai, “Predicting
tipping points in mutualistic networks through dimension reduction,” PNAS (Plus), in press.

2. Control delays tipping point, eliminates hysteresis loop,
and enables recovery that 1s not possible without control

Without control With control

Abundance

Tipping point

Delayed tipping point

>

Environmental fitness

3. Compressive sensing based i1dentification and prediction
of complex and nonlinear systems



