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Complex and nonlinear ecological networks can exhibit a tipping point at which a transi-

tion to a global extinction state occurs. Utilizing real-world mutualistic networks of polli-

nators and plants as prototypical systems and taking into account biological constraints, we

develop an ecologically feasible strategy to manage/control the tipping point by maintaining

the abundance of a particular pollinator species at a constant level, which essentially removes

the hysteresis associated with tipping points. If conditions are changing so as to approach a

tipping point the management strategy we describe can prevent sudden drastic changes. Ad-

ditionally, if the system has already moved past a tipping point, we show that a full recovery

can occur for reasonable parameter changes only if there is active management of abun-

dance, again due essentially to removal of hysteresis. This recovery point in the aftermath of

a tipping point can be predicted by a universal, two-dimensional reduced model.
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Introduction

It has been increasingly recognized that complex networked systems can exhibit a tipping point

at which an abrupt, irreversible and catastrophic transition from a normal state to an extinction

state occurs when a system parameter passes through a critical point 1–18. At the planetary scale,

there is grave concern that the global ecosystem as a whole may be approaching a tipping point

transition due to the human impact on the environment 12. At the regional scale, the shutdown

of the thermohaline circulation in the North Atlantic 2 is indication that the system has crossed a

tipping point. At local scales, examples of tipping point transitions include global extinction of

species in ecosystems 7, 9, 14, 15 and the switch of shallow lakes from clear to turbid waters 3. For

complex ecological networks, to develop biologically viable management/control principles and

strategies to remove the tipping point so as to delay the occurrence of global extinction is of broad

interest. We note that, in the general field of controlling complex networks, in spite of a large

body of literature on the linear controllability of complex networks 19–40, controlling nonlinear

dynamical networks remains to be outstanding and is currently an active area of research 41–48.

A generic dynamical mechanism for the occurrence of a tipping point is saddle-node bi-

furcation. This produces a system which typically changes between one and multiple coexisting

attractors as a parameter is varied. In low-dimensional systems, i.e., systems described by a few

first-order nonlinear differential equations or maps, a previous work investigated how small per-

turbations can be used to drive the system to a desired attractor (tipping point control) 49. Quite

recently, it has been demonstrated for semiarid ecosystems that the phenomenon of an ecological

“ghost,” a long transient phase during which the system maintains its stability, may be exploited to

delay or prevent the occurrence of a tipping point 50. Our problem is significantly more challenging

as we seek to investigate how tipping points in real world complex and nonlinear dynamical net-

works in ecology, which are typically high-dimensional with phase space dimension on the order

of one hundred, can be managed or controlled. To be concrete, we focus on a large number of

empirical pollinator-plant bipartite networks, whose dynamics are governed by mutualistic inter-

actions 15, 18, 51–57. To articulate a general management/control principle, we observe that a tipping
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point transition is the consequence of gradual changes in the system caused by a slow drift in the

intrinsic parameter and/or external conditions. For example, human activities have been contribut-

ing to global warming, leading to a continuous deterioration of the environment. In an ecological

network subject to harmful habitat changes, nodes and/or links in the network can gradually dis-

appear, where the parameter of interest is the fraction of disappeared nodes. Another parameter is

the species decay rate that can increase continuously. Environmental deterioration can also alter

the pollination mutualism 58 and reduce the mutualistic interaction strength. For convenience, we

call these parameters the “environmental parameters.” When an environmental parameter drifts to-

ward and through a critical point, species extinction at a global scale can occur. A realistic goal in

managing a tipping point is then to alter the way that species extinction occurs: from massive ex-

tinction of all species (characteristic of a tipping point) to gradual extinction of individual species

as the environmental parameter continues to increase, so that the occurrence of global extinction

is substantially delayed. In this sense, we say that the tipping point has been removed through

management or control.

While mathematical schemes can be conceived for tipping point control 49, in order to de-

velop practical strategies that can actually be implemented in real ecological systems, one must

take into account biological constraints. To appreciate this point, we consider two recent examples

in harnessing ecosystems. The first is the controlled reversal of a cyanobacterial bloom in response

to early warnings 59. A sudden bloom of cyanobacteria in a lake or a reservoir can be devastating

because it kills fish on a large scale and poses great toxicity risks for the environment. It is pos-

sible to predict regime shifts through resilience indicators, e.g., the statistical measures of some

key ecosystem variables. The goal of control is to monitor the indicators to prevent the occur-

rence of any large scale bloom. Although, mathematically, control perturbations can be applied to

any system parameters and/or variables, such strategies are often unrealistic due to the biological

constraints. For the case of cyanobacteria, it was demonstrated experimentally that an intuitive

but effective way to prevent a bloom is to stop or significantly reduce nutrient enrichment into the

lake 59. Another example is fisheries where drivers such as angling and shoreline development can

lead to a regime shift 60. The drivers can be externally manipulated through policy enforcement to
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prevent large scale extinction. Realistic management/control strategies include stipulating a rapid

reduction in angling and/or introducing a gradual restoration of the shoreline.

Guided by the biological constraint based principle , we seek practically realizable man-

agement strategies. For complex mutualistic networks, biological constraints render difficult to

change many of the intrinsic parameters of the system. A viable strategy is to protect one par-

ticular pollinator species. We thus choose a “targeted” species and maintain its abundance as the

environmental parameter is increased. An equivalent strategy is to keep the decay rate of this

species unchanged. We demonstrate that the abundance management can remove the tipping point

and delay the occurrence of total extinction. The amount of delay depends on the particular species

chosen as the target. The species can then be ranked in terms of management or control efficacy,

and we find that the ranking is determined solely by the network structure, even though the intrin-

sic network dynamics are highly nonlinear. In the absence of abundance management, a hysteresis

loop arises when attempting to restore the species population by improving the environment, i.e.,

by making the environmental parameter change in the direction opposite to that leading to extinc-

tion. In particular, without abundance management, in order to revive the species abundances to

the original level, the environmental parameter needs to be further away from the tipping point,

i.e., the environment needs to be significantly more favorable than before the collapse. However,

with abundance management the hysteresis loop disappears: species recovery begins at the point

of global extinction. A striking role of abundance management is demonstrated when the envi-

ronmental parameter is the mutualistic interaction strength, where species recovery is not possible

without the abundance management, but a full recovery is enabled with it.

In general, complex mutualistic networks are high-dimensional, nonlinear dynamical sys-

tems. There have been recent efforts to employ the mean-field approximation to reduce the system

to a one-dimensional 61 or a two-dimensional 18 model for gaining understanding of the dynamics

and for predicting the tipping point. We emphasize that our articulation of the management strategy

is based on the full nonlinear dynamics of the original mutualistic network and realistic biological

constraints, without using any mean-field type of reduced model. Nonetheless, we find that the
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species recovery point in the aftermath of a tipping point can be predicted reasonably well by a

two-dimensional reduced model derived under the condition that abundance control/management

is present.

Model

We study the approximately 60 real-world mutualistic pollinator-plant networks available from the

Web of Life database (http://www.web-of-life.es), which were established based on empirical data

collected from geographic regions across different continents and climatic zones. These networks

differ greatly in their structure and in their numbers of pollinator and plant species. For those net-

works, a generic and ecologically realistic model describing the nonlinear dynamical evolution of

the individual species abundances is available 15, 18, 54, 55, which is based on the ubiquitous Holling

type of dynamics in biology 62, 63. The model contains the following basic processes: intrinsic

growth, intraspecific and interspecific competitions, and mutualistic interactions between the pol-

linators and plants. The abundances of the ith pollinator and the jth plant are denoted as A
i

and

P
j

, respectively. The nonlinear differential equations governing the changes in A
i

and P
j

are
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where S
A

and S
P

are the number of pollinators and plants in the network and 
i

is the decay

rate of the ith pollinator. The phase-space dimension of the whole networked system is S
A

+ S
P

.

In Eq. (2), �
ik

is the mutualistic interaction strength, which depends on the nodal degree K
i

as

�
ik

= "
ik

�0/K
⇠

i

, where �0 is the average mutualistic strength, "
ik

’s are the elements of the network

structural matrix: "
ik

= 1 if there is a mutualistic link between a pollinator and a plant species,

"
ik

= 0 otherwise, and 0  ⇠  1 characterizes the strength of the trade-off between the interaction

strength and the number of mutualistic links. For ⇠ = 0, the network topology will have no
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effect on the mutualistic interactions. Parameter ↵
i

is the intrinsic growth rate in the absence of

mutualistic interactions, whose value can vary slightly among the different species. For simplicity,

we assume a common value of ↵ for all pollinator species. The intraspecific and interspecific

competitions are characterized by the parameters �
ii

and �
ij

(i 6= j), respectively, where �
ii

� �
ij

.

We assume �
ii

= 1 and �
ij

= 0. The parameter µ
A

(µ
P

) describes the immigration of pollinators

(plants), which typically assumes a small value and has little effect on the network dynamics.

When both mutualistic partners have a high abundance, the beneficial effect of the interactions on

the population growth tends to saturate, which is characterized by the half saturation constant h.

Two remarks are in order.

First, mathematically, the parameters 
i

and ↵
i

for pollinator species can be combined. How-

ever, the two parameters have different ecological meanings. In particular, ↵
i

is the intrinsic growth

rate or death rate of the species, and 
i

is the death rate caused by external factors such as excessive

use of pesticides, climate warming, or loss of habitat. To make the ecological meaning of these

two parameters unambigious, it is to separate the two parameters.

The second remark concerns about the choice of the parameter ⇠. In the mathematical model,

K
i

is a divisor depending on the in-degree of the gain species in the network. Ecologically, the

divisor characterizes the gain of a species from each connection. For a given species, a larger value

of K
i

indicates more connections, implying a weakened mutualistic effect associated with each

individual connection. Note that we define �
ik

such that it depends on 1/K⇠

i

. For ⇠ = 0, for any

connection, we have 1/K⇠

i

= 1, meaning that all the mutualistic connections are equally weighted.

For ⇠ = 1, we have 1/K⇠

i

= 1/K
i

. In this case, the mutualistic interactions depend on the network

topology. The two extreme cases are ecologically unrealistic. In our simulations, we set ⇠ = 0.5, a

choice that was used in previous work 55, 64.
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Results

Management/control to delay collapse tipping point and enable species recovery. We present

results with four representative networks: network A (S
A

= 61 and S
P

= 17 with the number

of mutualistic links L = 146) from empirical data from Hicking, Norfolk, UK 65; network B

(S
A

= 42, S
P

= 8, and L = 79) from Hestehaven, Denmark 66; network C (S
A

= 38, S
P

=

11, and L = 106) from Tenerife, Canary Islands 67; and network D (S
A

= 44, S
P

= 13, and

L = 143) from North Carolina, USA 68. Figures 1(a) and 1(b) show the structures of networks

A and B, respectively. To demonstrate the beneficial role of abundance control/management, it

is necessary to choose a bifurcation parameter. Our primary choice is �0, the nominal strength of

the mutualistic edges, because deterioration of the environment (e.g., caused by global warming

and climate change) can disrupt mutualism and, consequently, lead to population declines, reduced

biodiversity, and altered ecosystem functioning 64, 69. For an empirical mutualistic network, at the

present data are not available to enable a quantitative assessment of the strength of each and every

mutualistic interaction and the impact of environmental deterioration. As proof of principle, we

vary the value of �0 systematically and study whether a reduction in �0 may lead to a tipping point

and the role of abundance management in mitigating the tipping point.

As �0 is decreased from a relatively large value (e.g., �0 = 3) at which the system is fully

functional, without abundance management, a tipping point occurs, at which the abundances of all

species decrease to zero, as shown by the brown curves in Figs. 1(c) and 1(d) for networks A and

B, respectively.

In Fig. 1, we set the value of ↵ to be negative so that, without mutualistic interactions, all

species abundances will become zero. This is essential in making the mathematical model ecolog-

ically meaningful. Now apply the management strategy by which we protect a single pollinator

species to maintain its abundance at a constant value [the light blue dashed horizontal lines in

Figs. 1(c) and 1(d)]. As a result, plants connected to the controlled pollinator experience a growth

in their population, consequently elevating the equilibrium abundances, which in turn leads to a
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growth in the abundances of the pollinators connected to those plants, and so on. This generates

a positive feedback loop in the system dynamics, which can delay the extinction of many species.

Thus, while eventual global extinction still occurs, the process becomes gradual in the sense that

the species disappear not at the same point, but they do so one after another, as indicated by the

light blue dashed curves.

A striking phenomenon attesting to the benefits of control management arises when one

attempts to restore the species by improving the environment so as to increase the value of �0

through the tipping point. Without the abundance management, species recovery from arbitrarily

small abundance values (e.g., 10�4) is impossible for any value of �0 in the range of interest,

as indicated by the thick brown lines at A ⇡ 0 in Figs. 1(e) and 1(f) for networks A and B,

respectively. However, abundance management enables a full recovery of all species abundances,

as shown by the light blue dashed curves in Figs. 1(e) and 1(f). While the controlled species is one

that connects to the largest number of plants, we find that maintaining constant the abundance of a

different species enables species recovery in a similar way.

To illustrate the generality of abundance management, we test different parameter settings

than that in Fig 1. Fig 2 shows the management results with increased values of the half saturation

constant h and the intrinsic growth rates ↵(A)
i

and ↵(P )
i

. We find that, in the absence of abundance

management, the changes in the parameter values lead to a reduction in all the species abundance.

When abundance management is present, as the value of �0 is decreased from a relatively large

value (e.g., �0 = 3), the extinction of species becomes more gradual, as shown in Figs. 2(a,b).

When the direction of change in the value of �0 is reversed, species recovery begins to occur at the

original extinction point, in sharp contrast to the case of absence of abundance management where

species recovery is not possible. Through extensive computations, we find that the phenomenon of

control enabled species recovery occurs in wide parameter regions.

Management/control to delay collapse tipping and remove hysteresis loop. We study the sys-

tem dynamics when the bifurcation parameter is the decay rate. For simplicity, we assume that the
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decay parameters for all the pollinators have an identical value: 
i

⌘ . We set �0 = 1. Generally,

we assume there is a qualitative correspondence between  and the state of the environment, in the

sense that a deteriorating environment for species corresponds to an increased value of , and vice

versa. As the value of  is increased, species extinction can occur. A tipping point of the system

is defined as the critical value of  at which all species become extinct abruptly. In the following,

we present results with two management strategies: maintaining the abundance of a particular pol-

linator (abundance management) or keeping its decay rate constant (decay rate management), and

demonstrate that management can effectively remove the tipping point.

Management strategy 1: maintaining the abundance of an influential pollinator. This is the same strategy

discussed above for the case of varying the mutualistic interaction strength �0. As the result of

management, plants connected to the controlled pollinator experience a growth in their population,

elevating the equilibrium abundances, which in turn leads to a growth of the pollinators connected

to those plants, and so on. This generates a positive feedback loop in the system. Suppose there

are environmental changes so that the parameter  increases slowly, rendering inevitable eventual

collapse of the system. Inducing the positive feedback loop will delay the community collapse

in the sense that the catastrophe associated with a tipping point can be changed into a gradual

extinction process for larger values of . Figure 3(a) shows, for network A under management,

the pollinators become extinct at different values of , in contrast to the phenomenon of massive

community collapse at the tipping point. The management strategy, in spite of its simplicity, can

delay the event of total extinction. This result holds also for network B, as shown in Fig. 3(b).

How will the system recover from a state in which the populations are near zero if the en-

vironment is improved so that  is gradually decreased? Figure 3(c) shows, for network A, the

recovery process from a state in which the pollinator abundance is only 0.01, for the two cases,

i.e., with or without control. We see that, for the unmanaged system, there is a hysteresis phe-

nomenon, where the value of  required for the populations to fully recover is smaller than the

tipping point value. This is a typical nonlinear hysteresis with the implication that it takes ”more”

(in the sense that a smaller value  is needed) for the system to recover once it has been in a

9



state of near extinction. Since  characterizes the environmental influence on the system, simply

restoring the environment to a level preceding the collapse is not enough. Because of the emer-

gence of the hysteresis loop, the environment needs to be more improved to restore the population

abundances. Strikingly, when abundance management is present, the hysteresis effect has essen-

tially disappeared (or is much weaker than that for the uncontrolled case). The significance is that,

proper management can greatly facilitate recovery of the ecosystem once it has evolved due to

environmental deterioration to a state near total extinction. Similar behaviors occur for network B,

as shown in Fig. 3(d).

Management strategy 2: keeping the decay rate of an influential pollinator at zero. By this strategy, we

target the pollinator that has the largest number of mutualistic connections to remove any fac-

tor contributing to its decay in abundance by setting its decay parameter to be zero. For other

pollinators in the network, their decay parameter () values are assumed to be identical and can

change due to environmental influences. As  is increased toward a tipping point, we find that the

abundance of the managed pollinator species can increase slightly while those of the other (uncon-

trolled) pollinator species decrease, a behavior that can be attributed to interspecific competitions.

In particular, as the value of  is increased, the abundances of the unmanaged pollinators will

decrease, leading to a reduction in interspecific competition for the managed pollinator species.

As a result, the abundance of the managed pollinator species tends to increase, as exemplified in

Fig. 4(a) for network A. The end result of the decay rate management can also be seen: it has

removed the tipping point and delayed the occurrence of global extinction of the whole network

system. A similar phenomenon occurs for network B, as shown in Fig. 4(b). The dynamical be-

haviors of the system in response to environmental restoration, i.e., with a gradual decrease in ,

with or without decay rate management, are shown in Figs. 4(c) and 4(d) for networks A and B,

respectively. Comparing Figs. 4(a) and 4(c), we see that, for network A, without decay rate man-

agement, a hysteresis phenomenon similar to that in Fig. 3 (management strategy 1) arises, which

disappears essentially when management is activated. A similar behavior occurs for network B, as

shown in Figs. 4(b) and 4(d).
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Controllability ranking of pollinators. The two strategies tested are to manage the pollinator with the

largest number of mutualistic connections. We see that the management can have three effects:

avoiding massive collapse of the abundances of all species, delaying the occurrence of global

extinction, and facilitating recovery of species. Maintaining the abundance of a different pollinator

species may not have all the benefits. For example, targeting a pollinator species that does not

possess the largest number of connections may not significantly mitigate the collapse of species.

However, we find that the delay in the occurrence of the global extinction is a common feature,

regardless of the particular pollinator species managed. It is thus useful to rank the controllability

of the individual pollinator species in terms of the amount of management-induced delay in the

critical value of the decay parameter .

We use network B and management strategy 2 to demonstrate the controllability ranking

for the pollinator species. To calculate the rank of the ith pollinator species, we examine the

tipping point of the system in the absence of decay rate management and the critical value of

global extinction in the presence of decay rate management. The absolute difference � between

the two critical values is a measure of the effectiveness of managing the ith pollinator. Figures 5(a-

d) show the delay � resulting from managing four different pollinator species: #2, #3, #5, and

#8, respectively. Pollinators #2 and #3 have the same number of interactions, but their values

of delay � are quite different. Managing pollinator species #5 and #8 gives a similar behavior.

For example, pollinator species #5 has the lowest abundance among the four species, and the

corresponding value of � is the smallest. Insights into the correlation exemplified in Figs. 5(a-d)

can be gained from the network structure shown in Fig. 1(b), where pollinator species #2 has a

mutualistic interaction with plant species #2 but not with plant species #1. Pollinator species #3

has four mutualistic interactions, which include plant species #1 and #2. Pollinator species #5

has neither interaction with plant species #1 nor any with plant species #2, so it has the smallest

value of �. In general, we anticipate that the connecting topology of the mutualistic network will

have a dominant effect on the controllability ranking of the pollinators.

A surprising finding is that the network structure completely determines the controllability
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ranking of the pollinators. In particular, the ranking is determined the eigenvector V of largest

eigenvalue of the projection network M
p

. Let M be the m⇥ n matrix characterizing the structure

of the bipartite network with m pollinators and n plant species. The projection network of the

pollinators is characterized by M
p

= M · MT . Figure 5(e) shows the numerically determined

controllability ranking for the whole network versus the component value of the eigenvector V .

There is a high degree of linear correlation between the two quantities.

Analysis

We have developed an approximate theory to understand the phenomenon of abundance control or

management enabled recovery in mutualistic networks with a tipping point. In particular, given

a network, we aim to predict the critical point �c

0 at which species recovery begins as enabled

by management. The basic idea is that the abrupt transition at a tipping point is one by which

the system switches from a survival state (a high stable steady state - HSSS) to an extinction

state (a low stable steady state - LSSS), and the reverse transition occurs at a recovery point.

Bistability is characteristic of nonlinear dynamical systems with a tipping point. In-between the

LSSS and HSSS, there is an unstable steady state (USS). Recovery from the LSSS occurs when

certain species abundances exceed the value in the unstable steady state. The key to predicting the

recovery point lies thus in finding the USS.

The starting point of our mathematical analysis of the resilience functions of complex mu-

tualistic networks is to modify the recently developed 2D reduced model for these networks 18,

taking into account the effect of abundance control management. The original reduced model 18 is

dPe/dt = ↵Pe � �P 2
e + (h�

P

iAe)/(1 + hh�
P

iAe)Pe + µ

dAe/dt = ↵Ae � �A2
e + (h�

A

iPe)/(1 + hh�
A

iPe)Ae + µ, (2)

where Ae and Pe are the properly averaged pollinator and plant abundances, respectively, ↵, �,

h�
P

i, h�
A

i and µ are the corresponding average parameters. In the original model 18, all pollina-

tors are treated on the equal footing, so are the plants. However, when control is present, the plant
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species directly connected to the managed pollinator species, the single pollinator species whose

abundance is maintained externally, are distinct from other plant species. It is then necessary to

remove the controlled pollinator species from the averaging process, but it affects the plant species

that are directly connected to it. As a result, the values of the average mutualistic interaction pa-

rameters, h�
P

i and h�
A

i, are modified. The eigenvector weighted averaging method 18 can be used

to calculate these parameters (Sec. IV in SI). The steady state solution of the ensemble averaged

pollinator abundance A0 in the presence of abundance management can be obtained through the

quadratic equation

q1A
02 + q2A

0 + q3 = 0, (3)

where the coefficients are given by q1 = �(�2hh�
P

i + �hh�
A

ih�
P

i + �h2↵h�
A

ih�
P

i), q2 =

��2�h↵�h�
A

i+h↵�h�
P

i+ h�
A

ih�
P

i+2h↵h�
A

ih�
P

i+h2↵2h�
A

ih�
p

i, and q3 = ↵�+↵h�
A

i+

h↵2h�
A

i. The USS of the approximate ensemble averaged pollinator abundance is given by (Sec. V

in SI) A
uss

= (�q2 +
p

q22 � 4q1q3)/(2q1). The steady state value of the ensemble averaged plant

abundance can be obtained accordingly: P
uss

= ↵+ (h�
P

iA
uss

)/(1+ hh�
P

iA
uss

), which depends

on the value of the bifurcation parameter �0.

Suppose the system is in the extinction state that satisfies dP
i

/dt = 0 and dA
i

/dt = 0, for

�0 ' 0, where P
i

' 0 and A
i

' 0. The steady state plant and pollinator abundances are determined

by ↵(P )
i

�
P

SP
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ij
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ik
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ik

P
k

)/(1 + h
P

SP

k=1 �
(A)
ik

P
k

) = �µ
A

/A
i

. As the value of �0 is increased, the abundances

of the plant species directly connected to the managed pollinator species will increase. Among

those plant species, for the one with the largest abundance, we have µ
P

/P
i

⇡ 0. For �
ii

= 1 and

�
ij

= 0, the steady state abundance of this plant species is given by P
i

⇡ ↵(p)
i

+ [(�0/di)AS

]/(1 +

h(�0/di)AS

), where d
i

is the number of pollinator species that this plant species is connected to.

Let P
max

be the maximum abundance of this plant species and let A
S

be the constant abundance

value of the controlled pollinator species. The criterion for recovery from extinction is P
max

'
P
uss

, from which the critical recovery point �c

0 can be determined for a given value of A
S

. We

emphasize that, using a relatively large value A
S

will make the tipping and recovery points coincide

with each other. Figures 6(a-d) show, for networks A�D, respectively, that the predicted recovery
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point versus A
S

agrees remarkably well with that from direct numerical simulations of the original

networks. A statistical analysis of the predictive power of the reduced model is presented in Sec. VI

in SI.

The dynamical mechanism of abundance control or management enabled recovery in the

aftermath of a tipping point transition is that certain species abundances exceed the value in the

USS, triggering a recovery from the LSSS. The USS is thus key to species recovery. Figure 7 shows

the quantity A
e

of the reduced model with respect to variations in the three main parameters: �0,

h, ↵. As indicated by Fig. 6, for systems at the small parameter setting as that in Fig. 2, recovery

occurs at a much smaller value of �C

0 than that in systems with parameter setting as that in Fig. 1.

This is because, the smaller the value of ↵ from the negative side, the closer the value of USS is

to zero, as shown in Fig. 7(a). In fact, the abundances of some species can readily exceed the USS

value in the presence of abundance management if it is near zero, initiating a recovery. Figure 7(b)

shows that positive USS values exist only when ↵ becomes negative. For ↵ = �0.3, the tipping

point as characterized by the value of �0 increases with h. For ↵ > 0, the HSSS is the only

abundance state that the system can be in. Figures 7(c,d) show the tipping point predicted by the

reduced model. Figure 7(f) shows the region (light blue) in which the USS has a positive value and

recovery is enabled by abundance management. In both panels (b) and (f), ↵ = 0 is the critical

point for the system to have a positive valued USS. Mathematically, this occurs because, for ↵ = 0,

the quantity q3 in Eq. (3) vanishes. For ↵ > 0, the USS value is negative because of the conditions

q1 < 0 and q3 > 0. The reduced model thus indicates the absence of any tipping point for ↵ > 0.

Figure 7(g) shows that, for ↵ ' 0, gradual extinction of species one after another will occur as the

value of �0 is decreased, leading to global extinction for �0 ' 0. However, in this case, there is no

tipping point. (Simulations of the original high-dimensional dynamical network reveal essentially

the same result, as shown in Sec. II of SI.) The results in Fig. 7 thus provide strong support for the

power of the reduced model. (In Sec. III of SI, we provide a stability analysis of the stable steady

state solutions of the reduced model.)

Taken together, for ↵ < 0, a tipping point can occur as the value of �0 is decreased. In this

14



case, after the total collapse, with abundance management the system can be restored as the value of

�0 is increased. Ecologically, this means that, when the intrinsic growth rates of the pollinator and

plant species are negative, the whole mutualistic system will exhibit a tipping point as the average

mutualistic strength is reduced. Species recovery is ruled out without abundance management, but

controlled maintenance of the abundance of a single species will enable full recovery of all species

in the networked system.

How does the structure of the mutualistic network, especially in terms of the measures of

connectance and nestedness, affect abundance management? To address this question, we gener-

ate an ensemble of mutualistic networks with systematically varying connectance and nestedness

values where, for each network, the numbers of the pollinator and plant species are the same as

those of network A. Figure 8(a) shows that the value � in the reduced model increases as the

network becomes more connected and nested. For example, if the connectance value is 0.2, as the

value of nestedness is increased from 0.2 to 0.6, the values of h�
P

i and h�
A

i increase from 3.561 to

4.507 and from 1.968 to 2.225, respectively. If we set the nestedness value to 0.45 and increase the

connectance value from 0.125 to 0.4, the values of h�
P

i and h�
A

i increase from 4.176 to 5.012 and

from 1.712 to 2.721, respectively. Note that, because the network has 60 pollinator and 17 plant

species, the value of h�
P

i is larger than that of h�
A

i. We find that the variations of the effective

value of � in the reduced model are smooth and relatively small. Figure 8 shows the HSSS and

USS values from the reduced model. Note the relatively large separation between the two values:

the USS value is close to zero while the HSSS value is larger than one. The HSSS and USS values

reach the maximum and minimum, respectively, when both values of h�
A

i and h�
P

i reach min-

imum. This implies that an increase in the nestedness and connectance values will increase the

HSSS value but reduce the USS value, facilitating control enabled species recovery. Regardless

of the changes in the structure of the mutualistic network, the phenomenon of abundance control

or management enabled species recovery, as established by a dynamical analysis of the reduced

model, persists.

In SI, we address additional issues pertinent to management, such as the effects of controlled

15



abundance level (Sec. I) on species recovery. The SI also treats the steady states in the reduced

model and their stabilities with parameter variations.

Discussion

We emphasize the importance of taking into account biological constraints when formulating

strategies to manage or control tipping points. Guided by this general principle, for complex

mutualistic networks in ecology, we have articulated and analyzed a realistic management strategy

targeting a single pollinator to maintain its abundance at a constant level, with the main benefit be-

ing the removal of the catastrophic tipping point behavior and the enabling of species recovery that

otherwise would not be possible. These striking phenomena are uncovered when the tipping point

is caused by continuous weakening of the mutualistic interaction strength between the pollinator

and plant species. Variations in other parameters, such as a continuous increase in the number of

disappearing pollinator species or in their decay rate, can trigger a tipping point as well. In such

cases, species recovery is possible even without abundance management, but targeted control can

remove the tipping point and facilitate recovery.

Theoretically, we have demonstrated that the recovery point can be predicted through a re-

duced, two-dimensional model that is a generalized version of the previously reduced model 18,

because of the presence of control management of abundance. It is common knowledge in non-

linear dynamics that the unstable steady state plays a critical role in the system dynamics after a

saddle-node bifurcation. The purpose of our analysis is to show that, by examining the unstable

steady state in the reduced model, one can predict the tipping point transition in the full model,

demonstrating the predictive power of the reduced model. Such a reduced model should be par-

ticularly useful in ecological systems where imperfect knowledge of the system may be likely.

We have also studied how the network structure affects the unstable steady state and the effect of

abundance management. Especially, if the numbers of pollinator and plant species are fixed, the

value of the unstable steady state increases as the connectance and nestedness of the underlying

network are enhanced, up to a limit. We thus expect our management strategy to be effective for

16



real mutualistic networked systems with varying structures.

The problem of developing management/control principles and strategies to eliminate tipping

points in complex and nonlinear networked systems has broad implications 59, 60. For the mutual-

istic networks treated in this paper per se, our management strategy to maintain the abundance of

certain pollinator species may be realized through the approach of injecting robotic pollinators 70

to expedite recovery 71–74. This may help address the devastating problem of relatively sudden

disappearances of bee colonies, which are happening currently all over the world.
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Figure 1 Caption: Tipping points in mutualistic networks and the role of abundance manage-

ment. (a,b) The structures of two representative networks, where the red and green dots correspond

to pollinator and plant species, respectively, and the size of a dot indicates the relative number

of mutualistic links that this node has. The management strategy is to maintain the abundance

of the pollinator species with the largest number of mutualistic connections at a constant level

(the horizontal light blue dashed line). (c,d) In the absence of abundance management (brown

curves), a tipping point occurs for networks A and B, respectively, as the bifurcation parameter

�0 is decreased through a critical point. Regardless of whether abundance management is absent

or present, global extinction is inevitable (light blue dashed curves), but the difference is that the

extinction event is abrupt and complete without abundance management, but it becomes gradual

and benigh with the management (insets). (e,f) When the direction of change in �0 is reversed as

one attempts to recover the species by improving the environment, species recovery is not pos-

sible without abundance management (the thick brown lines at A ⇡ 0). Management enables a

full recovery of all species once the value of �0 becomes larger than that associated with global

extinction. The parameter values used in the computations are h = 0.2, t = 0.5, �(A)
ii

= �(P )
ii

= 1,

�(A)
ij

= �(P )
ij

= 0,↵(A)
i

= ↵(P )
i

= �0.3, 
i

= 0 and µ
A

= µ
P

= 0.0001.
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Figure 2: Tipping points in mutualistic networks and the role of abundance management with dif-

ferent parameters. (a,b) In the absence of abundance management (brown curves), the occurrence

of a tipping point for networks A and B, respectively, as the bifurcation parameter �0 is decreased

through a critical point. Regardless of whether abundance management is absent or present, global

extinction is inevitable (light blue dashed curves), but the difference is that the extinction event is

abrupt without abundance management but it becomes gradual with management (insets). (c,d)

When the direction of change in �0 is reversed, species recovery is not possible without abundance

management (the thick brown lines at A ⇡ 0). Controlled management enables a full recovery of

all species once the value of �0 becomes larger than that associated with global extinction. The

parameter values are h = 0.3, t = 0.5, �(A)
ii

= �(P )
ii

= 1, �(A)
ij

= �(P )
ij

= 0,↵(A)
i

= ↵(P )
i

= �0.1,


i

= 0 and µ
A

= µ
P

= 0.0001.
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Figure 3 Caption: Managing a tipping point caused by an increase in the pollinator decay rate.

The management principle is to maintain the abundance of the pollinator with the largest number

of mutualistic connections (the horizontal light blue dashed line). Panels (a,b) show the delayed

occurrence of total extinction as a result of abundance management for networks A and B de-

scribed in the text, respectively. As the environment deteriorates (i.e., as  is increased gradually),

without abundance management, all pollinator populations collapse abruptly at a single value of 

- a tipping point. However, with abundance management, the extinction process becomes gradual,

effectively removing the tipping point. In addition, the value of  at which total extinction occurs is

larger than that associated with the tipping point in the absence of abundance management. Panels

(c,d) show the recovery dynamics for network A and B, respectively. Without abundance man-

agement, a hysteresis phenomenon arises, in which the value of  required for a full population

recovery is much smaller than that at the tipping point, stipulating that the environment needs to be

much more improved than that preceding the collapse in order to restore the pollinator populations.

The abundance management removes the hysteresis effect. The arrows indicate the respective di-

rections of variation in . Simulation parameters are ↵ = 0.15, �
ii

= 1, �
ij

= 0.01, �0 = 1,

t = 0.5, h = 0.4, and µ = 0.0001.
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Figure 4: Managing a tipping point caused by an increase in the pollinator decay rate through

an alternative strategy. The strategy entails making zero the decay rate of the pollinator with the

largest number of mutualistic links. Panels (a,b) show the occurrence of a tipping point as the

average decay parameter  for all other pollinators is increased due to continuous deterioration of

the environment, for networks A and B, respectively. Panels (c,d) show the steady state species

abundances versus  for the opposite situation where the environment is gradually improved, for

networks A and B, respectively. Similar to the results in Fig. 3, without decay rate management,

a hysteresis loop emerges in that the value of  needs to be smaller (corresponding to a more

improved environment) in order to restore the pollinator abundances to the level before the tipping

point. The decay rate management effectively removes the hysteresis. Simulation parameters are

↵ = 0.15, �
ii

= 1, �
ij

= 0.01, �0 = 1, t = 0.5, h = 0.4, and µ = 0.0001.
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Figure 5: Controllability ranking of pollinators. (a-d) For network B, the delay in the critical decay

parameter for global extinction, �, resulting from controlling pollinator 2, 3, 5, and 8, respectively.

The vertical dashed lines at  = 0.65 are for eye guidance. (e) Controllability ranking according

to �, where the pollinators are ordered in terms of V , the eigenvector of the largest eigenvalue of

the projection matrix M
p

of the bipartite network.
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Figure 6: Predicted and numerically calculated recovery point as enabled by abundance man-

agement. (a-d) For networks A-D, respectively, the predicted (brown and magenta squares) and

numerical (dark blue and light blue circles) species recovery point versus the constant abundance

value A
S

of the managed pollinator species with the largest degree. Other parameters are the same

as those in Figs. 1 and 2. The light blue and magenta curves in (b,c,d) are shorter than the dark

blue and brown curves because of the difficulty to determine accurately the recovery point for large

values of the managed abundance A
S

.
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Figure 7: Stable and unstable steady states of the reduced model in the absence of management.

Shown are the HSSS and USS for network B as represented by the brown and light blue surfaces,

respectively, which are calculated from Eq. (3). (a,b) The effective pollinator abundance from

the reduced model in the parameter planes: (a,b) (↵, h) for �0 = 1, (c,d) (�0, h) for ↵ = �0.3,

and (e-g) (�0, ↵) for h = 0.2, where (g) is an enlargement of the region ↵ 2 [�0.25, 0.25] and

�0 2 (0, 0.5] in (f). Other parameters are t = 0.5, µ = 0.0001, and � = 1.0. Panels (b,d,f) are

the bottom views of (a,c,e), respectively. In (a,b), the hexagon and diamond markers represent the

HSSS and USS of the reduced model for the parameter settings in Figs. 1 and 2, respectively. In

all panels, the pollinator abundance A
e

is represented on a logarithmic scale. The plant abundance

P
e

is calculated from P
e

= ↵ + (h�
P

iA
e

)/(1 + hh�
P

iA
e

).
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Figure 8: Effects of network structure on tipping point management. (a) The average species

abundances h�
A

i (blue) and h�
P

i (green) for an ensemble of “artificial” mutualistic networks with

different computationally realizable values of connectance and nestedness, where the numbers of

the pollinator and plant species are the same as those for network A. For each network with specific

connectance and nestedness values, the average quantities h�
A

i and h�
P

i are calculated from 100

independent network realizations. (b) From the reduced model, the HSSS and USS values versus

h�
A

i and h�
P

i. The ranges of h�
A

i and h�
P

i are the same as those in (a). Other parameters are

↵ = �0.3, h = 0.2, t = 0.5, µ = 0.0001, and � = 1.
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FIG. S1. Effect of maintained abundance level of the target species on species recovery for a mutual-
istic network. For network B described in the main text, for two different and relatively low values of the
managed abundance of the target species (horizontal dashed line - these values should be compared with the
corresponding value of about 4.0 in Fig. 1 in the main text): 0.5 for (a) and 1.0 for (b), successful recovery
of all species as the average mutualistic interaction strength g0 is increased. Initially, the whole system is
in an extinction state with near zero abundances. The data points plotted are the steady state abundance
values of all the pollinator species. As predicted by the mathematical analysis in the main text, the level of
maintained abundance does have an effect on the recovery point gc

0: a smaller value of the level leads to a
larger value of gc

0. Without abundance management, species recovery is ruled out, as indicated by the thick
blue lines at A = 0 for both panels. All other parameters have the same values as those in Fig. 1 in the main
text.

I. EFFECT OF MAINTAINED ABUNDANCE LEVEL OF THE TARGET SPECIES ON RECOV-
ERY

In Fig. 1 in the main text, the maintained abundance level of the target species for each
pollinator-plant mutualistic network is set to a relatively high value. Figure S1 shows, for one
of the networks, that a reduction in the level does not impede species recovery.

II. CONTINUOUS EXTINCTION AND RECOVERY PROCESSES IN THE REGIME OF WEAK
INTRINSIC GROWTH

In Figs. 4(e-g) in the main text, the gradual extinction of species occurs in the regime when the
intrinsic growth rate a of the pollinator species is positive and near zero. The dynamical analysis
of the reduced model in the main text indicates that, when the value of a is decreased from a small
positive to a negative value, the value of the HSSS moves continuously from the positive to the
negative side. Thus, when the value of a is slightly positive, the species abundances gradually
decrease to zero as the mutualistic interaction parameter g0 decreases to zero. Simulations of
empirical networks reveal essentially the same behaviors, as illustrated in Fig. S2 for networks
A and B, providing further support for the ability of the reduced model to capture the essential
dynamical features of the high-dimensional mutualistic networks in the real world.
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FIG. S2. Species extinction and recovery as continuous processes in pollinator-plant mutualistic networks.
The systems illustrated are empirical networks A and B as described in the main text, and the continuous
extinction and recovery processes occur in the regime of small and positive values of the intrinsic growth
rate of the pollinator species. (a,b) In the absence of abundance management (brown curves), extinction
of species occurs one after another in a “continuous” fashion for networks A and B, respectively, as the
bifurcation parameter g0 is decreased from a relatively large value to zero. (c,d) When the value of g0

is increased from zero, each species recovers exactly at its point of extinction. The parameter values are
h = 0.2, t = 0.5, b(A)

ii

= b(P)
ii

= 1, b(A)
i j

= b(P)
i j

= 0, a(A)
i

= a(P)
i

= 0.1, and µ

A

= µ

P

= 0.0001. The recovery
dynamics can be predicted by the reduced model, as shown in Fig. 4(g) in the main text.

III. STABLE, UNSTABLE STEADY STATES AND THEIR STABILITY OF THE REDUCED
MODEL WITH PARAMETER VARIATIONS

Figure S3 provides the results from a detailed stability analysis of the HSSS and USS of the
reduced model constructed based on the parameters of the empirical network B in the main text.
The eigenvalues of the HSSS are all negative, but the two eigenvalues of the USS have opposite
signs, indicating that it is a saddle fixed point in the reduced two-dimensional system.
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FIG. S3. Stability of the steady states of the reduced model with parameter g0 and other parameters varia-

tion. (a-f) The brown and light blue surfaces correspond to, respectively, the two eigenvalues of the Jacobian
matrix evaluated at the steady states of the reduced model derived from network B based on Eq. (S5.12),
where the black plane provides the zero value reference. Shown in different panels are the eigenvalues
of HSSS and USS of the reduced model versus, respectively, (a,b) a and h for g0 = 1, (c,d) g0 and h for
a =�0.3, and (e,f) g0 and a for h = 0.2. Other parameter values are t = 0.5, µ = 0.0001, and b = 1.

Because of the interspecific competitions in the empirical networks, it is necessary to use
Eq. (S4.6) to calculate the effective intraspecific and interspecific competition rates. The steady
state solutions of Eq. (S5.19) are given by

P

0 =


a+

hg
P

iA0

1+hhg
P

iA0

�
b�1

P

, (S3.1)

A

0 =


a�k+

hg
A

iP0

1+hhg
A

iP0

�
b�1

A

,

and the algebraic equation of A

0 becomes

q1A

02 +q2A

0+q3 = 0, (S3.2)

where

q1 =�(b
A

b
P

hhg
P

i+b
A

hhg
A

ihg
P

i+b
A

h

2ahg
A

ihg
P

i),
q2 =�b

A

b
P

�hab
A

hg
A

i+hab
P

hg
P

i+ hg
A

ihg
P

i
+2hahg

A

ihg
P

i+h

2a2hg
A

ihg
p

i
�k(hb

P

hg
P

i+hhg
A

ihg
P

i+h

2ahg
A

ihg
P

i),
q3 = ab

P

+ahg
A

i+ha2hg
A

i�k(b
P

+hahg
A

i),
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FIG. S4. Stable and unstable steady states of the reduced model. The reduced model is constructed based
on the parameters of the empirical network B described in the main text, where the brown and light blue
surfaces correspond to the HSSS and USS, respectively. Shown is the pollinator species abundance of the
reduced model versus (a,c) a and k for h= 0.4, and (b,d) h and k for a= 0.15. Other parameters are t = 0.5,
µ = 0.0001, and g0 = 1. Panels (c,d) are the bottom views of panels (a,b), respectively. The plant abundance
can be obtained from the pollinator abundance according to the relation P

e

= a+(hg
P

iA
e

)/(1+ hhg
P

iA
e

).
In (d), the blue line indicates the movement of the USS from the positive to the negative side as the value of
k is decreased from one to zero.

Using the equation S3.2, we can calculate the HSSS and USS as shown in Fig. S4. The effective
pollinator abundance A

e

of the reduced model can explain why management can recover the mu-
tualistic system and remove the hysteresis phenomenon. Figures S4(a-d) show that the HSSS and
USS have positive values. In Fig. S4(b), The light blue region has positive HSSS and USS values,
while in the brown region, HSSS is positive and USS is negative. In the white region, the HSSS
and USS solutions are complex, which are ecologically not realistic. As shown in Fig. S4,the pa-
rameter region of a and k with positive USS values is much smaller than that with positive HSSS
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FIG. S5. Stability of the steady states of the reduced model versus the pollinator decay rate k and other

parameters. Shown are the two eigenvalues (brown and light blue surfaces) of the Jacobian matrix evaluated
at the steady state of the reduced model constructed from the empirical network B. The eigenvalues of the
HSSS and USS versus, respectively, (a,c) a and k for h = 0.4, and (b,d) h and kfor a = 0.15. Other
parameters are t = 0.5, µ = 0.0001, and g0 = 1.

values. As a result, when the value of k is increased from zero to 1.15 for a 2 [�0.185,0.545],
there exists a region with positive HSSS and USS values, and two transitions in k: one separating
the real from the complex USS solutions, and another separating the positive from the negative
USS values. In Fig. S4(d), there are also three regions defined by two transitions. In all cases, a
positively valued USS exists, indicating that controlled maintenance of a single, relatively large
abundance pollinator species can recover the mutualistic system and remove the hysteresis in Fig.3
in main text.

The results of a stability analysis of the HSSS and USS solutions through the eigenvalues of
the Jacobian matrix are presented in Fig. S5.
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IV. DIMENSION REDUCTION FOR COMPLEX MUTUALISTIC NETWORKS SUBJECT TO
CONTROL

In Ref. [1], an effective 2D model for arbitrary mutualistic networks in the absence of man-
agement was derived. Here we extend the dimension reduction approach to networks subject to
abundance management. Some general considerations are the following. We assume there is a
qualitative correspondence between the mutualistic interaction parameter g0 and the state of the
environment in that a deteriorating environment for species leads to a decreased value of g0. As
described in the main text, as g0 is decreased from a value at which the species abundances are
stable and “healthy,” a tipping point can occur at which the populations of all species collapse to
near zero values, driving the system into extinction. As g0 is increased from a value associated
with extinction, when abundance management is present, the system is able to recover. The re-
covery point is the critical value of g0 above which all species abundances have non-zero values.
For simplicity, we also assume that the decay parameters for all the pollinators have an identical
value: k

i

⌘ k. There is a qualitative correspondence between k and the state of the environment in
that a deteriorating environment for species implies an increased value of k. Increasing the value
of k can also lead to a tipping point.

Given a high-dimensional mutualistic network, the reduced dynamical system contains two
coupled ODEs: one for all pollinator species except the one under management and another for
the plant species. The basic idea of dimension reduction is to quantify the network structure by an
effective parameter. The process consists of the following three steps.

We first obtain the effective (average) abundances of the plant and pollinator species. From
Eq. (1) in the main text, we have

a(P)
i

P

i

⇠= aP

e

and a(A)
i

A

i

⇠= aA

e

, (S4.3)

where P

e

and A

e

are the effective abundances of the plant and the pollinator species, respectively.
Secondly, since species do not out-compete each other when mutualistic partners are absent [2],
intraspecific competitions are usually stronger than the interspecific competitions, leading to

b(P)
ii

� b(P)
i j

and b(A)
ii

� b(A)
i j

. (S4.4)

For simplicity, we neglect interspecific competitions. The terms describing species competitions
in Eq. (1) in the main text can then be written as

S

P

Â
j=1

b(P)
i j

P

i

P

j

⇡ b(P)
ii

P

2
i

⇠= bP

2
e

and
S

A

Â
j=1

b(A)
i j

A

i

A

j

⇡ b(A)
ii

A

2
i

⇠= bA

2
e

. (S4.5)

However, the weak interspecific competitions can be taken into account by writing the species
competition terms in Eq. (1) in the main text as

S

P

Â
j=1

b(P)
i j

P

i

P

j

⇠=

S

P

Â
i=1

S

P

Â
j=1

b(P)
i j

S

P

Â
i=1

1
P

2
e

= b
P

P

2
e

and
S

A

Â
j=1

b(A)
i j

A

i

A

j

⇠=

S

A

Â
i=1

S

A

Â
j=1

b(A)
i j

S

A

Â
i=1

1
A

2
e

= b
A

A

2
e

. (S4.6)
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We treat the mutualistic strength for every single species:

S

P

Â
j=1

g(A)
i j

P

j

=
S

P

Â
j=1

g0

k

t

A

i

e
i j

P

j

⇠= g0k

(1�t)
A

i

P

e

and
S

A

Â
j=1

g(P)
i j

A

j

=
S

A

Â
j=1

g0

k

t

P

i

e
i j

A

j

⇠= g0k

(1�t)
P

i

A

e

, (S4.7)

and calculate the average mutualistic interacting strength in the system through one of the fol-
lowing three averaging methods [1]: unweighted, degree weighting, and eigenvector weighting.
Because of the complex topology of real-world mutualistic networks, we focus on the eigenvector
weighting method. In particular, note that k

P

i

and k

A

i

are the numbers of the mutualistic interact-
ing links associated with plant species P

i

and pollinator species A

i

, respectively. By the eigenvalue
method, we calculate the averaging quantities for pollinator and plant species based on the eigen-
vector associated with the largest eigenvalue of the projection networks. Since abundance man-
agement is on to maintain the abundance of a single pollinator at a constant value, we exclude this
species from the averaging process. Letting M

P

and M

A

be the projection matrices of the plants
and pollinators, respectively, we have

M

P

= M

T ⇥M, V

P

= eigenvector(M
P

) and M

A

= M⇥M

T , V

A

= eigenvector(M
A

), (S4.8)

where M is the m⇥ n matrix characterizing the original bipartite network with m and n being
the numbers of pollinator and plant species, V

P

and V

A

are the components of the eigenvector
associated with the largest eigenvalue of M

P

and M

A

, respectively. We get

hg
P

i=

S

P

Â
i=1

g0k

1�t

P

i

⇥V

(i)
P

S

A

Â
i=1

V

(i)
P

and hg
A

i=

S

A

Â
i=1

g0k

1�t

A

i

⇥V

(i)
A

S

A

Â
i=1

V

(i)
A

, (S4.9)

where V

(i)
P

and V

(i)
A

are the i

th component of V

P

and V

A

, respectively. Let hg
P

i and hg
A

i be the
effective mutualistic parameters for the plant and pollinator species in the absence of abundance
management, respectively. Management will generate a change in these parameters:

4hg
P

i=

S

P

Â
i=1

A

S

g0k

�t

P

i

⇥V

(i)
P

S

A

Â
i=1

V

(i)
P

(S4.10)

where A

S

is the constant abundance value for the managed pollinator.

V. UNSTABLE STEADY STATE SOLUTION FOR PREDICTING THE RECOVERY POINT

The steady state solutions of the reduced model can be obtained by setting dP

e

/dt = 0 and
dA

e

/dt = 0, which gives

f (P0,A0) = aP

0 �bP

02 +
hg

P

iA0

1+hhg
P

iA0P
0+µ = 0, (S5.11)

g(P0,A0) = aA

0 �bA

02 +
hg

A

iP0

1+hhg
A

iP0A
0+µ = 0,
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where A

0 and P

0 are the effective pollinator and plant abundances in the steady state, respectively.
The Jacobian matrix associated with a steady-state solution is

J =

2

664
a�2P

0b+
hg

P

iA0

1+hhg
P

iA0 � hhg
P

i2
A

0
P

0

(1+hhg
P

iA0)2 +
hg

P

iP0

1+hhg
P

iA0

� hhg
A

i2
A

0
P

0

(1+hhg
A

iP0)2 +
hg

A

iA0

1+hhg
A

iP0 a�2A

0b�k+
hg

A

ip

0

1+hhg
A

iP0

3

775 . (S5.12)

The solutions of Eq. (S5.11) are

P

0 =
�(a+

hg
P

iA0

1+hhg
P

iA0 )± [(a+
hg

P

iA0

1+hhg
P

iA0 )
2 +4bµ]1/2

�2b
, (S5.13)

A

0 =
�(a�k+

hg
A

iP0

1+hhg
A

iP0 )± [(a�k+
hg

A

iP0

1+hhg
A

iP0 )
2 +4bµ]1/2

�2b
.

In general, we have |a|� µ. The physically meaningful solutions of A

0 and P

0 have positive values.
We have bµ ⌧ |a+ hg

P

iA0/(1+ hhg
P

iA0)| or |a� k+ hg
A

iP0/(1+ hhg
A

iP0)|. The approximate
solutions of P

0 and A

0 are

P

0 u
�(a+

hg
P

iA0

1+hhg
P

iA0 )± (|a+
hg

P

iA0

1+hhg
P

iA0 |+2bµ)

�2b
, (S5.14)

A

0 u
�(a�k+

hg
A

iP0

1+hhg
A

iP0 )± (|a�k+
hg

A

iP0

1+hhg
A

iP0 |+2bµ)

�2b
.

For a+ hg
P

iA0/(1+hhg
P

iA0)> 0, we have the following two approximate solutions of P

0:

P

0
1 u�µ, (S5.15)

P

0
2 u


a+

hg
P

iA0

1+hhg
P

iA0

�
b�1,

where P

0
1 corresponds to the result in Eq. (S5.14) with the plus sign and P

0
2 with the minus sign.

Steady state solutions A

0
1 and A

0
2 can be obtained accordingly. For a+ hg

P

iA0/(1+hhg
P

iA0) < 0,
we have

P

0
1 u


a+

hg
P

iA0

1+hhg
P

iA0

�
b�1, (S5.16)

P

0
2 u µ.

For a�k+ hg
A

iP0/(1+hhg
A

iP0)> 0, we have

A

0
1 u�µ, (S5.17)

A

0
2 u


a�k+

hg
A

iP0

1+hhg
A

iP0

�
b�1.
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For a�k+ hg
A

iP0/(1+hhg
A

iP0)< 0, we have

A

0
1 u


a�k+

hg
A

iP0

1+hhg
A

iP0

�
b�1, (S5.18)

A

0
2 u µ.

We consider the parameter regime in which the mutualistic system exhibits a tipping point. For
initial state with high abundances, we have a�k+ hg

A

iP0/(1+hhg
A

iP0)> 0 and a+ hg
P

iA0/(1+
hhg

P

iA0)> 0, in the parameter region where the abundance values are relatively large, i.e., before
the occurrence of a tipping point. In this case, the steady state solutions are given by Eqs. (S5.15)
and (S5.17). The physically meaningful steady-state solutions are given by

P

0 =


a+

hg
P

iA0

1+hhg
P

iA0

�
b�1, (S5.19)

A

0 =


a�k+

hg
A

iP0

1+hhg
A

iP0

�
b�1.

The solution of Eq. (S5.19) can be conveniently expressed in terms of the following algebraic
equation for A

0:
q1A

02 +q2A

0+q3 = 0, (S5.20)

where

q1 =�(b2
hhg

P

i+bhhg
A

ihg
P

i+bh

2ahg
A

ihg
P

i),
q2 =�b2 �habhg

A

i+habhg
P

i+ hg
A

ihg
P

i
+2hahg

A

ihg
P

i+h

2a2hg
A

ihg
p

i
�k(hbhg

P

i+hhg
A

ihg
P

i+h

2ahg
A

ihg
P

i),
q3 = ab+ahg

A

i+ha2hg
A

i�k(b+hahg
A

i),

which gives a stable and an unstable solutions. Substituting the unstable solution of A

0 into
Eq. (S5.19) yields the corresponding solution of P

0.

VI. STATISTICAL ANALYSIS OF THE PREDICTIVE POWER OF THE REDUCED MODEL

To demonstrate the ability of the reduced model to predict the species recovery point in the
presence of abundance management, we carry out a statistic analysis for different realizations of
a random mutualistic network. The results are shown in Fig. S6. The process of generating inde-
pendent statistical realizations of a mutualistic network is as follows. We first generate a random
mutualistic network. We then use the nestedness algorithm [3] to increase the network’s degree of
nestedness. When the required nestedness is reached, we obtain the desired network. The predic-
tive power of the reduced model can be characterized by the quantity dg, the difference between
the numerically calculated recovery point from the full system in the presence of abundance man-
agement and that predicted by the two-dimensional reduced model. In Fig. S6, the approximate
values of the mean and standard deviation of the quantity dg for panels (a-d) are (0.075,0.080),
(0.031,0.065), (0.193,0.090), and (0.287,0.073), respectively. In all cases, the statistical errors
are approximately the same. The small mean values of dg in panels (a) and (b) indicate that the
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FIG. S6. Statistical results on the ability of the reduced model to predict the species recovery point. In
all panels, the x-axis is dg, the difference between the numerically calculated recovery point from the full
model in the presence of abundance management and that predicted by the two-dimensional reduced model.
The y-axis is the number of realizations of a random mutualistic network. Each network realization in (a)
and (b) has 38 pollinators and 11 plants, and the approximate values of the connectance and nestedness are
0.25 and 0.36, respectively. Each network realization in (c) and (d) has 60 pollinators and 20 plants, and the
value of the connectance is approximately 0.2. For (c) and (d), the values of nestedness are approximately
0.3 and 0.6, respectively. The control maintained abundance level is A

S

= 1.5 for (a,c,d) and A

S

= 2 for (b),
and the managed species is the pollinator species with the largest mutualistic links to the plant species. The
number of statistical realizations in all panels is 100. Other parameters have the same values as those in
Fig. 1 in the main text.

reduced model is able to generate reasonably well prediction of the recovery point, but the predic-
tion is poor for panels (c) and (d). A comparison of the results in panels (a) and (b) indicates that
the value of the controlled abundance does not affect the predictive power of the reduced model.
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Comparing the results in panels (a), (c), and (d), we find that the reduced model works surpris-
ingly well for some mutualistic networks, but not so for some others. For example, the prediction
is poorer for highly nested networks than for networks with a low degree of nestedness, as can be
seen by comparing the results in panels (c) and (d). We can conclude that, in general, the reduced
model tends to be more effective if the structure of the network is more random.
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