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Abstract. Pseudospin-1 systems are characterized by the feature that
their band structure consists of a pair of Dirac cones and a topologi-
cally flat band. Such systems can be realized in a variety of physical
systems ranging from dielectric photonic crystals to electronic materials.
Theoretically, massless pseudospin-1 systems are described by the gener-
alized Dirac-Weyl equation governing the evolution of a three-component
spinor. Recent works have demonstrated that such systems can exhibit
unconventional physical phenomena such as revival resonant scattering,
superpersistent scattering, super-Klein tunneling, perfect caustics, van-
ishing Berry phase, and isotropic low energy scattering. We argue that
investigating the interplay between pseudospin-1 physics and classical
chaos may constitute a new frontier area of research in relativistic quan-
tum chaos with significant applications.

13.1 Introduction: What Are Pseudospin-1 Systems and
Where Do They Arise?

Solid state materials whose energy bands contain a Dirac cone structure
have been an active area of research since the experimental realization of
graphene [1,2]. From the standpoint of quantum transport, the Dirac cone struc-
ture and the resulting pseudospin characteristic of the underlying quasiparticles
can lead to unconventional physical properties/phenomena such as high car-
rier mobility, anti-localization, chiral tunneling, and negative refractive index,
which are not usually seen in traditional semiconductor materials. Moreover,
due to the underlying physics being effectively governed by the Dirac equation,
relativistic quantum phenomena such as Klein tunneling, Zitterbewegung, and
pair creations can potentially occur in solid state devices and be exploited for
significantly improving or even revolutionizing conventional electronics. Uncov-
ering/developing alternative materials with a Dirac cone structure has also been
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2 Y.-C. Lai

extremely active [3,4]. In this regard, the discovery of topological insulators [5,6]
indicates that Dirac cones with a topological origin can be created, leading to
the possibility of engineering materials to generate remarkable physical phenom-
ena such as zero-field half-integer quantum Hall effect [7], topological magneto-
electric effect [8], and topologically protected wave transport [9,10].

A parallel line of research has concentrated on developing photonic materials
with a Dirac cone structure, due to the natural analogy between electromagnetic
and matter waves. For example, photonic graphene [11,12] and photonic topolog-
ical insulators [13–18] have been realized, where novel phenomena of controlled
light propagation have been demonstrated. Due to the much larger wavelength
in optical materials as compared with the electronic wavelength, synthetic pho-
tonic devices with a Dirac cone structure can be fabricated at larger scales with
a greater tunability through modulations. The efforts have led to systems with
additional features in the energy band together with the Dirac cones, opening
possibilities for uncovering new and “exotic” physics with potential applications
that cannot even be conceived at the present.

The materials to be discussed in this article are those whose energy bands
consist of a pair of Dirac cones and a topologically flat band, electronic or opti-
cal. For example, in a dielectric photonic crystal, Dirac cones can be induced
through accidental degeneracy that occurs at the center of the Brillouin zone.
This effectively makes the crystal a zero-refractive-index metamaterial at the
Dirac point where the Dirac cones intersect with another flat band [19–23]. Alter-
natively, configuring an array of evanescently coupled optical waveguides into a
Lieb lattice [24–27] can lead to a gapless spectrum consisting of a pair of common
Dirac cones and a perfectly flat middle band at the corner of the Brillouin zone.
As demonstrated more recently, loading cold atoms into an optical Lieb lattice
provides another experimental realization of the gapless three-band spectrum
at a smaller scale with greater dynamical controllability of the system param-
eters [28]. With respect to creating materials whose energy bands consist of a
pair of Dirac cones and a topologically flat band, there have also been theoretical
proposals on Dice or T3 optical lattices [29–34] and electronic materials such as
transition-metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [35], 2D
carbon or MoS2 allotropes with a square symmetry [36,37], SrCu2(BO3)2 [38]
and graphene-In2Te2 bilayer [39]. Dirac cones with a flat band can also arise in
a class of mechanical lattices [40].

In spite of the diversity and the broad scales to realize the band struc-
ture that consists of two conical bands and a characteristic flat band
intersecting at a single point in different physical systems, there is a unified
underlying theoretical framework: generalized Dirac-Weyl equation for massless
spin-1 particles [31]. Comparing with the conventional Dirac cone systems with
massless pseudospin/spin-1/2 quasiparticles (i.e., systems without a flat band),
pseudospin-1 systems can exhibit quite unusual physics such as super-Klein tun-
neling for the two conical (linear dispersive) bands [23,32,41,42], diffraction-free
wave propagation and novel conical diffraction [24–27], flat band rendering diver-
gent dc conductivity with a tunable short-range disorder [43], unconventional
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Anderson localization [44,45], flat band ferromagnetism [28,46,47], and peculiar
topological phases under external gauge fields or spin-orbit coupling [35,48–50].
Especially, the topological phases arise due to the flat band that permits a num-
ber of degenerate localized states with a topological origin (i.e., “caging” of
carriers) [51]. Most existing works, however, focused on the physics induced by
the additional flat band, and the scattering/transport dynamics in pseudospin-1
systems have begun to be studied [52–54].

13.2 Generalized Dirac-Weyl Equation

The effective low-energy Hamiltonian associated with pseudospin-1 Dirac cones
can be written, in the unit � = 1, as [23,24,41]

H0 = vgS · k, (13.1)

where vg is the magnitude of the group velocity associated with the Dirac cone,
k = (kx, ky) denotes the wavevector, and S = (Sx, Sy) is a vector of matrices
with components

Sx =
1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ and Sy =

1√
2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠ . (13.2)

Along with another matrix

Sz =

⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠ ,

the three matrices form a complete representation of spin-1, which satisfies the
angular momentum commutation relations [Sl, Sm] = iεlmnSn with three eigen-
values: s = ±1, 0, where εlmn is the Levi-Civita symbol. It follows from Eq. (13.1)
that the energy spectrum consists of three bands that intersect at the Dirac
point: a dispersionless flat band E0(k) = 0 and two linearly dispersive bands
Eτ (k) = τvg|k| with τ = ±1 being the band index. The corresponding eigen-
functions in the position representation r = (x, y) are

ψk,τ (r) = 〈r|k, τ〉 =
1
2

[
e−iθ,

√
2τ, eiθ

]T

eik·r , (13.3)

for the dispersive bands and

ψk,0(r) = 〈r|k, 0〉 =
1√
2

[−e−iθ, 0, eiθ
]T

eik·r , (13.4)

for the flat band, where θ = tan−1(ky/kx). The current operator is defined from
Eq. (13.1) as

ĵ = ∇kH0 = vgS. (13.5)
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4 Y.-C. Lai

The local current in a given state ψ(r) = [ψ1, ψ2, ψ3]T can thus be expressed as

j(r) = vgψ
†Sψ ≡ (jx, jy)

=
√

2vg (�[ψ∗
2(ψ1 + ψ3)],−�[ψ∗

2(ψ1 − ψ3)]) ,
(13.6)

which satisfies the common continuity equation

∂

∂t
ρ + ∇ · j = 0, (13.7)

where ρ = ψ†ψ is the probability density associated with state ψ. From
Eqs. (13.3) and (13.4), it can be seen that the associated local current density
satisfies j0 = 0 for the flat band plane-wave, and

jτ = vg(cos θ, sin θ) = τvg
k

|k| , (13.8)

for the dispersive band plane-wave. In terms of the Berry phase associated with
the band structure, one obtains from Eqs. (13.3) and (13.4) the corresponding
Berry connections

A τ
k = 〈k, τ |i∇k |k, τ〉 = 0,

A 0
k = 〈k, 0|i∇k |k, 0〉 = −2A τ

k = 0

for all three bands. The Berry phase is thus given by

Φτ,0
B =

∮

C τ,0
k d

dk · A τ,0
k = 0, (13.9)

for any closed path C τ,0
kd

encircling the degeneracy point kd of the momentum
space defined in each band. It should be noted that the vanishing or 2π quantized
Berry phase is consistent with the fundamental properties of spin-1 particles.

A remarkable phenomenon for pseudospin-1 Dirac cone systems, which is not
usually seen in conventional Dirac cone systems such as graphene and topologi-
cal insulators, is super-Klein tunneling [23]. Specifically, following the standard
treatment of Klein tunning for graphene systems [55], one can consider the basic
problem of wave scattering from a rectangular scalar (electrostatic) potential
barrier defined as V (x, y) = V0Θ(x)Θ(D − x) with barrier width D and height
V0. The transmission probability based on the effective Hamiltonian Eq. (13.1)
for incident energy E 	= 0, V0 is given by

T =
(1 − γ2)(1 − γ′2)

(1 − γ2)(1 − γ′2) + 1
4 (γ + γ′)2 sin2 (qxD)

, (13.10)

where γ = τ sin θ, γ′ = τ ′ sin θ′ with τ = sgn(E), τ ′ = sgn(E − V0),
θ = tan−1 (ky/kx) is the incident angle, and θ′ = arctan (ky/qx) with qx =√

(E − V0)2 − k2
y. A striking feature of Eq. (13.10) is that, when the incident

wave energy is one half of the potential barrier height, i.e., E = V0/2, one has
τ = −τ ′, θ = θ′ and, consequently, perfect transmission with T ≡ 1 for any
incident angle θ - hence the term “super-Klein tunneling.”
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Pseudospin-1 Systems as a New Frontier ... 5

13.3 Transport Properties of Pseudospin-1 Systems

A recent work [52] addressed the following question: what types of transport
properties can arise form pseudospin-1 systems whose band structure is charac-
terized by coexistence of a pair of Dirac cones and a flat band? To address this
question in the simplest possible setting while retaining the essential physics, bal-
listic wave scattering from a circularly symmetric potential barrier was studied.
For conventional Dirac cone systems with pseudospin or spin-1/2 quasiparticles,
there has been extensive work on scattering [56–58] with phenomena such as
caustics [59], Mie scattering resonance [60], birefringent lens [61], cloaking [62],
spin-orbit interaction induced isotropic transport and skew scattering [63,64],
and electron whispering gallery modes [65]. However, there had been no cor-
responding studies for pseudospin-1 Dirac cone systems prior to the work in
Ref. [52].

More specifically, scattering was studied [52] of pseudospin-1 particle from
a circularly symmetric scalar potential barrier of height V0 defined by V (r) =
V0Θ(R−r), where R is the scatterer radius and Θ denotes the Heaviside function.
To characterize the scattering dynamics quantitatively, the scattering efficiency
can be used, which is defined as the ratio of the scattering to the geometric cross
sections [60]:

Q = σ/(2R), (13.11)

where the scattering cross section σ can be calculated through the far field radial
reflected current [52].

There were three main results [52]: revival resonant scattering, super-Klein
tunneling induced perfect caustics, and universal low-energy isotropic transport
without broken symmetries for massless quasiparticles. First, for small scatterer
size, the effective three-component spinor wave exhibits revival resonant scat-
tering as the incident wave energy is varied continuously - a phenomenon that
has not been reported in any known wave systems. Strikingly, the underlying
revival resonant modes show a peculiar type of boundary trapping profile in
their intensity distribution. While the profile resembles that of a whispering
gallery mode, the underlying mechanism is quite different: these modes occur
in the wave dominant regime through the formation of fusiform vortices around
the boundary in the corresponding local current patterns, rather than being sup-
ported by the gallery type of orbits through total internal reflections. Second,
for larger scatterer size where the scattering dynamics are semiclassical, a per-
fect caustic phenomenon arises when the incident wave energy is about half of
the barrier height, as a result of the super-Klein tunneling effect. A consequence
is that the scatterer behaves as a lossless Veselago lens with effective negative
refractive index resulting from the Dirac cone band structure. Compared with
conventional Dirac cone systems for pseudospin-1/2 particles, the new caustics
possess remarkable features such as significantly enhanced focusing, vanishing
of the second and higher order caustics, and a well-defined static cusp. Third,
in the far scattering field, an isotropic behavior arises at low energies. Consid-
ering that there is no broken symmetry so the quasiparticles remain massless,
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6 Y.-C. Lai

the phenomenon is quite surprising as conventional wisdom would suggest that
the scattering be anisotropic. An analysis of the characteristic ratio of the trans-
port to the elastic time as a function of the scatterer size revealed that the
phenomenon of scattering isotropy can be attributed to vanishing of the Berry
phase for massless pseudospin-1 particles that results in constructive interference
between the time-reversed backscattering paths. Because of the isotropic struc-
ture, the emergence of a Fano-type resonance structure in the function of the
ratio versus the scatterer size can be exploited to realize effective switch of wave
propagation from a forward dominant state to a backward dominant one, and
vice versa. In Ref. [52], an analytic theory with physical reasoning was developed
to understand the three novel phenomena.

It is possible to conduct experimental test of the phenomena. For exam-
ple, in a recent work [23], it was demonstrated for a class of two-dimensional
dielectric photonic crystals with Dirac cones induced accidentally [19–22] that
the Maxwell’s equations can lead to an effective Hamiltonian description shar-
ing the same mathematical structure as that of massless pseudospin-1 particles.
Especially, the photonic analogy of the gate potential in the corresponding elec-
tronic system can be realized by manipulating the scaling properties of Maxwell’s
equations. Recent experimental realizations of photonic Lieb lattices consisting
of evanescently coupled optical waveguides implemented through the femtosec-
ond laser-writing technique [24–27] make them prototypical for studying the
physics of pseudospin-1 Dirac systems. With a particular design of the refrac-
tive index profile across the lattice to realize the scattering configuration, the
phenomena can be experimentally tested. Loading ultracold atoms into an opti-
cal Lieb lattice fabricated by interfering counter-propagating laser beams [28]
provides another versatile platform to test the phenomena, where appropriate
holographic masks can be used to implement the desired scattering potential
barrier [32,66]. In electronic systems, the historically studied but only recently
realized 2D magnetoplasmon system [67] is described by three-component lin-
ear equations with the same mathematical structure of massless pseudospin-1
particles, which can serve as a 2D electron gas system to test the phenomena.

From an applied perspective, the phenomenon of revival resonant scattering
can be a base for articulating a new class of microcavity lasers based on the
principles of relativistic quantum mechanics. It may also lead to new discoveries
in condensed matter physics through exploiting the phenomenon in electronic
systems. The phenomenon of perfect caustics can have potential applications in
optical imaging defying the diffraction limit as well as in optical cloaking.

13.4 Superscattering of Pseudospin-1 Wave in Photonic
Lattice

Another phenomenon is superscattering of pseudospin-1 wave from weak scat-
terers in the subwavelength regime where the scatterer size is much smaller than
wavelength [53]. The phenomenon manifests itself as unusually strong scattering
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Pseudospin-1 Systems as a New Frontier ... 7

characterized by extraordinarily large values of the cross section even for arbi-
trarily weak scatterer strength. The physical origin of superscattering is revival
resonances [53], for which the conventional Born theory breaks down. The phe-
nomenon can be experimentally tested using synthetic photonic systems.

In wave scattering, a conventional and well accepted notion is that weak
scatterers lead to weak scattering. This can be understood by resorting to the
Born approximation. In particular, consider a simple 2D setting where particles
are scattered from a circular potential of height V0 and radius R. In the low
energy (long wavelength) regime kR < 1 (with k being the wavevector), the
Born approximation holds for weak potential: (m/�

2)|V0|R2 
 1. Likewise, in
the high energy (short wavelength) regime characterized by kR > 1, the Born
approximation still holds in the weak scattering regime: (m/�

2)|V0|R2 
 (kR)2.
In general, whether scattering is weak or strong can be quantified by the scatter-
ing cross section. For scalar waves governed by the Schrödinger equation, in the
Born regime the scattering cross section can be expressed as polynomial func-
tions of the effective potential strength and size [68]. For spinor waves described
by the Dirac equation (e.g., graphene systems), the 2D transport cross section
is given by [58] Σtr/R � (π2/4)(V0R)2(kR) (under �vF = 1). In light scatter-
ing from spherically dielectric, “optically soft” scatterers with relative refractive
index n near unity, i.e., kR|n − 1| 
 1, the Born approximation manifests itself
as an exact analog of the Rayleigh-Gans approximation [69], which predicts that
the scattering cross section behaves as Σ/(πR2) ∼ |n − 1|2(kR)4 in the small
scatterer size limit kR 
 1. In wave scattering, the conventional wisdom is then
that a weak scatterer leads to a small cross section and, consequently, to weak
scattering, and this holds regardless of nature of the scattering particle/wave,
i.e., vector, scalar or spinor.

Superscattering of pseudospin-1 wave defies exactly the conventional wis-
dom [53]. The striking and counterintuitive phenomenon is that extraordinar-
ily strong scattering can emerge from arbitrarily weak scatterers at sufficiently
low energies (i.e., in the deep subwavelength regime). Accompanying this phe-
nomenon is a novel type of resonances that can persist at low energies for weak
scatterers. An analytic understanding of the resonance was obtained [53] and the
resulting cross section was derived, with excellent agreement with results from
direct numerical simulations.

13.5 Non-equilibrium Transport in the Pseudospin-1
Dirac-Weyl System

Quantum transport beyond the linear response and equilibrium regime is of
great practical importance, especially in device research and development.
There have been studies of nonlinear and non-equilibrium transport of relativis-
tic pseudospin-1/2 particles in Dirac and Weyl materials. For example, when
graphene is subject to a constant electric field, the dynamical evolution of the
current after the field is turned on exhibits a remarkable minimal conductivity
behavior [70]. The scaling behavior of nonlinear electric transport in graphene
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8 Y.-C. Lai

due to the dynamical Landau–Zener tunneling or the Schwinger pair creation
mechanism has also been investigated [71,72]. Under a strong electrical field, due
to the Landau–Zener transition, a topological insulator or graphene can exhibit
a quantization breakdown phenomenon in the spin Hall conductivity [73]. In
addition, non-equilibrium electric transport beyond the linear response regime
in 3D Weyl semimetals has been studied [74]. In these works, the quasiparticles
are relativistic pseudospin-1/2 fermions arising from the Dirac or Weyl system
with a conical type of dispersion in their energy momentum spectrum.

Recently, the transport dynamics of pseudospin-1 quasiparticles were stud-
ied [75]. Under the equilibrium condition and in the absence of disorders, the flat
band acts as a perfect “caging” of carriers with zero group velocity and hence
it contributes little to the conductivity [43,76,77]. However, the flat band can
have a significant effect on the non-equilibrium transport dynamics. Through
numerical and analytic calculation of the current evolution for both weak and
strong electric fields, it was found [75] that the general phenomenon can arise
of current enhancement as compared with that associated with non-equilibrium
transport of pseudospin-1/2 particles. In particular, for a weak field, the inter-
band current is twice as large as that for pseudospin-1/2 system due to the
interference between particles from the flat band and from the negative band,
the scaling behavior of which agrees with that determined by the Kubo formula.
For a strong field, the intraband current is

√
2 times larger than that in the

pseudospin-1/2 system, as a result of the additional contribution from the par-
ticles residing in the flat band. In this case, the physical origin of the scaling
behavior of the current-field relation can be attributed to Landau–Zener tunnel-
ing. These findings suggested that, in general, the conductivity of pseudospin-1
materials can be higher than that of pseudospin-1/2 materials in the nonequi-
librium transport regime. Indeed, the interplay between the flat band and the
Dirac cones can lead to interesting physics that has just begun to be understood
and exploited.

13.6 Discussion: Relativistic Quantum Chaos in
Pseudospin-1 Systems

The field of quantum chaos aims to uncover the quantum manifestations or
fingerprints of classical chaotic behaviors in the semiclassical limit [78,79]. A
vast majority of the works were for nonrelativistic quantum systems described
by the Schrödinger equation. Recent years have witnessed a rapid development
of Dirac materials [80,81] such as graphene and topological insulators, which
are described by the Dirac equation in relativistic quantum mechanics. A new
field has thus emerged: relativistic quantum chaos [82,83]. To study the unique
physics of classical chaos in relativistic quantum systems is fundamental with
potentially significant applications.

Existing works on relativistic quantum chaos [82,83] focused on pseudospin-
1/2 systems such as graphene, which are described by the conventional Dirac
equation for two-component spinors. Pseudospin-1 systems, due to their unusual
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Pseudospin-1 Systems as a New Frontier ... 9

physics, can present a new platform to study relativistic quantum chaos. A tech-
nical difficulty that must be overcome is to solve the generalized Dirac-Weyl
equation for three-component spinors in arbitrary geometrical domains that gen-
erate classical chaos. For example, while scattering of pseudospin-1 particles from
a circular potential can be analytically solved [52], at the present there exists no
method to solve the scattering problem for a chaotic geometry, e.g., a stadium
shaped potential. At the time of writing, author’s group is developing a multiple
multipole technique to solve the generalized Dirac-Weyl equation for pseudospin-
1 system with any given piecewise homogeneous potential, where the multipoles
(or “fictitious” sources) are defined in terms of the analytic three-component
spinor cylindrical wave basis of eigen-solutions in each sub-region separated by
the potential boundaries. In addition, a wave-function matching based scatter-
ing matrix approach is being developed to deal with potential of the eccentric
annular shape. Both methods are semi-analytic, while the former is more power-
ful for near-field calculations and is in principle applicable to arbitrary shape of
the scattering potential. Preliminary studies have revealed that the methods are
highly efficient and accurate, enabling unexpected phenomena to be uncovered
such as the existence of an energy range in which pseudospin-1 chaotic cavities
defy well known phenomena in quantum chaos such as Q-spoiling [84–86]. It
is likely that uncovering, understanding, and exploiting the interplay between
pseudospin-1 physics and classical chaos can represent a new frontier in rela-
tivistic quantum chaos.
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32. B. Dóra, J. Kailasvuori, R. Moessner, Lattice generalization of the Dirac equation
to general spin and the role of the flat band. Phys. Rev. B 84, 195422 (2011)

33. A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, G. Montambaux, From dia- to
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76. W. Häusler, Flat-band conductivity properties at long-range Coulomb interactions.

Phys. Rev. B 91, 041102 (2015)
77. T. Louvet, P. Delplace, A.A. Fedorenko, D. Carpentier, On the origin of minimal

conductivity at a band crossing. Phys. Rev. B 92, 155116 (2015)
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