
J. theor. Biol. (2001) 213, 53}72
doi:10.1006/jtbi.2001.2404, available online at http://www.idealibrary.com on
Dynamical Mechanism for Coexistence of Dispersing Species

MARY ANN HARRISON*-, YING-CHENG LAI? AND ROBERT D. HOLTA

*Department of Physics and Astronomy, ¹he ;niversity of Kansas, ¸awrence, KS 66045, ;.S.A.,
?Departments of Mathematics, Electrical Engineering, and Physics, Center for Systems Science and
Engineering Research, Arizona State;niversity, ¹empe, AZ 85287,;.S.A. and ADepartment of Zoology,

;niversity of Florida, Gainesville, F¸ 32611, ;.S.A.

(Received on 9 November 2000, Accepted in revised form on 19 July 2001)

Dispersal of organisms may play an essential role in the coexistence of species. Recent studies
of the evolution of dispersal in temporally varying environments suggest that clones di!ering
in dispersal rates can coexist inde"nitely. In this work, we explore the mechanism permitting
such coexistence for a model of dispersal in a patchy environment, where temporal heterogen-
eity arises from endogenous chaotic dynamics. We show that coexistence arises from an
extreme type of intermittent behavior, namely the phenomenon known as on}o! intermit-
tency. In e!ect, coexistence arises because of an alternation between synchronized and
de-synchronized dynamical behaviors. Our analysis of the dynamical mechanism for on}o!
intermittency lends strong credence to the proposition that chaotic synchronism may be
a general feature of species coexistence, where competing species di!er only in dispersal rate.
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1. Introduction

Understanding the factors that promote or
prevent the coexistence of competing species is
a topic which has long been central to commun-
ity ecology (Hutchinson, 1978; Roughgarden
& Diamond, 1986; Tokeshi, 1999). Traditional
approaches to coexistence emphasize niche par-
titioning, de"ned broadly to include di!erenti-
ation in response to predators and parasites as
well as di!erentiation in resource use (Holt et al.,
1994). Such partitioning permits di!erent species
to experience di!erent limiting factors at the spa-
tial scale of local communities. Recent years have
seen a growing appreciation of the importance of
spatial heterogeneity and dispersal in explaining
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species coexistence (Hanski, 1999). The coexist-
ence of species in local communities may thus
re#ect how communities are coupled in space.
One familiar mechanism by which dispersal
facilitates coexistence at the landscape scale is
a trade-o! among species between colonizing and
competitive abilities (Lehman & Tilman, 1997).
For instance, consider a guild of competitors that
utilizes a single limiting resource. In a closed,
local habitat patch, the species which can persist
at the lowest resource level will eventually dis-
place species with higher resource requirements
(Grover, 1997). However, if habitat patches are
open, and if there are spatially asynchronous
extinctions that deplete patches, rapidly dispers-
ing, yet inferior competitors may be able to
coexist regionally with superior competitors. In
e!ect, rapid dispersal can provide temporary
windows of opportunity during which inferior
( 2001 Academic Press
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competitors can colonize empty patches. There,
they reproduce su$ciently fast to colonize
yet other patches before being excluded by
species that are more slowly dispersing, but
competitively superior.

Studies of the evolution of dispersal have
revealed another mechanism by which dispersal
can in#uence species coexistence. Factors favor-
ing the evolution of dispersal include competition
among kind and inbreeding e!ects (Hamilton&
May, 1997; Comins, 1982; Taylor, 1988; Wiener
& Feldman, 1991), the interplay of within-popu-
lation and between-population selection (Kuno,
1981; Olivieri et al., 1995), and spatiotemporal
variation in "tness arising from environmental
variability (Gadgil, 1971; Ro!, 1975; Metz et al.,
1983; Levin et al., 1984; Cohen & Levin, 1991).
Without temporal variation, spatial heterogen-
eity alone does not tend to favor the evolution of
dispersal (Hastings, 1983; Holt, 1985). Recently, it
has been recognized that even if the external
environment is constant, nonlinear population
dynamics leading to cycles or chaotic dynamics
can produce the appropriate spatiotemporal
variation in "tness that favors the evolution of
dispersal (Holt & McPeek, 1996; Doebeli & Rux-
ton, 1997; Parvinen, 1999). In these theoretical
studies, it is assumed that clones compete in
patches and disperse among patches. Within
patches, all clones are equivalent, but clones may
di!er in their rates of movement among patches.
An intriguing pattern which has emerged in these
studies is that given unstable dynamics, there is
sustained coexistence of two or more clones dif-
fering in dispersal rates. This coexistence is per-
manent (Law, 1999) in that each clonal species
can increase when it is rare and the other species
is in its single-species dynamical attractor.

Since these models assume that clones behave
identically within patches (so that density de-
pendence is experienced uniformly within and
among clones), there is by de"nition no tradeo!
between colonizing and competitive abilities.
Holt & McPeek (1996) conjectured that coexist-
ence arises because the system tends to shift be-
tween distinct dynamical behaviors concordant
with temporal variation in average dispersal
rates. For instance, at high dispersal rates, di!er-
ent habitats tend to become synchronized in their
dynamics. This favors low dispersal, if there is
spatial variance in "tness (Hastings, 1983). How-
ever, as the system evolves towards lower disper-
sal rates, the dynamics of di!erent patches
become de-synchronized, and a selective advant-
age of dispersal then emerges.

In this paper, we attempt to articulate this
conjecture in more detail, and in particular to
examine the dynamical mechanism responsible
for the coexistence of competing dispersing
clones. Our analysis and numerical experiments
suggest a mechanism whereby the temporal syn-
chronization and de-synchronization between
populations in di!erent habitats occurs in an
intermittent fashion.

We consider a simple system consisting of two
patches and two clones, with N

t1
and N

t2
being

the total populations is patches 1 and 2, respec-
tively. Then, the relative populations of the two
patches, de"ned to be the ratios between N

t1
/K

1
and N

t2
/K

2
, tend to be approximately equal in

long epochs of time (known as laminar phases).
The synchronization is, however, interrupted by
time periods in which the relative populations
deviate rapidly from each other in sudden bursts.
The deviation occurs randomly in time and typi-
cally lasts for a short time period (compared with
the average time duration of the laminar phase),
after which temporal synchronization between
the relative population is restored. Thus, if we
de"ne the following quantity to characterize the
quality of synchronization:

Q(t)"
N

t1
(t)

K
1

!

N
t2

(t)
K

2

, (1)

then Q(t) exhibits on}o! intermittency, a dynam-
ical behavior that has received extensive recent
attention (Spiegel, 1980; Fujisaka & Yamada,
1985, 1986; Fujisaka et al., 1986; Yu et al., 1991;
Platt et al., 1993; Heagy et al., 1994; Lai &
Grebogi, 1995; Lai, 1996a, b; Yalcinkaya & Lai,
1996; Venkataramani et al., 1995, 1996; Mar-
thaler et al., 2001). In ecology, Ferriere & Cazelles
(1999) recently observed that on}o! intermit-
tency describes the dynamics of many natural
populations, where variable periods of time at
low rarity alternate with sudden outbreaks. They
show that such intermittency can arise from dif-
ferent models of competition, where coexistence



FIG. 1. Schematic diagram of the Holt}McPeek model
consisting of two di!erent clones which can exist in two
di!erent patches.
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arises because of a local storage e!ect (Chesson,
1986). However, we demonstrate here that on}o!
intermittency characterizes a competition model
where coexistence arises from dispersal among
patches. Our analysis of the intermittent mecha-
nism suggests that the coexistence is unlikely to
be a transient behavior. An implication is that
intermittently chaotic synchronism may repres-
ent a contributing dynamical mechanism for the
coexistence of competing species in spatially ex-
tended ecological systems.

This paper is organized as follows. In Sec-
tion 2, we describe the Holt}McPeek model. In
section 3, we review the theory of synchronous
chaos and on}o! intermittency. In Section 4, we
present a detailed numerical analysis of the Holt}
McPeek model, demonstrating the prevalence of
synchronous chaos with on}o! intermittency.
A discussion is presented in Section 5. In Appen-
dix A, we construct a simpli"ed version of the
Holt}McPeek model, which allows for partial
physical analysis, to better understand the dy-
namical origin of chaotic synchronization and
on}o! intermittency in ecological systems.

2. The Holt}McPeek Model

Holt and McPeek consider a population
model of two clones that could occupy two di!er-
ent local patches. The model is a generalization of
the well-known Ricker model that involves two
patches (May & Oster, 1976). The density of
clone i, in patch j at generation t is N

ij
(t). The

local population growth rate, or the realized "t-
ness, of clone i in patch j is given by

=
j
(t)"exp Crj A1!

N
1j

(t)#N
2j

(t)
K

j
BD , (2)

where r
j

is the intrinsic rate of increase at low-
population size in patch j and K

j
the carrying

capacity of patch j. The model assumes that the
growth rate is identical for each clone within each
patch (r

1j
"r

2j
"r

j
), and that the carrying capa-

city K
j

depends on the total population in the
patch.

To model dispersal, Holt and McPeek assume
that of the total population of clone i, a fraction e

i
migrate at each generation from their natal
patch, while the remainder (1!e

i
) remain in this
patch. The quantity e
i
is then the dispersal rate

of clone i. We assume that this quantity di!ers
between clones, though they are identical in all
other respects. The migratory fraction of the
population experiences a mortality rate, or cost
of dispersal, of (1!m), leaving only a fraction
m of immigrants to compete on equal terms with
the resident population. The resulting model, il-
lustrated schematically in Fig. 1, assumes that
reproduction and density dependence precedes
dispersal. The census immediately follows disper-
sal, costs of dispersal for a clone are experienced
entirely by those individuals who actually dis-
perse, and population densities are su$ciently
high so that they can be represented by continu-
ous variables rather than discrete integers. The
complete model is then as follows:

N
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(t#1)"(1!e
1
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1
[N
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(t)]N
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(t)

#me
1
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2
[N
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N
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(t#1)"(1!e
1
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2
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N
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2
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2
=

1
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(t). (3)



FIG. 2. Time series P
1
(t) for Holt}McPeek model with

r"3.0, K
1
"100, K

2
"50, e

1
"0.5, e

2
"0.01, and m"1.
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Holt and McPeek study this model at the ex-
treme ends of dispersal: one clone with a low
dispersal rate (e

1
"0.01) competing with another

clone with a high dispersal rate (e
2
"0.5). At low

values of r"r
1
"r

2
(the intrinsic growth rate),

the system experiences stable or cyclic dynamics.
As a consequence, dispersal is disfavored, with
the high-dispersal clone asymptotically decaying
to a zero population size. This is consistent with
previous "ndings that spatial heterogeneity alone
is insu$cient to promote the coexistence of spe-
cies di!ering only in dispersal (Hastings, 1983;
Holt, 1985; Liberman & Feldman, 1989). The
reason is that if habitats vary in their carrying
capacities, initially, the populations in the high-K
patch are larger than those in the low-K patch.
Now, consider the dispersing species. For a "xed
dispersing rate, there is then an asymmetric #ow
of individuals from high-K to low-K patches,
depressing "tness in the low-K patch, and
increasing "tness in the high-K patch. Due to
the low "tness, certain individuals will die o! in
the low-K patch, leading to a constant relative
abundance of the population in the high-K patch
and hence, a constant #ow of the population of
the low-K patch. If there is no temporal variation
in the "tness, this #ow will continue until the
dispersing populations die o! completely. Thus,
in spatially heterogenous but temporally homo-
geneous environments, dispersal is disfavored.
Temporal heterogeneity is thus required for the
coexistence of species of dramatically di!erent
dispersal rates. At higher values of r, the model
experiences a transition to chaos, which then
provides the temporal heterogeneity required for
coexistence.

As an example, using the parameter values:
K

1
"100, K

2
"50, e

1
"0.5, e

2
"0.01, m"1,

and r
1
"r

2
"r, Holt and McPeek "nd that low

r values of 1 and 2.5 produce stable and cyclic
dynamics, respectively. Given population stabil-
ity, clones with relatively lower dispersal rates
(i.e. e

2
"0)01) displace clones with higher disper-

sal rates (i.e. e
1
"0.5). With the high-dispersal

clone now extinct, the average dispersal rate of
the population is low. In other words, dispersal is
disfavored. However, for the higher r value of 3.0,
a chaotic behavior arises: instead of dying o!, the
high dispersal clone now persists, and experien-
ces episodic increases in population, as shown in
Fig. 2, where the time trace of the frequency of the
high dispersal clone, de"ned to be

p
1
(t)"

N
11

(t)#N
12

(t)
N

11
(t)#N

12
(t)#N

21
(t)#N

22
(t)

is plotted. Holt and McPeek conclude, based on
this observation, that chaos favors dispersal. We
also note that the increase of p

1
(t) is sudden and

fast but the decline (relaxation) is relatively slow,
which, as we will argue in Section 4, can be
explained based on on}o! intermittency.

How likely is the presence of coexistence due to
this mechanism in the Holt}McPeek model? To
address this question, we numerically study the
parameter space and examine whether the para-
meter regions for chaos are appreciable. There
are three parameters in the Holt}McPeek model:
r, e

1
, and e

2
. Thus, we "x a few values of r and

explore the two-dimensional parameter plane
formed by e

1
and e

2
. The results are shown in

Fig. 3(a}c), which are produced by choosing
a grid of 500]500 parameter pairs in the region
(0)e

1
)0.5, 0)e

2
)0.5) and computing, for

each parameter pair, the time-average value of
the frequency of the high-dispersal clone p

1
(t)

for 104 iterations of eqn (3), after discarding an
initial transient of 103 iterations. The value of p

1
is represented by the color of the (e

1
, e

2
) point:

dark points correspond to p
1
"0 or p

1
"1

(extinction of one clone), while gray points



FIG. 3. Average frequency of the high-dispersal clone (p
1
)

calculated over 104 iterates after discarding an initial 103 for
(a) r"2.0, (b) r"3.0, and (c) r"4.0.
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represent p
1

near 0.5 (coexistence), with the light-
ness changing continuously for intermediate
values, as indicated at the top of the "gure. When
r is low, as in Fig. 3(a), where r"2.0, we see that
one of the two clones becomes extinct for all
values of (e

1
, e

2
) except when e

1
+e

2
, on the

diagonal of the "gure. However, as r is increased,
as in Fig. 3(b) and (c), large parameter ranges
exist where there is coexistence of the two species.
Furthermore, we "nd that in this same region, the
model is chaotic in that the system has at least
one positive Lyapunov exponent. Thus, the phe-
nomenon (that chaos favors dispersal) is typical
in the sense that is can occur in large regions in
the parameter space.

Based on their numerical observations, Holt
and McPeek argue that there are two qualitat-
ively distinct states in the chaotic regime:

1. The populations in the two patches tend to
be synchronized when the frequency of the high-
dispersal clone (p

1
) is large because there is

a strong coupling between the two patches. In
this nearly synchronized state, dispersal becomes
disadvantageous, leading to a decrease in p

1
and

hence, over time, the patch dynamics become
progressively decoupled.

2. As a consequence of the reduced coupling
strength, the approximate synchronization state
can no longer be maintained, so the patch popu-
lations become desynchronized and dispersal
becomes advantageous again, thereby pushing
the system towards synchronization.

This scenario: synchronizationPde-synchroni-
zationPsynchronizationP2 , with random
time intervals between stages of de-synchroniza-
tion, is a characteristic dynamical pattern of
on}o! intermittency.

3. Theory of Synchronous Chaos
and On}o4 Intermittency

To gain insight into the intermittent dynamics
in the ecological model, we "rst review, in a gen-
eral setting, how synchronous chaos and on}o!
intermittency can arise in linearly coupled maps.
We caution that ecological models, such as
eqn (3), are usually represented by nonlinearly
coupled, non-identical chaotic maps, which in



FIG. 4. Schematic illustration of the relation between the
variables (x, y) and (u, v), where v"0 denotes the synchroni-
zation manifold.
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general cannot be reduced to linearly coupled
maps. The study of linearly coupled maps, none-
theless, serves the purposes of introducing nota-
tions and understanding the basic dynamics of
synchronization that can occur in more complic-
ated ecological models. Based on the study of
linearly coupled maps, we will attempt to provide
a qualitative theory on how intermittent synchro-
nization can occur and sustain in a model of
dispersal described by nonlinearly coupled, non-
identical chaotic maps.

3.1. LINEARLY COUPLED MAPS

We consider the following general system of
two-coupled chaotic maps:

x
n`1

"f
1
(x

n
)#C ) (y

n
!x

n
),

y
n`1

"f
2
(y

n
)#C ) (x

n
!y

n
), (4)

where x and y are the N-dimensional vectors
(x3RN and y3RN ), f

1
and f

2
are the nonlinear

maps that can generate chaos, and C is the N]N
coupling matrix. We stress that realistic ecologi-
cal models, such as the Holt}McPeek model
equation (3), are in general more complicated
than eqn (4). Nonetheless, the phenomenon of
chaotic synchronization can be conveniently
addressed by eqn (4).

If the maps are identical, i.e. f
1
"f

2
,f, then

the synchronization state, de"ned by x
n
"y

n
, is

a solution of eqn (4). In mathematical terms, we
say the solution x

n
"y

n
lives on the N-dimen-

sional synchronization manifold, denoted by M.
M is an invariant manifold in the full 2N-dimen-
sional phase space because a trajectory starting
with an initial condition on M, i.e. x

0
"y

0
, lies in

M forever: x
n
"y

n
for all n*1. Since M is only

a subspace in the full phase space, whether syn-
chronization can be achieved for randomly
chosen initial conditions depends on the stability
of M with respect to perturbations transverse
to M. In particular, if M is transversely stable,
a trajectory in the vicinity of M will approach
M exponentially, leading to physically observ-
able synchronization. However, if M is trans-
versely unstable, a perturbation in the transverse
subspace will be ampli"ed exponentially and
a trajectory cannot stay near M inde"nitely;
therefore, though M is invariant, the synchroni-
zation state is not physically observable.

To quantify the stability of the synchronization
manifold M, we examine the evolution of an
in"nitesimal vector transverse to M. For con-
venience, we make use of the following change of
variables:

u"
x#y

2
, v"

x!y
2

(5)

or

x"u#v, y"u!v. (6)

Clearly, u and v are the dynamical variables in
and transverse to M, respectively, as shown sche-
matically in Fig. 4. To derive maps for the new
variables u and v, we substitute eqn (4) into
eqn (5) to obtain

u
n`1

"1
2

(x
n`1

#y
n`1

)"1
2

[f (x
n
)#f (y

n
)]

"1
2

[f (u
n
#v

n
)#f (u

n
!v

n
)],

v
n`1

"1
2

(x
n`1

!y
n`1

)"1
2

[f (u
n
#v

n
)

!f (u
n
!v

n
)!4C ) v

n
]. (7)

Since we are interested in the dynamics near
the synchronization manifold in which v

n
is
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in"nitesimally small: D v
n
D+0 ( Dv

n
D is the length of

the vector v
n
), we can approximate the functions

f (u
n
$v

n
) to "rst order in v

n
by utilizing the

Taylor expansions. That is, in the Taylor series of
f (u

n
$v

n
), we neglect terms containing deriva-

tives of the vector function f of orders higher than
one. We obtain

f (u
n
$v

n
)+f (u

n
)$

Lf
Lw Kv

n
"0

) v
n
, (8)

where Lf/Lw Dv
n
"0 stands for the "rst-order deriv-

atives of f with respect to its argument w
n
,u

n
$v

n
, evaluated at v

n
"0. Note that, since f is

a vector function, the "rst-order derivative of f is
in fact a matrix, the Jacobian matrix. In terms of
the vector components: w"Mw

1
,w

2
,2,w

N
N, and

f (w)"M f
1
(w), f

2
(w) ,2, f

N
(w)N, the Jacobian

matrix is given by

J,
Lf
Lw

"A
Lf

1
Lu

1

Lf
1

Lu
2

2

Lf
1

Lu
N

Lf
2

Lu
1

Lf
2

Lu
2

2

Lf
2

Lu
N

2 2 2 2

Lf
N

Lu
1

Lf
N

Lu
2

2

Lf
N

Lu
N

B . (9)

Since the Jacobian matrix is evaluated at v
n
"0,

it depends on u
n
only. We write J (u

n
). By substi-

tuting eqn (8) into eqn (7), we obtain

u
n`1

+f (u
n
),

v
n`1

+[J (u
n
)!2C] ) v

n
. (10)

Equation (10) thus represents a unidirectionally
coupled system between the dynamical variables
u and v in the sense that the v-dynamics does not
in#uence that of u. Moreover, the u-dynamics is
completely determined by the original map f. The
spectrum of N Lyapunov exponents of the
u-dynamics is then determined by

jj" lim
L?=

1
¸

L~1
+
n/0

ln
Du

n`1
D

Du
n
D
" lim

L?=

1
¸

L~1
+
n/0

D(J (u
n
)) ) uj

n
D, j"1,2, N, (11)
where [u1
n
,2, uN

n
N is a set of orthonormal unit

vectors at the trajectory point u
n

in the u space.
Since f (u) is chaotic, some of the Lyapunov
exponents are positive. Equation (10) can also be
regarded as a driving-driven system, where the
chaotic variable u, generated by the chaotic dy-
namics in the synchronization manifold M,
drives the variable in the transverse subspace T.
The transverse stability of the chaotic trajectory
in M is then determined by the matrix:
[J (u)!2C]. Also, note that the map of v is linear
with a "xed point v"0 that corresponds to the
synchronization state between the original dy-
namical variables x and y. Thus, if there is no
coupling, i.e. C"0, the Lyapunov spectrum of
v-dynamics is the same as that of the u-dynamics,
so the "xed point v"0 is unstable, which means
that the synchronization manifold is transversely
unstable and thus cannot be realized physically.
As the coupling is increased, the matrix
[J (u)!2C] becomes less unstable until when the
coupling exceeds a critical value, after which, all
Lyapunov exponents generated by the matrix
(also called the transverse ¸yapunov exponents)
become negative so that the synchronization
state v"0 becomes stable. In particular, the
transverse Lyapunov spectrum can be de"ned as
follows:

KT
j
" lim

L?=

1
¸

L~1
+
n/0

ln
Dv

n`1
D

Dv
n
D

" lim
L?=

1
¸

L~1
+
n/0

D(J (u
n
)!2C) ) vj

n
D, (12)

where Mv1
n
,2, vN

n
N is a set of orthonormal unit

vectors in the v space that evolve with time.
Arrange the N transverse Lyapunov exponents in
the following order: KT

1
*KT

2
*2*KT

N
. When

there is no coupling, the transverse Lyapunov
spectrum coincides with that of the chaotic map f.
Synchronization can be physically realized when
the largest transverse Lyapunov exponent be-
comes negative. We remark that synchronization
of more than two-coupled chaotic maps (or con-
tinuous-time #ows) can be formulated in a similar
way (Pecora & Carroll, 1998).

What if the synchronization manifold is weakly
unstable in the transverse space, i.e. when KT

1
is slightly positive? Since KT

1
is an asymptotic
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quantity, i.e. it is de"ned in the in"nite time limit,
the above question can be addressed by analysing
the behavior of the transverse Lyapunov
exponent evaluated at "nite times. In particular,
suppose we distribute a large number of initial
conditions in M, compute KT

1
(t) for each traject-

ory at time t, and then construct the histogram of
these "nite time exponents. Typically, the histo-
gram is centered at KT

1
with a width that is

proportional to 1/Jt . Thus, at any "nite time, the
distribution of KT

1
(t) will have a tail on the nega-

tive side, indicating that some trajectories actual-
ly experience attraction towards M. By the er-
godicity of chaotic trajectories in M, we see that
a single trajectory, while in general repelled from
M, will experience episodes of time during which
it is actually attracted towards M. Thus, an ob-
servation is that the trajectory tends to stay near
M which bursts away from it at random times,
signifying on}o! intermittency. At the onset of
on}o! intermittency, i.e. when KT

1
"0, the time

interval between two successive bursts, or the
laminar phase, obeys a power-law probability
distribution with the exponent !3/2 (Heagy
et al., 1994).

The mechanism for chaotic synchronization
and on}o! intermittency can also be understood
by analysing the transverse stabilities of the in"-
nite set of unstable periodic orbits embedded in
the chaotic attractor in M (Nagai & Lai, 1997).
The key observation is that the chaotic attractor
in M has embedded an in"nite number of unsta-
ble periodic orbits within itself, and a transition
from stable synchronization to on}o! intermit-
tency is caused by the change in the transverse
stability of a typical trajectory with respect to the
natural measure on the chaotic attractor in M.
Such a trajectory visits the neighborhoods of the
in"nite number of unstable periodic orbits from
time to time. The periodic orbits embedded in the
chaotic attractor are atypical in the sense that
they form a Lebesgue measure zero set. With
probability one, randomly chosen initial
conditions do not yield trajectories which live on
unstable periodic orbits. Invariant measures
produced by unstable periodic orbits are thus
atypical, and there are an in"nite number of such
atypical invariant measures embedded in a cha-
otic attractor. The natural measure, on the other
hand, is typical in the sense that it is generated by
a trajectory originated from any one of the ran-
domly chosen initial conditions in the basin of
attraction. In this sense, chaos can be considered
as being organzied with respect to the unstable
periodic orbits. In systems that exhibit synchro-
nization, the transverse stability of a typical tra-
jectory in M is thus determined by the transverse
stability of the in"nite number of unstable peri-
odic orbits which the trajectory visits in di!erent
time intervals. Among these periodic orbits, some
are transversely stable and the others are trans-
versely unstable near the bifurcation. If &&more''
periodic orbits are transversely stable (unstable),
the typical trajectory is transversely stable (unsta-
ble). The transition occurs when there are ap-
proximately equal numbers of the transversely
stable and unstable periodic orbits so that on
average, the typical trajectory experiences exactly
equal amount of attraction towards and repul-
sion away from the invariant subspace M. Since
there are an in"nite number of periodic orbits in
the chaotic attractor, the transition must then
involve the change in the transverse stability of
an in"nite number of periodic orbits.

When the two-coupled maps are non-identical,
i.e. f

1
+f

2
, in the (u, v) coordinate, utilizing

Taylor's expansion to the "rst order in eqn (4)
yields
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(13)

where the approximation Dv D;Du D is used. Thus,
we see that the map for u is approximately the
average of f

1
and f

2
and, hence, we expect u to be

chaotic. The key point here is that the synchroni-
zation state (i.e. v"0) is no longer a solution of
eqn (13) and, hence, the synchronization mani-
fold M is not an invariant manifold. As a result,
the notion of transverse Lyapunov spectrum no
longer holds. If the coupling is strong enough,
a trajectory can still approach M and stay in
its vicinity, but this approximate synchroniza-
tion state usually cannot be maintained inde"-
nitely. In fact, the term 1

2
[f

2
(u

n
)!f

1
(u

n
)] in
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the v equation in eqn (13) can be regarded as an
additive random noise term, because u

n
is

chaotic. This additive noise term can destroy
the near synchronization state, leading to a
burst away from it. Thus, we expect on}o!
intermittency to be more prevalent than that in
the identical map case. We remark, however,
that robust synchronization can still occur when
the maps are non-identical, but very large
coupling is required so that no "nite-time
Lyapunov exponent computed using J1 can be
positive. This demands, in terms of unstable
periodic orbits embedded in the chaotic process
u, that no orbit has expanding eigenvalues in
the v subspace.

3.2. NONLINEARLY COUPLED MAPS

We now consider the more general case of
a system of coupled maps with a nonlinear coup-
ling scheme of the form

x
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where the variables are de"ned as in the linearly
coupled case, eqn (4), and g

1
and g

2
are nonlinear

unctions. Equation (14) is more germane to
the Holt}McPeek model [eqn (3)], which can be
seen by making the following correspondence:
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In a qualitative sense, the Holt}McPeek model is
thus contained in eqn (14).

We "rst consider the situation of identical
maps: f

1
"f

2
"f and g

1
"g

2
"g. Using

the same approach as for linearly coupled
maps, we "nd that the stability of the synchroni-
zation manifold M is (in the Mu, vN coordinate
frame)

u
n`1

"(I!C) ) f (u
n
)#C ) g (u

n
),

v
n`1

"[Jf (un)!C ) (Jg (u
n
)#Jf (un

))] ) v
n
, (15)
where I is the identity matrix, Jf (un
) and Jg (un

) are
the Jacobian matrices of the vector functions f
and g, respectively, evaluated at v

n
"0. As in the

linearly coupled-identical-map case, we see that
the u dynamics provide random driving to the
transverse subspace T. In order for there to be
an instability in T, we see that the map
(I!C) ) f (u

n
) must be chaotic, in contrast to the

earlier case in eqn (10) where only f (u) needs to be
chaotic. In this case, v is unstable whenever u is;
therefore, T becomes unstable as M becomes
chaotic. However, if f+g, then the dynamics of
u are governed by f (u

n
) with a small additive term

generated by the coupling. In this situation, the
onset of instability of the transverse subspace will
no longer coincide with the onset of chaos inside
manifold M. Instead, there will be some critical
value of the coupling constant where T becomes
unstable, as in the case of linearly coupled, identi-
cal maps.

For the case where the maps are not identical
but only slightly di!erent: f

1
+f

2
and g

1
+g

2
, we

obtain from eqn (14),
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where Jf
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n
), Jf
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), Jg
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), and Jg
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the Jacobian matrices of the vector functions f
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, and g
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, respectively, evaluated at v
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Regarding the (1
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)]N term as an additive

random noise term due to u
n

being chaotic,
we obtain a similar result as for the linearly
coupled case, i.e. on}o! intermittency can be
common.



FIG. 6. For the parameters in Fig. 2 and after discarding
103 iterates. (a) Q vs. iterate and (b) a histogram of the
distribution of time intervals between Q'Q

min
.
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4. Numerical Results with the
Holt}McPeek Model

4.1. SYNCHRONIZATION AND ON}OFF INTERMITTENCY

Regarding the two patches in the Holt}
McPeek model equation (3) as two coupled sys-
tems, we examine the total populations in both
patches: N

t1
"N

11
#N

21
and N

t2
"N

12
#N

22
.

Figure 5 plots N
t1

vs. N
t2

for a trajectory of 104
points (after discarding an initial transient of 103
iterations). We observe that the trajectory points
tend to lie in the vicinity of the line de"ned by L:
N

t1
/K

1
"N

t2
/K

2
, with occasional deviations

away from it. The line L is thus the synchroniza-
tion manifold of eqn (3) in a general sense, as
there is no direct (one-to-one) synchronization
between the corresponding dynamical variables
in the two patches. Such &&indirect'' synchroniza-
tion is also called generalized synchronization
(Abarbanel et al., 1995). The time trace Q (t)
[eqn (1)] exhibits an intermittent behavior, as
shown in Fig. 6(a). We see that most of the time,
Q remains close to zero, signifying synchroniza-
tion. However, the synchronization state is inter-
spersed with occasional bursts away from it.
Figure 6(a) shows a typical on}o! intermittency.
The laminar-phase distribution of the time series
in Fig. 6(a) appears to exhibit an approximate
power-law scaling with an exponential tail,
FIG. 5. Total population of patch 2 (N
t2
"N

12
#N

22
)

vs. total population of patch 1 (N
t1
"N

11
#N

21
). Para-

meters are set at the same values as in Fig. 3.
as shown in Fig. 6(b). To obtain Fig. 6(b), a
threshold Q

th
"0.01 (arbitrary) is set and time

intervals Dt in which Q (t) falls below Q
th

are accumulated to yield a histogram. We
observe that in the range of approximate power-
law behavior, the slope of the distribution is
about !1.3. Since the system is non-identical,
a transverse Lyapunov exponent cannot be de-
"ned, thus it may not be reasonable to expect
that the slope would be precisely the same as was
found at the onset of on}o! intermittency in
an identical case. [Strictly speaking, the !1.5
algebraic exponent in the distribution of laminar
phases occurs only at the onset of the on}o!
intermittency (Heagy et al., 1994). In parameter
regimes away from the onset, the algebraic be-
havior only occurs at small intervals of Dt with
no universal exponent. The laminar-phase distri-
bution is typically exponential for large values of
Dt. These are in fact observed in our numerical
experiments.]

Of importance to the problem of coexistence is
the parameter m, the fraction of the dispersing
population that can compete with the resident
population [(1!m) is the cost of dispersal]. If
m is too small, or the cost of dispersal is too high,
then generally the dispersing species will be ex-
tinct. In numerical experiments we "nd that, in-
sofar as chaos is present, the minimum values of
m for coexistence can be as low as 0.3. Figure 7(a)
and (b) shows, for m"0.8, the apparent on}o!



FIG. 7. For m"0.8 in the Holt}McPeek model equation
(3): (a) On}o! intermittency in Q (t), quality of synchroniza-
tion; (b) a historgram of the distribution of the laminar
phase. FIG. 8. Time series for the Holt}McPeek model at vari-

ous values of r and e
1
"0.5, e

2
"0.01, K

1
"100, K

2
"50,

and m"1. We observe that the spacing between kicks in p
1

decreases as r is increased.
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intermittent behavior in Q (t) and the distribution
of the corresponding laminar phases, respec-
tively. There is still a range of Dt in which
the distribution appears algebraic, followed by
an exponential tail. The algebraic exponent is
approximately !2.

4.2. COUPLING MECHANISM IN THE

HOLT}MCPEEK MODEL

To better understand how synchronization
and on}o! intermittency occur in coupled
ecological models such as eqn (3), it is necessary
to understand and characterize the coupling
mechanism. For coupled systems such as eqn (4),
coupling is de"ned by the matrix C in a straight-
forward manner. The Holt}McPeek model equa-
tion (3), however, cannot be reduced to the form
of eqn (4). Instead, each term in the model equa-
tions contains nonlinear coupling through the
"tness,=

j
, and the model can be reduced to the

form of eqn (14). From an ecological perspective,
the coupling consists of the movement of organ-
isms between patches, which is a!ected both by
the relative "tness in the patches and the average
dispersal rate of the population. If the instan-
taneous average dispersal rate of the population
is high, then there is a lot of spatial movement
and the e!ective coupling between the patches is
high. However, if the opposite is true and the
average dispersal rate of the population is low,
then the population is more sedentary and the
e!ective coupling between the two patches is
smaller. Since the two species in our model have
greatly disparate dispersal rates, a convenient
way of examining the average dispersal behavior
of the system is to look at the frequency of
the high-dispersal clone, p

1
. Obviously, as p

1
increases, so will the average dispersal rate of the
entire population at a given time.

So, we now consider how the behavior of p
1

changes as the growth rate r is varied. Figure 8
shows the time trace p

1
(t) at di!erent r values.

We observe that, as r is increased, the jumps in
p
1
(t) become more often and overall, p

1
(t) in-

creases. Figure 9 shows pN , the average value of p
1
,

vs. r, where we see that pN
1
increases fairly steadily.

As the intrinsic growth rate increases, the high-
dispersal clone becomes more prevalent and we
expect to see more movement between the two
patches. The e!ective coupling between the two
patches then increases with r.

The parameter r, however, also controls how
chaotic the patch dynamics can become. To see
this, we compute the convergence or divergence
of nearby trajectories through the Lyapunov
spectrum using the standard procedure by Benet-
tin et al. (1980). Figure 10 shows the "rst three



FIG. 9. Average frequency of the high-dispersal clone vs.
the growth rate r. Parameters set as in Fig. 2.

FIG. 10. The "rst three Lyapunov exponents of the model
vs. the parameter r. The other parameters are set as in
Fig. 11.

FIG. 11. Bifurcation diagram of N
t1
/K

1
!N

t2
/K

2
for the

Holt}McPeek model with e
1
"0.5, e

2
"0.01, K

1
"100,

K
2
"50, and m"1.
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Lyapunov exponents vs. r, where we see that the
magnitude of the largest one increases as r is
increased (except when there are periodic win-
dows), indicating that the patch dynamics
become more chaotic. We also see that, for
r(2.7, there are two negative Lyapunov expo-
nents and one at zero. The fourth Lyapunov
exponent (not shown) is strongly negative
throughout the entire range of the plot. After
the transition to chaos, the "rst positive
Lyapunov exponent tends to increase (except
when in periodic windows).
As r is increased above the critical point for
chaos, two competing factors emerge: the system
becomes more chaotic, but the coupling between
the two patches becomes stronger. Consequently,
for large r values, we expect to see a more robust
synchronization state, corresponding to small
variations in the Q value in the synchronization
state, but the range of the bursts from the Q+0
state increases as well, as shown in Fig. 11. In
particular, this bifurcation diagram is construc-
ted by iterating the system from a random initial
condition 103 times after discarding an initial 104
iterates for a given parameter r. The value of r is
then incremented through a small step size of
10~3, and the process is repeated with a new
random initial condition. We see that the system
is in the vicinity of the generalized synchroniza-
tion manifold L until r is approximately 2.7,
after which chaos and on}o! intermittency arises.
Here, there is a high concentration of a trajectory
points nearL, indicating that the system tends to
stay in the vicinity of the synchronization state.
However, there are short-time periods during
which the trajectory bursts away from L. As
r increases further, trajectory points tend to
concentrate more closely near L, indicating the
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e!ect of a stronger coupling. However, the range
of bursts also increases as the system becomes
&&more'' chaotic.

4.3. REMARKS

1. The relatively rapid rise and slow decline in
the time evolution of the frequency p

1
(t) of the

high-dispersal clone, as shown in Fig. 2, can be
understood, as follows. As p

1
(t) decreases and

becomes small, the coupling between the dynam-
ics in di!erent patches is weakened because of the
decrease in the dispersing population. When the
coupling becomes su$ciently weak, de-synchro-
nization between the patch dynamics occurs,
which corresponds to the &&on'' state in Q(t). It is
known that in on}o! intermittency, the &&on''
state, or the burst, occurs in time intervals that
are typically much shorter than those for the
&&o!'' state (Spiegel, 1980; Fujisaka & Yamada,
1985, 1986; Fujisaka et al., 1986; Yu et al., 1991;
Platt et al., 1993; Heagy et al., 1994; Lai &
Grebogi, 1995; Lai, 1996a, b; Yalcinkaya & Lai,
1996; Venkataramani et al., 1995, 1996; Mar-
thaler et al., 2001), because dynamically bursting
occurs when the trajectory is su$ciently near
a transversely unstable set, such as a transversely
unstable periodic orbit, and is therefore exponen-
tially fast (in contrast, the &&o!'' state corresponds
to the trajectory's wandering through many
transversely stable sets, which tends to keep the
trajectory in the &&o!'' state for a long time). The
key point is that a de-synchronization state there-
fore generates a high degree of temporal vari-
ation, which favors dispersal and causes a rapid
growth of the dispersing population. This, in
turn, tends to synchronize population dynamics
in the two patches. The synchronization state
corresponds to the &&o!'' state in Q(t), which can
typically be maintained for a relatively long time.
As synchronization tends to disfavor dispersal,
during the &&o!'' state the frequency of the high-
dispersal clone declines, the patch dynamics then
become progressively uncoupled, and the whole
process repeats itself over and over again in the
course of time evolution.

2. As the dispersal rate is increased so that the
coupling becomes stronger, the chaotic synchro-
nization state becomes more robust. The theoret-
ical analysis in Section 3 indicates that perfect
synchronization, i.e. synchronization without
on}o! intermittency, would have been realized if
the system had a perfect invariant subspace. Such
a perfect synchronization would lead to coexist-
ence as well, because there is still chaos and
therefore the required temporal variation. The
Holt}McPeek model, nonetheless, does not pos-
sess a perfect invariant subspace. Synchroniza-
tion in the model is thus always intermittent. As
we shall discuss in Appendix A, for a class of
simpli"ed models derived from the Holt}McPeek
model, a perfect invariant subspace can possibly
exist, which is turn, leads to coexistence under
perfect chaotic synchronization (see, for example,
Fig. A3).

5. Discussion

Understanding the factors generating and
maintaining the species diversity of ecological
communities is one of the central goals of the
ecological sciences. In the last several decades,
ecologists have become increasingly aware of the
importance of processes operating at large tem-
poral and spatial scales in explaining patterns of
species diversity in local communities (Rosenz-
weig, 1995). This is particularly the case when
considering guilds of organisms utilizing limited
resources in similar ways. In spatially closed,
homogeneous systems which dynamically settle
into a point equilibrium, species sharing limited
resources often show competitive exclusion.
Since any given spatial location has a limited
variety and quantity of resources, competition is
a local process which tends to limit local species
diversity. This local process in nature, however,
interacts with other processes. For instance, if
local dynamics do not achieve a point equilib-
rium (e.g. limit-cycle behavior in multispecies
resource}consumer interactions (Armstrong &
McGehee, 1980), consumer species can share re-
sources yet still coexist. Many ecologists contend
that patterns in species diversity cannot be
understood without reference to nonequilibrial
dynamics (Huston, 1994). Indeed, many ecol-
ogists now believe that &&space is the "nal fron-
tier'' for addressing classical ecological problems
(Kareiva, 1994; Ricklefs & Schluter, 1993).

The fundamental dynamics in spatially ex-
tended ecological systems relies on dispersal,
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which provides the interaction among species in
the spatially extended environment. It is thus of
paramount importance to understand under
what conditions dispersal favors species coexist-
ence. It has been shown (Hastings, 1983; Holt,
1985) that spatial heterogeneity in abundance
alone is unable to select for dispersal. To favor
dispersal, some temporal heterogeneity must also
be present. Many previous theoretical treatments
(for example, Gadgil, 1971; Balkau & Feldman,
1973; Ro!, 1975; Asmussen, 1983: Metz et al.,
1983) have assumed that external environmental
variation supplies the required driving force to
create temporal variation in "tness. However, in
view of the ubiquity of nonlinearity in ecological
systems, it is reasonable that nonlinear popula-
tion dynamics leading to cycles or chaotic behav-
iors can produce the appropriate temporal
variation in "tness that favors the evolution of
dispersal. This has been suggested both theore-
tically (Holt & McPeek, 1996; Doebeli & Ruxton,
1997; Parvinen, 1999) and empirically (e.g.
Kendall et al., 1998).

The main contributions to our work are two-
fold: (1) we provide analysis and evidence that
chaotic dynamics in spatially coupled ecological
models can indeed provide the spatiotemporal
variation in "tness that is necessary for the
coexistence of dispersing species; and (2) we show
that under fairly general settings, the spatio-
temporal variation in "tness leads to on}o!
intermittency, with respect to the approximate
synchronization of the relative patch popula-
tions. As such, it is likely that synchronization
and on}o! intermittency can be a contributing
dynamical factor for the coexistence of species in
ecological systems.

Another important issue in ecology is the pos-
sibility of long transient behavior in population
dynamics. An important contribution along this
line is made by Hastings & Higgins (1994), who
report their "nding of very long transient behav-
iors in spatially extended ecological models for
a species with alternating reproduction and
dispersal. They demonstrate, through numerical
computations, that if the nonlinearity in the
model is strong enough, then the time required
to reach the asymptotic dynamics can approach
thousands of generations*a time that is
much longer than the time scale of signi"cant
environmental perturbations and therefore can
be considered extremely long on ecological time-
scales of the species where the typical time-scale
of interest in tens or hundreds of years. Since the
form of dynamics changes over long time-scales,
it is argued that transient dynamics of ecological
models may be more relevant than long-term
behavior (Hastings & Higgins, 1994). This con-
clusion is quite surprising for the "eld of quantit-
ative ecology because traditionally, ecological
theory has been based on long-term behavior of
ecological models, with stability analysis of the
asymptotic state as the primary tool (May, 1973;
Roughgarden et al., 1989; Hastings, 1993). The
occurrence of on}o! intermittency in spatially
extended ecological systems indicates, however,
that the nearly synchronous chaotic dynamics in
these systems is sustained, as is evident from the
dynamical mechanism that leads to on}o! inter-
mittency that we have described in this work. It is
an interesting problem, for future work, to exam-
ine how often one can actually expect transient or
sustained chaotic dynamics in ecological systems.
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APPENDIX A

One-clone Models

While numerical computations reveal that the
Holt}McPeek model exhibits synchronization
and on}o! intermittency, it is di$cult to reduce
the model, say by changes of variables, math-
ematically to a form that is similar to one of the
models treated in Section 3, for which the dynam-
ical origin of synchronization and intermittency
can be seen explicitly. We thus seek to construct
simple models that are more amenable to analy-
sis, while retaining the essential ecological ingre-
dients of the Holt}McPeek model. The purpose
of this appendix is to demonstrate that such
a model can indeed be constructed, for which the
combination of mathematical analysis and nu-
merical computations gives a clear picture of the
dynamics of chaotic synchronization and on}o!
intermittency.

The typical setting in addressing the coexist-
ence problem in species dispersal, as in the
Holt}McPeek model, is that one species is nearly
stationary and another one is rapidly moving
between patches. Coexistence is indicated by
a non-zero average population of the dispersing
species. The in#uential dynamical variables are
thus the populations of the dispersing species in
di!erent patches. As a reasonable approximation,
we can regard the populations of the nearly sta-
tionary species as entirely stationary and drop
these populations from consideration. The phys-
ical e!ects of the stationary populations, how-
ever, cannot be neglected. A reasonable assump-
tion is that the stationary species only a!ects the
resources available to the dispersing species but
not contributing to dispersal itself. Accordingly,
we consider a non-species, two-patch model
where the existence of the stationary species (with
its time-varying population densities) a!ects the
system by imposing time-dependent resources
availability. Consequently, the in#uence of the
stationary clone is modeled in the system by the
choice of K

j
(t)'s, time-varying carrying capaci-

ties. The model then becomes

N
1
(t#1)"(1!e)=

1
(t)N

1
(t)#me=

2
(t)N

2
(t),

N
2
(t#1)"(1!e)=

2
(t)N

2
(t)#me=

1
(t)N

1
(t),

(A.1)

where the growth dynamics in the two patches
are given by

=
1
(t)"er[1!N

1
(t)/K

1
(t)], =

2
(t)"er[1!N

2
1 (t)/K

2
1 (t)] .

(A.2)

A.1. IDENTICAL PATCHES

When the patches are identical and the in#u-
ence of the stationary clone is also identical, we
have K

1
(t)"K

2
(t)"K (t), and r

1
"r

2
"r. It is

convenient to normalize the populations in terms
of the carrying capacities and make the following
change of variables:

u(t)"
1
2 C

N
1
(t)

K
1
(t)
#

N
2
(t)

K
2
(t)D and

v(t)"
1
2 C

N
1
(t)

K
1
(t)
!

N
2
(t)

K
2
(t)D.

or

N
1
(t)

K
1
(t)
"u(t)#v (t) and

N
2
(t)

K
2
(t)
"u (t)!v (t).



FIG. A1. For the one-clone, two identical patch model
equation (19): (a) the transverse Lyapunov exponent KT vs.
the dispersal rate e, and (b) the Lyapunov exponent of the
driving system u vs. e. Other parameters are K"ran[100,
110] (a random parameter uniformly distributed between
100 and 110), r"4.0, and m"1.
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In the new variables, we have

u(t#1)"[A=
1
(t)#A=

2
(t)]u(t)

#[A=
1
(t)!A=

2
(t)]v (t),

v(t#1)"[B=
1
(t)!B=

2
(t)]u (t)

#[B=
1
(t)#B=

2
(t)]v (t), (A.3)

where A"1!e#me and B"1!e!me. In
the vicinity of the synchronization state, we have
v+0. We can use the Taylor expansion to the
"rst order to obtain

e$rv(t)
+1$rv(t).

The time-dependent growth factors=
1,2

(t) thus
become

=
1
(t)"e r[1!u (t)!v (t)]

+e r(1!u(t)) [1!rv(t)],

=
2
(t)"e r[1!u (t)!v (t)]

+e r(1!u(t)) [1#rv(t)].

(A.4)

Near the synchronization state, v(t)+0. Thus, to
"rst order in v, we obtain (again by using Taylor
expansions)

u(t#1)"Ae[r (1!u(t))] u (t),

v(t#1)"Be[r (1!u(t))] [1!ru(t)]v (t). (A.5)

A remarkable observation is that eqn (A.5)
is similar to eqn (15), the model equation for
synchronization and on}o! intermittency in
nonlinearly coupled, identical maps. This allows
us to understand these dynamical phenomena in
a more explicit way. For instance, we see that the
synchronization state v"0 is invariant under
eqn (A.5) and, hence, if it is transversely stable,
perfect synchronization v"0 can be realized.
The transverse Lyapunov exponent is given by

KT" lim
L?=

1
¸

L~1
+
t/0

Be[r (1!u (t))] [1!ru (t)]

"P Be[r(1!u)] (1!ru)o(u) du, (A.6)
where the summation over time is converted into
an integral in space because of the ergodicity of
chaos: a typical trajectory visits almost every part
of the attractor in the course of time evolution,
and o (u) is the invariant density of the chaotic
driving variable u. Figure A1(a) and (b) shows,
respectively, the transverse Lyapunov exponent
KT and the Lyapunov exponent j

u
of the driving

system u vs. the dispersal rate e of the clone for
r"4.0, m"1, and K (t)"ran[100, 110] (chosen
randomly with uniform distribution between 100
and 110 at each iteration). We see that in the
parameter regime where u is chaotic, KT is
negative for e'e

c
+0.2 and it is positive for

e[ e
c
. Thus, we expect to observe perfect

synchronization [i.e. v (tPR)P0] for e'e
c
.

On}o! intermittency occurs for e [ e
c
, as

shown in Fig. A2 for e"0.19. Figure A3(a}c)
shows the bifurcation diagrams of N

1
/K

1
,

N
2
/K

2
, and Q vs. e, respectively, where the range

of synchronization and on}o! intermittency can
be seen.

To assess how synchronization and the on}o!
intermittent dynamics depend on the growth
parameter r, we "x e"0.19 and compute Q as
a function of r, as shown in Fig. A4. We see
regimes of perfect synchronization (Q"0) inter-
spersed with parameter intervals of on}o! inter-
mittent synchronization, which is characterized



FIG. A2. For the one-clone, two identical patch model
equation (19), on}o! intermittency for e"0.19(e

c
. Other

parameters are the same as those in Fig. A1.

FIG. A3. Bifurcation diagrams for the one-clone, two
identical patch model.

FIG. A4. For the one-clone, two identical patch model
equation (19), the bifurcation diagram of Q vs. r.

FIG. A5. For the one-clone, two identical patch model
equation (19), the transverse Lyapunov exponent vs. r.
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by non-zero values of Q, but a high concentration
of Q near zero. Dynamically, on}o! intermittency
is due to the transverse Lyapunov exponent's be-
ing slightly positive, as shown in Fig. A5, where
there is a correspondence between the parameter
regimes for on}o! intermittency in Fig. A4 and
those in which KT is slightly positive in Fig. A5.

A.2. NON-IDENTICAL PATCHES

When K
1
(t)OK

2
(t), we obtain from eqn (A.1),

in the (u, v)-coordinate, the following (still by
Taylor expansion to the "rst order in v(t)):

u(t#1)"e r(1!u (t)) [A
`

u(t)#A
~

(A
~
!1#e)rv(t)

]u(t)!(A
~
!1#e)v(t)], (A.7)

v(t#1)"er (1!u(t)) [!B
`

rv (t)u(t)#B
`

v(t)

!(B
~
!1#e)u(t)],

where the parameters A
`
, A

~
, B

`
, and B

~
are

given by



FIG. A6. Bifurcation diagrams for the one-clone, two
non-identical patch model. Parameters values are K

1
"

ran[100, 110] (a uniform, random distribution between
110 and 110), K

2
"ran[110, 120], r"4.0, and m"1.

FIG. A7. The ellipsoid-like synchronization state in the
one-clone, two non-identical patch models. (a) K

1
"K

2
"

ran[100, 110] (a uniform, random distribution between 100
and 110), (b) K

1
"ran[100, 110], K

2
"ran[110, 120], (c)

K
1
"ran[100, 110], K

2
"ran[120, 130]. Other parameters

are e"0.3, m"1, and r"4.
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Since the patches are non-identical, the synchro-
nization state is now de"ned by N

1
/K

1
"N

2
/K

2
.

In addition, the variable v also appears in the
equation for u. If the patches are nearly identical,
i.e. K

1
(t)+K

2
(t), eqn (A.7) can further be re-

duced, as follows. Let K
1
(t),K(t) and K

2
(t)"

K(t)#d(t), where d (t) is small compared to K(t).
In this case, after neglecting terms of order d2 or
higher, we obtain

A
`
+1!e#me,

A
~
+1!e!med(t)/[K(t)#d(t)],

B
`
+1!e!me,

B
~
+1!e#med (t)/[K(t)#d (t)].

Thus, we have

u (t#1)"er(1!u(t))CAu(t)#
med(t)rv (t)u (t)

K (t)#d (t)

#

med(t)v(t)
K(t)#d(t)D ,

v(t#1)"er(1!u(t)) C!Brv(t)u(t)#Bv(t)

#

med(t)u(t)
K(t)#d(t)D . (A.8)

Since d (t) is small, the last two terms in the
u(t#1) and v (t#1) equations can be considered
a small amplitude, additive random noise on the
synchronization. Bifurcation diagrams similar to
those in Fig. A3 are shown in Fig. A6, where we
see that, compared with the identical patch case,
the synchronization state is broadened and
the parameter range for on}o! intermittency
increases. In fact, in the synchronization regime,
as the di!erence between K

1
and K

2
increases,

the synchronization state starts to develop a
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fractal-like band structure, as shown in
Fig. A7(a}c). Study of the geometric structure of
the synchronization manifold in coupled, non-
identical systems is a forefront problem in chaotic
dynamics (Barreto et al., 2000).

CHAOS OR STOCHASTICITY?

As we have seen, under the presence of random
perturbation in the model, as characterized by
the noisy carrying capacities K

1
(t) and K

2
(t),

intermittently chaotic synchronization can still
be expected, which implies coexistence. We stress
that the key requirement for species coexistence
in a spatially extended environment is temporal
variation. The form of temporal variation can be
either random, chaotic, or a combination of both.
For the models treated in this paper, chaos is the
leading cause of the required temporal variation.
For ecological systems described approximately
by these models, it can be concluded that chaotic
synchronization is a general feature for dispersing
species to coexist. One can also imagine the pre-
sence of a large amount of noise so that the system
is essentially stochastic. In such a case, species
coexistence can still be expected (Hastings, 1983;
Holt, 1985), although now the leading cause is
randomness rather than chaos. When a model is
available, it is straight-forward to identify the ori-
gin of temporal variations, whether chaotic or
stochastic. In a realistic situation as in laboratory
or "eld experiments, a mathematical model is usu-
ally not available. In such a case, time series can be
measured and the origin of temporal variation, i.e.
stochasticity vs. chaos, can be assessed by utilizing
existing techniques in nonlinear time-series analy-
sis (for example, Sugihapa & May, 1990; Kaplan,
1994; Stone et al., 1996).
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